
Safe User-Level Sharing of
Memory-Mapped Resources

Michael L. Scott

www.cs.rochester.edu/research/synchronization/

Joint work with Mohammad Hedayati, Chris Kjellqvist,
Spyridoula Gravani, Ethan Johnson, and John Criswell at Rochester;

Kai Shen and Mike Marty at Google

Hydra Distributed Systems Conference, July 2020

MLS 2

The University of Rochester

! Small private research
university

! 6800 undergraduates
! 5000 graduate students
! Set on the Genesee River in

Western New York State, near
the south shore of Lake Ontario

! 250km by road from Toronto;
590km from New York City

MLS 4

The Computer
Science Dept.

! Founded in 1974
! 20 tenure-track faculty;

70 Ph.D. students
! Specializing in AI, theory,

HCI, and parallel and
distributed systems

! Among the best small
departments in the US

MLS 5

! Monolithic kernels
» All OS functionality in a single large kernel — long the dominant approach
» Fast, but hard to understand / modify / customize / secure

! Microkernels
» Increase modularity, for easy update / customization; bug containment
» Export functionality into servers; communicate via the kernel

! Exokernels / library OSes / kernel-bypass IO
» Export functionality into library for faster access
» Kernel involved only on setup; app subsequently touches hardware directly

A Bit of OS History

MLS 6

app app

monolithic
kernel

hardware

app app server server

microkernel

hardware

app app

exokernel

lib OS lib OS

hardware

MLS 7

app app

server server

Hodor kernel hardware

app app

exokernel

lib OS lib OS

hardware

MLS 8

! Enables sharing
! Provides guarantees
» Fairness
» Recovery
» Security

! All without needing to trust

Kernel I/O

User
space

OS
Kernel

Applications

File
Systems
Block
Devices

Network
Protocols
Network
Drivers

MLS 9

! Pros:
» Lower latency
» Rapid development
» Specialization

! Cons:
» No guarantees

(e.g., of fairness)
» Hard to multiplex

Kernel-bypass I/O

User
space

OS
Kernel

Applications SPDK

libpmemobj

MLS 10

! Motivation
! Design of Hodor
! Fast Memory Isolation
! IO Performance
! Cross-Application Sharing
! Conclusion

Overview

MLS 11

Protected Library

Protected Storage Library Protected Network Library

Main Application

Thread Stacks

Thread Stacks Thread Stacks

Heap

Heap Heap

Trampolines

MLS 12

Hodor

Hodor
Loader

Existing
Programs

Hodor Linux Kernel

Port to Hodor (initialization,
trampoline, shared regions)

Ensure Integrity

Load, Insert
TrampolinesLibrar

y

App.

MLS 13

! Motivation
! Design of Hodor
! Fast Memory Isolation
! Evaluation
! Conclusion

Overview

MLS 14

! Separate address spaces
» Conventional hardware; high switching overhead

! Software fault isolation (SFI — a.k.a. sandboxing)
» Trusted compiler; no special hardware; high overhead throughout app

! Virtualization (as in Dune [Belay OSDI 2012])
» Hardware enforced; single protected domain; high switching overhead;

additional overhead from VMEXITs and 2-level paging

! VMFUNC on recent Intel machines
» Multiple protection domains in one VM guest; low switching overhead; but

still the overhead of VMEXITs and 2-level paging

★ User-space protection keys [Hedayati ATC 2019; Vahldiek-Oberwagner Sec 2019]

Possible isolation strategies

MLS 15

Cost of an empty library call

stacksw ptsw ptsw-pti vmfunc pku
0

200

400

600

800

cy
cl
es

9

577

938

268

105

MLS 16

! Protection Keys for User-Space (a.k.a. MPK)
! Introduced in Skylake-SP

! 32-bit PKRU register (Access/Write Disable)
! WRPKRU/RDPKRU

Preferred strategy: Intel PKU

X
D PKEY ### U W P

62 59 PTE

WD
15 ...

PKRU
AD
15

WD
1

AD
1

WD
0

AD
0

01233031

PKEY 0PKEY 1PKEY 15

MLS 17

Hodor: Memory Isolation

MLS 18

Hodor: Memory Isolation

MLS 19

! Inspect executable regions
» Load (by Hodor loader)
» W→X change (by Hodor kernel at run-time)

! Look for WRPKRU (0f 01 ef) instances

Hodor: Vetting WRPKRUs

8d 04 0f lea (%rdi, %rcx, 1), %eax
01 ef add %ebp, %edi

blender-2.79b-7.fc29.x86_64

f7 d2 not %edx
21 d0 and %edx,%eax
44 89 c2 mov %r8d,%edx
09 f0 or %esi,%eax
0f 01 ef wrpkru
31 c0 xor %eax,%eax

glibc-devel-static-2.27-alt9.x86_64

MLS 20

! Hardware watchpoints
» DR# registers point to the beginning of illegal byte sequence
» No spurious traps when correctly aligned execution runs past an implicit

instance

Hodor: Vetting WRPKRUs

8d 04 0f lea (%rdi, %rcx, 1), %eax
01 ef add %ebp, %edi

DR0 DR1 DR2 DR3

MLS 21

! Limited hardware watchpoints
» Only 4 on Intel Processors
» HW watchpoints as cache for illegal sequences

Hodor: Illegal WRPKRUs

48 81 ee 60 10 60
00 48 c1 fe 03 48
89 f0 48 c1 e8 3f
48 01 c6 48 d1 fe
74 11 b8 00 00 00
00 48 85 c0 31 c9
31 d2 b8 f0 ff ff
ff 0f 01 ef 74 07
bf 60 10 60 00 ff
e0 c3 0f 1f 44 00
00 66 2e 0f 1f 84
00 00

Execute

48 81 ee 60 10 60
00 48 c1 fe 03 48
89 f0 48 c1 e8 3f
48 01 c6 48 d1 fe
74 11 b8 00 00 00
00 48 85 c0 31 c9
31 d2 b8 f0 ff ff
ff 0f 01 ef 74 07
bf 60 10 60 00 ff
e0 c3 0f 1f 44 00
00 66 2e 0f 1f 84
00 00

MLS 22

! Vetting cost
» Implicit instances incur no run-time overhead
» Explicit instances should use pkey_set()
» No measurable overhead as long as:

– #hot illegal seq. fewer than #hw watchpoints

! How often?
» 58,273 rpm packages on Fedora 29 (108K executables)
» Only 123 binaries with one or more illegal byte sequences

– Only 2 (less than 0.02%) with more than 4

Hodor: Vetting WRPKRUs

MLS 23

! Per-Domain Page-Table
» Each mapping the view of a domain
» Switch using system calls

! Per-Domain Extended Page-Table
» Requires running virtualized (in Intel VMX)
» Switch using VMFUNC w/o causing VMEXIT

Alternative Memory Isolation

Main Application Protected Library

Switch View

MLS 24

! Redis (kernel-bypass network TCP/IP stack)
! Silo (in-memory database)
! DPDK (kernel-bypass packet processing) -- in the ATC paper

Evaluation: Applications

Si
lo

In
te
rfa
ce

Main Application DB Library

YCSB/TPC-C
Benchmark

Main Application Network Library

MLS 25

Evaluation: Applications
SiloRedis

ptsw: page table switching ptsw-pti: page table switching w/ KPTI
vmfunc: EPT switching pku: using memory protection keys

MLS 26

! The network stack in Redis was used by one application at a
time, as was the Silo database

! Sharing the network stack would
enable system-wide QoS guarantees;
sharing an in-core database is also
appealing — Memcached as an example

! Threads of different applications
can fail independently
» Ideal use case for nonblocking structures,

as originally envisioned by the theory community

Cross-application sharing

App 1 App 2

Lib a Lib b

(nonblocking?)
shared structures

MLS 27

! Widely used in datacenters and smaller operations
» Typically accessed over a network, but also within a single machine,

where socket overhead seems wasteful
» Typically used to cache disk contents, but also standalone

! Converted to work with Hodor
» Replaced “slab” allocator with Ralloc [Cai ISMM 2020]

» Elided network code
» Added trampolines and persistence labels
» Rely on Hodor to complete execution of library calls on process crash

Memcached

MLS 28

! Original 26KLoC;
added ~600;
removed ~6.8K
(5.2k network;
1.6K alloc)

! Latency of
individual ops
improved by
11–56x;
throughput by ~2x

Memcached results

0

500

1000

1500

2000

0 5 10 15 20 25 30 35 40

Th
ou
sa
nd

Tr
an
sa
ct
io
ns

/s

Threads

Memcached 8 Threads
Memcached 4 Threads

Modifed Memcached, No Hodor
Modifed Memcached, with Hodor

MLS 29

! Protected libraries must be written with care
» Cannot fail in library code: must be bulletproof
» Must finish all ops in bounded time (kernel has limited patience)
» Cannot trust user data: must validate before using
» Cannot trust data not to change: must copy in before validating
» Cannot trust user locations: must copy out after dropping locks

! These are the same set of rules required for kernel code

Caveats

MLS 30

Introduced protected libraries. Showed that:
! Intel PKU can safely be used for isolation, retaining high

performance
» 90–98% of unprotected throughput

! Libraries can enforce global OS policy
! Mutually untrusting applications can share a protected library
» Perform “server” operations using their own threads, without IPC
» memcached as an example

! Appealing alternative to microkernels: low-cost modularity
» Lots of future work!

Conclusion

www.cs.rochester.edu/research/synchronization/
www.cs.rochester.edu/u/scott/

