
Evolving to
Cloud Native

@ntschutta
ntschutta.io

Nathaniel Schutta

https://tanzu.vmware.com/
content/ebooks/thinking-

architecturally

https://tanzu.vmware.com/content/ebooks/thinking-architecturally
https://tanzu.vmware.com/content/ebooks/thinking-architecturally
https://tanzu.vmware.com/content/ebooks/thinking-architecturally

Ah “the cloud!”

So. Many. Options.

Microservices. Modular monoliths.

Container all the things?

What about serverless?

Functions. As a Service.

Did someone say Polycloud?

https://www.thoughtworks.com/radar/techniques/polycloud

https://www.thoughtworks.com/radar/techniques/polycloud

How do we make
sense of all this?!?

There are real engineering
issues to overcome.

Many believe in magic
sparkle ponies...

How do we avoid pitfalls?

And a strong case of
resume driven design?

What is cloud
Native?

https://mobile.twitter.com/as_w/status/1090763452241534976

https://mobile.twitter.com/as_w/status/1090763452241534976

Applications designed to take
advantage of cloud computing.

Fundamentally about how we
create and deploy applications.

Cloud computing gives us
some very interesting abilities.

Scale up. Scale down. On demand.

Limitless compute.*

* Additional fees may apply.

Said fees can be…opaque.

https://mobile.twitter.com/whereistanya/status/1080864493108776961

https://mobile.twitter.com/whereistanya/status/1080864493108776961

https://mobile.twitter.com/jpetazzo/status/1227638126602080256

https://mobile.twitter.com/jpetazzo/status/1227638126602080256

https://mobile.twitter.com/paulbiggar/status/1228385370439467009

https://mobile.twitter.com/paulbiggar/status/1228385370439467009

Cloud native isn’t just an
architectural pattern.

Combination of practices,
techniques, technologies.

Agile development.

Continuous delivery.

Automation.

Containers.

Microservices.

Functions.

Changes our culture.

DevOps.

Infrastructure is a different
game today isn’t it?

We’ve seen this massive shift.

Servers used to be home grown.

Bespoke. Artisanal.

Spent days hand crafting them.

Treated them like pets…

Did whatever it took to keep
them healthy and happy.

Servers were a heavily
constrained resource.

They were really expensive!

Had to get our money’s worth…

Thus was born app servers.

Put as many apps as
possible on a server.

Maximize the return on investment.

But that has some
unintended side effects.

Shared resources.

One application’s bug could
take down multiple apps.

Coordinating changes hurts.

“Your app can’t get this feature
until all other apps are ready.”

Currency === 18 months of
freezes, testing, frustration.

Organizations ignored currency
issues…pain wasn’t “worth it”.

–Yoda

“Fear is the path to the dark side.
Fear leads to anger. Anger leads
to hate. Hate leads to suffering.”

#YodaOps

Move code from one
server to another…

Worked in dev…but not test.

Why?!?

The environments are
the same…right?

“Patches were applied in a
different order…”

Can I change careers?

Things started to change.

Servers became commodities.

Linux and Intel chips replaced
custom OS on specialized silicon.

https://mobile.twitter.com/linux/status/936877536780283905?lang=en

https://mobile.twitter.com/linux/status/936877536780283905?lang=en

Prices dropped.

Servers were no longer the
constraining factor.

People costs eclipsed
hardware costs.

Heroku, AWS, Google App
Egine, Cloud Foundry, Azure.

Shared servers became a liability.

Treat them like cattle…when
they get sick, get a new one.

New abstractions.

Containers and PaaS
changed the game.

Package the app up with
everything it needs.

Move *that* to a
different environment.

Works in dev? You’re testing the
exact same thing in test.

So. Much. Win.

Your app needs a spiffy
new library? Go ahead!

It doesn’t impact any other app
because you are isolated.

Moves the value line.

Less “undifferentiated heavy lifting”.

Changes development.

Always be changing.

Run experiments. A/B testing.

Respond to business changes.

Deliver in days not months.

https://mobile.twitter.com/ntschutta/status/938109379995353088

https://mobile.twitter.com/ntschutta/status/938109379995353088

Speed matters.

Disruption impacts every business.

Your industry is not immune.

Amazon Prime customers can
order from Whole Foods.

Some insurance companies
view Google as a competitor.

We’re all technology
companies today.

12 factors

Twelve Factor App.

https://12factor.net

https://12factor.net

Characteristics shared by
successful apps.

At least at Heroku.

I. One codebase in version
control, multiple deploys.

Version control isn’t
controversial. Right?!?

Sharing code? It better
be in a library then…

II. Explicitly define your
dependencies.

Do not rely on something just
“being there” on the server.

If you need it, declare it.

III. Configuration must be
separate from the code.

The things that vary from
environment to environment.

Could you open source
that app right now?

IV. Backing services are just
attached resources.

Should be trivial to swap out a
local database for a test db.

In other words, loose coupling.

V. Build, release, run.

Deployment pipeline anyone?

Build the executable…

Deploy the executable with the
proper configuration…

Launch the executable in a
given environment.

VI. Stateless - share nothing.

https://mobile.twitter.com/stuarthalloway/status/1134806008528809985

https://mobile.twitter.com/stuarthalloway/status/1134806008528809985

State must be stored via some
kind of backing service.

In other words, you cannot rely
on the filesystem or memory.

Recovery. Scaling.

VII. Export services via port binding.

App exports a port, listens for
incoming requests.

localhost for development,
load balancer for public facing.

VIII. Scale via process.

In other words, scale horizontally.

IX. Start up fast, shut
down gracefully.

Processes aren’t pets,
they are disposable.

Processes can be started (or
stopped) quickly and easily.

Ideally, start up is seconds.

Also can handle
unexpected terminations!

X. Dev/Prod parity.

From commit to production
should be hours…maybe days.

Definitely not weeks.

Developers should be involved
in deploys and prod ops.

Regions should be identical. Or
as close as possible to identical.

Backing services should be the
same in dev and prod.

Using one DB in dev and
another in prod invites pain.

XI. Logs as event streams.

Don’t write logs to the filesystem!

It won’t be there later…

Write to stdout.

Stream can be routed any
number of places.

And then consumed via a
wide variety of tools.

XII. Admin tasks run as
one off processes.

Database migrations for instance.

REPL for the win.

Run in an identical environment
to the long running processes.

Your legacy apps will
violate some factors.

Maybe all 12!

In general…

II. Explicitly define your
dependencies.

Probably one of the
harder ones to satisfy.

Do we really need this library?

“It works, don’t touch it.”

III. Configuration must be
separate from the code.

Many an app has
hardcoded credentials.

Hardcoded database connections.

VI. Stateless - share nothing.

Also can be challenging.

Many apps were designed
around a specific flow.

Page 2 left debris for Page 3!

“Just stash that in session”.

IX. Start up fast, shut
down gracefully.

Many apps take way
too long to start up…

Impacts health checks.

X. Dev/Prod parity.

Environments should be consistent!

Shorten code to prod cycle.

“It worked in test…”

Do your applications have to be
fully 12 factor compliant?

Nope.

Is it a good goal?

Sure.

But be pragmatic.

Certain attributes lessen the
advantages of cloud.

Long startup time hurts elastic
scaling & self healing.

Think of it as a continuum.

12 Factor Compliance

Benefits of Cloud Deployment

Developers also talk
about 15 factor apps.

aka Beyond the Twelve-Factor App.

https://content.pivotal.io/blog/beyond-the-twelve-factor-app

https://content.pivotal.io/blog/beyond-the-twelve-factor-app

However you define it…

To maximize what
the cloud gives us…

Applications need to be
designed properly.

Legacy applications will fall short.

Opportunistically refactor!

Building greenfield?

Go cloud native!

Don’t build legacy.

Microservices

Reaction to monoliths and
heavy weight services.

As well as cloud environments.

Monoliths hurt.

Developer productivity takes a hit.

Hard to get your head wrapped
around a huge code base.

Long ramp up times
for new developers.

Small change results in building
and deploying everything.

Scaling means scaling the
entire application!

Not just the part that
needs more capacity.

Hard to evolve.

We’re all familiar with the second
law of thermodynamics…

Otherwise known as a
teenagers bedroom.

The universe really
wants to be disordered.

Software is not immune
from these forces!

Modularity tends to
break down over time.

Over time, takes longer to
add new functionality.

Frustration has given birth to a
“new” architectural style.

Enter the microservice.

No “one” definition.

In the eye of the beholder…

https://mobile.twitter.com/littleidea/status/500005289241108480

https://mobile.twitter.com/littleidea/status/500005289241108480

Anything that can be
rewritten two weeks or less.

Think in terms of characteristics.

Suite of small, focussed services.

Do one thing, do it well.

Linux like - pipe simple things
together to get complex results.

Independently deployable.

Independently scalable.

Evolve at different rates.

Freedom to choose the
right tech for the job.

Built around business capabilities.

High cohesion, low coupling…

Applied to services.

It is just another approach. An
architectural style. A pattern.

Despite what some
developers may have said.

Use them wisely.

Please Microservice Responsibly.

https://content.pivotal.io/blog/should-that-be-a-
microservice-keep-these-six-factors-in-mind

https://content.pivotal.io/blog/should-that-be-a-microservice-keep-these-six-factors-in-mind
https://content.pivotal.io/blog/should-that-be-a-microservice-keep-these-six-factors-in-mind

–Simon Brown

“If you can't build a monolith, what makes
you think microservices are the answer?”

http://www.codingthearchitecture.com/2014/07/06/
distributed_big_balls_of_mud.html

http://www.codingthearchitecture.com/2014/07/06/distributed_big_balls_of_mud.html
http://www.codingthearchitecture.com/2014/07/06/distributed_big_balls_of_mud.html

Modularity

Di
st
ri
bu

ta
bi
li
ty

Big Ball
of Mud

MicroservicesDistributed
BBoM

Modular
Monolith

Right Sized
Services?

Sometimes the right answer is a
modular monolith…

https://www.youtube.com/watch?v=kbKxmEeuvc4

https://www.youtube.com/watch?v=kbKxmEeuvc4

Serverless

From IaaS to CaaS to PaaS…

What about serverless?

Functions.

As a Service.

I hear that is *the* in thing now.

But we just refactored to cloud
native microservices…

😡

(╯°□°)╯︵ ┻━┻

Don’t throw that code away just yet!

Fair to say FaaS is a
subset of serverless.

Though many use the
terms interchangeably.

First things first. There
are still servers.

We are just (further)
abstracted away from them.

We don’t have to spend time
provisioning, updating, scaling…

https://mobile.twitter.com/pczarkowski/status/1098978227169755136

https://mobile.twitter.com/pczarkowski/status/1098978227169755136

In other words it is
someone else’s problem.

https://mobile.twitter.com/samnewman/status/952610105169793025

https://mobile.twitter.com/samnewman/status/952610105169793025

https://mobile.twitter.com/starbuxman/status/959366771462496256

https://mobile.twitter.com/starbuxman/status/959366771462496256

IaaS

Containers

Container

Container
Scheduling
Primitives for
Networking,
Routing, Logs and
Metrics

Platform

Application

Container Images
L7 Network
Logs, Metrics,
Monitoring
Services
Marketplace
Team, Quotas &
Usage

Container

Serverless

Function

Function Execution
Function Scaling
Event Stream
Bindings

Container

Developer
Provided

Tool
Provided

Different levels of abstraction.

Hardware
IaaS

Containers
Platforms

Serverless

More Flexibility
Fewer Standards

Lower Complexity
Operational Efficiency

Push as many workloads up the stack as feasible.

Veritable plethora of options.

AWS Lambda, Azure Functions,
Google Cloud Functions…

riff, OpenWhisk, Kubeless, Knative…

Definitely suffers from the
shiny new thing curse.

And everything that entails.

There *are* very good reasons
to utilize this approach!

But it isn’t just a new a way to cloud.

There are serious efficiency gains
to be had with this approach!

Development efficiencies.

Functions push us further up
the abstraction curve.

Allows us to focus on
implementation not infrastructure.

Do you know what OS your
application is running on?

Do you care?

What *should* you care about?

Where is the “value line” for you?

We want to get out of the business
of “undifferentiated heavy lifting”.

Focus on business problems,
not plumbing problems.

Resource efficiencies.

Function hasn’t been
called recently?

Terminate the container.

Request comes in? Instance
springs into existence.

First million (or two)
requests are free*.

* Additional fees may apply.

For example: data transfer fees
or other services you leverage.

Functions aren’t free however.

A fractional cost per request.

Charged based on # of requests,
run duration & resource allocation.

Can be challenging to determine
just how much it will cost…

But for certain workloads,
it is very cost effective.

Operational efficiencies.

Serverless ops?

Again, less for us to worry about.

Rely on a platform.

Very valuable tool.

It isn’t a good fit for every workload.

https://twitter.com/ntschutta/status/1010109588832702464

https://twitter.com/ntschutta/status/1010109588832702464

https://mobile.twitter.com/seldo/status/1046895968329728000

https://mobile.twitter.com/seldo/status/1046895968329728000

🤔

But you knew that.

Plan the journey

Before you start, figure
out where you are.

You need to assess the applications.

Some will be great
candidates, others…

We need to understand a few
things about our applications.

Technical characteristics.

What is the tech stack?
What version are we on?

How many users?

How many transactions per
second (estimate)?

What components do we use?

What 3rd party things does the
application use?

What are the data integrations?

What is the data access technology?

Do we use any internal frameworks?

Are there any batch jobs?

Do we have CI/CD? What are
we using to build the apps?

What do we have for test coverage?

We need to assess the
refactoring effort.

Look for certain red flags.

Vendor dependencies.

Writing to the file system.

Reading from the file system.

Long startup times.

Long shut down times.

Non-HTTP protocols.

Hard coded configuration.

Container based shared state.

Distributed transactions.

Evaluate your applications for
12 Factors compatibility.

Again, it is a sliding scale.

How far out of alignment is the app?

This effort requires
application expertise.

And it will take time.

At least a few hours per.

Consider building a little
application for all the data.

Excel is not an application
platform. Cough.

Unless you have a small portfolio…

Assessments will bucket
your applications.

Low/Medium/High.

Or red/yellow/green.

Whatever works!

“Cutoffs” likely arbitrary.

Sanity check it.

What is the business value
of the application?

Consider the life cycle
of the application.

Is it strategic?

Is it something we’re
going to invest in?

Or is it going to be retired soon?

Retirement isn’t a hard no though.

When matters. A lot.

“When I started, this app
was marked sunset…”

That was 25 years ago. Still running.

If it is going away in a few
months…not worth it.

Going to be around for a
few years, probably is.

Now we need to do some planning.

What is your desired end state?

Cloud native? Just get it
running on cloud?

Legacy apps will require refactoring.

How long does it take to
forklift an application?

https://blog.pivotal.io/pivotal-cloud-foundry/features/the-forklifted-application

https://blog.pivotal.io/pivotal-cloud-foundry/features/the-forklifted-application

https://twitter.com/KentBeck/status/596007846887628801

https://twitter.com/KentBeck/status/596007846887628801

Strongly recommend
a pilot app or two.

Get a feel for it.

Usually a few weeks or so.

Ask the experts.

https://pivotal.io/application-transformation

https://pivotal.io/application-transformation

Consider staffing up a “lab”
team with expertise.

Help teams migrate.

Should *pair* with the
application area.

Need to grow the skills.

Create a roadmap.

Wave 2Retire?
Replace?

Wave 3

Low Medium High

Small

XXL

Wave 1

Effort
Bu

si
n
es

s
Va

lu
e

When can the applications move?

It doesn’t have to be
the entire application!

Some deployable units will
be easy, others hard.

Move what you can.

Again, the terminology
can be challenging…

Look to opportunistically
migrate what you can.

But have a rough idea of when.

Does that satisfy your stakeholders?

What can you do to
accelerate the plan?

Good luck!

Nathaniel T. Schutta
@ntschutta

ntschutta.io

Thanks!
I’m a Software

Architect,
Now What?

with Nate Shutta

Modeling for
Software

Architects
with Nate Shutta

Presentation
Patterns

with Neal Ford & Nate Schutta

