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What are the most important features you care 
about?

How are you going to use it?

Understand you Data

How does your data look like?

What team is going to use it?

How often do you need to access your 
data?

Why do you need data?
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Examples

● Modelling
● Market analysis
● Business Intelligence

DATA QUALITY

● High data quality that looks, feels, 
and tastes like original data

● Statistical properties and utility are 
preserved

Examples

● Performance testing
● Integration testing

SCALABILITY

● Access large amounts of data in 
short amount of time

● High level information and structure 
is preserved
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Production Data

❌ DISADVANTAGES

● Increased chances of data 
breaches

● Huge amounts of data

⚙ TOOLS

● N/A

✅ ADVANTAGES

● High quality data

● Data that behaves like 
production

🤔 WHAT IS IT?

● Copying production data into 
the testing environment.
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❌ DISADVANTAGES

● Medium data quality

● It’s not necessary free of data 
leakage

● Subsetting is a complex 
operation

● Obfuscation requires manual 
labour and is difficult to 
maintain

Obfuscated Subset of Production Data

⚙ TOOLS

● TONIC.ai
https://tonic.ai

● Delphix
https://delphix.com

● DatProf
https://datprof.com

✅ ADVANTAGES

● Data that behaves almost like 
production

● Easy to configure

🤔 WHAT IS IT?

● Using a smaller portion of the 
production environment and 
obfuscating it

● Obfuscating techniques such 
as: 

     K-anonymity

     Masking

     Random string generation

     Data shuffling
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Subsetting
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⚠With random undersampling, we 
can break referential integrity
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Subsetting
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👍 Subsetting is about selecting 
samples intelligently so that 
referential integrity is kept
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Data Obfuscation
Original Table

id name email age income ssn

0 Jason Packman jasonp@gmail.com 34 $2,081 1839127931

1 Emily Smith emily123@example.com 59 $4,281 3688719921

2 Anna Johanson a.johanson@.com 18 0760957942

3 Elton Dusk edusk83@tesla.com 43 $10,817 4279425532

4 Tom Black black@black.ru 32 $1,323 5000137132

Obfuscated Table

id name email age income ssn

0 John Doe fam1i0@jchnai.cu 30,40 $2k,$5k] xxx-xxxx-x31

1 Jane White ckqifid@caoqj.kdn 50,60 $2k,$5k] xxx-xxxx-x21

2 Alan Doug mcuiqp@cjopcgth.cs 10,20 xxx-xxxx-x42

3 Michael Rahm fmq3ekc@tdiqbn.es 40,50 10k,$25k] xxx-xxxx-x32

4 Albert Taylor cinqiqp@ckwoq.mn 30,40 $1k,$2k] xxx-xxxx-x32

● For this example:

    - name: Fake generator

    - email: Random string generator

    - age: KAnonymity

    - income: KAnonymity

    - ssn: Masking

⚠ Traditional anonymization 

techniques can be broke against 

complex attacks such as Linkage 

attach.
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❌ DISADVANTAGES

● Medium data quality

● It’s not necessary free of data 
leakage

● Subsetting is a complex 
operation

● Obfuscation requires manual 
labour and is difficult to 
maintain

Obfuscated Subset of Production Data

⚙ TOOLS

● TONIC.ai
https://tonic.ai

● Delphix
https://delphix.com

● DatProf
https://datprof.com

✅ ADVANTAGES

● Data that behaves almost like 
production

● Easy to configure

🤔 WHAT IS IT?

● Using a smaller portion of the 
production environment and 
obfuscating it

● Obfuscating techniques such 
as: 

     K-anonymity

     Masking

     Random string generation

     Data shuffling
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❌ DISADVANTAGES

● Low quality

● Not scalable to databases, as 
doesn’t preserve referential 
integrity

● Requires manual labour and is 
difficult to maintain

Mock Data Generators

⚙ TOOLS

● Mockaroo
https://www.mockaroo.com/

● GenerateData
https://www.generatedata.co
m/

● Test Data Generator
https://sqledit.com/dg/

● RedGate SQL Data Generator
https://www.red-gate.com/pr
oducts/sql-development/sql-d
ata-generator/

✅ ADVANTAGES

● Zero risk of privacy leakage

● Easy to use

🤔 WHAT IS IT?

● Sample random data from 
some simple distribution

● Entity-specific generators, 
such as:

 Fake names, addresses, 
credit cards

 Sample from dictionaries

17

https://www.mockaroo.com/
https://www.generatedata.com/
https://www.generatedata.com/
https://sqledit.com/dg/
https://www.red-gate.com/products/sql-development/sql-data-generator/
https://www.red-gate.com/products/sql-development/sql-data-generator/
https://www.red-gate.com/products/sql-development/sql-data-generator/


Mockaroo
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❌ DISADVANTAGES

● Preserving referential integrity can 
be challenging

● Learning and generation 
processes can be difficult to 
comprehend

● Mappings, external references, 
and strict rules might be lost

Synthetic Data

⚙ TOOLS

● Synthesized
https://synthesized.io

● SDV
https://sdv.dev

● Synthea (Synthetic Patient 
Population Simulator)
https://github.com/synthetich
ealth/synthea

● Gretel AI
https://gretel.ai/

✅ ADVANTAGES

● Data quality is typically the best

● Low risk of privacy leakage (IP 
might not be secure)

● Highly scalable and personalizable

🤔 WHAT IS IT?

● A complex generative model 
learns the underlying data 
distribution and it is able to 
sample new data points
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Synthetic Data

Original Data Synthetic  Data

LEARN GENERATE
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Examples of Unstructured Synthetic Data
🎞 Images and Video

  DeepFake

  Driverless cars

💬 Natural Language

  GPT3

🎶 Music

  Jukebox
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Synthetic Data Quality
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Synthetea
● High quality synthetic patient data

● Free of privacy

● Open-source

● Healthcare specific
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Synthetic Data Vault
● Multiple Generators that handle different data-types

● Open-source
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❌ DISADVANTAGES

● Requires a lot of manual 
configuration and fine tuning 
(mix of all techniques may be 
as bad as the worst one)

● Maintenance might become 
hard

Mix of all techniques!

⚙ TOOLS

● Synthesized
https://synthesized.io

✅ ADVANTAGES

● High data quality

● Low risk of data leakage

● Data that behaves like 
production

🤔 WHAT IS IT?

● Use a mix of the previous 
techniques, depending on 
each situation

● Two types of mixes:

     Vertical Mix

     Horizontal Mix
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Synthesized
● High quality synthetic data for multiple 

data-types

● Flexible data generation
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Summary

Production Data Obfuscated 
Subsetting Mock Data Synthetic 

Data

Risk of Privacy 
Leakage 🔴 High 🟡 Medium 🟢 Low 🟢 Low

Data Quality 🟢 High 🟡 Medium 🔴 Low 🟢 High

Testing Coverage 🟢 High 🟡 Medium 🔴 Low 🟢 High

Time To Production 🔴 High 🟡 Medium 🟡 Medium 🟢 Low

Efficiency and 
Scalability 🟡 Medium 🔴 Low 🟢 High 🟡 Medium
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Is your Data 
Adequate for 

Testing?

Data 
Coverage



Data Coverage
Understanding how many test cases are covered by 
your data

To compute Data Coverage we need to 
compute all possible test cases, and then 
check how many of them are covered by 
the data



Code Coverage
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Code Coverage

31



Interaction between DB and Application

Data Warehouse

A
pplication
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Application 
logs

Data



Data Coverage
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Rule 1

Rule 2

Rule 3

Rule 1

Rule 2

Rule 2

Rule 3

Rule 1

Rule 4
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synthesized.io

TARGET Data Coverage Num. Samples Total Rules

ACCOUNT  Investment account 5 26.31% 4 19

ACCOUNT  Savings account 5 26.31% 7 19

CASH_ACCOUNT  Cash account 1 33.33% 4 3

CONTRACT  Loan 13 56.52% 11 23

CONTRACT  Savings and Investments 7 58.33% 11 12

CREDIT  Credit 4 40% 29 10

DEPOSIT  Cash account 1 33.33% 4 3

DEPOSIT  Fixed Term Savings Deposit 1 33.33% 2 3

DEPOSIT  Savings account 1 33.33% 7 3

FIXED_TERM_DEPOSIT  Fixed Term Savings Deposit 1 33.33% 2 3

INSTRUMENT  Credit 9 50% 29 18

INSTRUMENT  Savings 9 81.81% 13 11

INTEREST_BEARING_INSTRUMENT  Credit 6 46.15% 29 13

INTEREST_BEARING_INSTRUMENT  Savings 11 91.66% 13 12

MORTGAGE_LOAN_PART  Mortgage Loan Part 11 55% 29 20

SAVINGS_ACCOUNT  Saving saccount 1 33.33% 7 3

TOTAL 86 49.14% 201 175

Data Coverage Results

http://www.synthesized.io


Data Validation - Great Expectations
● Test your data expectations

● Document your tests

● Automatically extract data expectations
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Data Validation - dbt
● Modular data modeling

● Test your data constraints

● Integrate into CI
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SQL Parsing - Open-Source projects
● Parse SQL queries into rules

● https://github.com/taozhi8833998/node-sql-

parser

● https://github.com/JSQLParser/JSqlParser
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Data Generation From Rules - GenRocket
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Data Coverage Optimization

Rule 1

Rule 2

Rule 3

Rule 1

Rule 2

Rule 2

Rule 3

Rule 1

Rule 4

SYN
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ESIZED
 DATA

DATA
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Data Coverage Optimization Results 
TARGET Old Coverage New Coverage Num. Samples Old Num. Samples New Total Rules

ACCOUNT  Investment account 5 26.31% 19 100% 4 6 19

ACCOUNT  Savings account 5 26.31% 19 100% 7 6 19

CASH_ACCOUNT  Cash account 1 33.33% 3 100% 4 3 3

CONTRACT  Loan 13 56.52% 23 100% 11 18 23

CONTRACT  Savings and Investments 7 58.33% 12 100% 11 5 12

CREDIT  Credit 4 40% 10 100% 29 9 10

DEPOSIT  Cash account 1 33.33% 3 100% 4 3 3

DEPOSIT  Fixed Term Savings Deposit 1 33.33% 3 100% 2 3 3

DEPOSIT  Savings account 1 33.33% 3 100% 7 3 3

FIXED_TERM_DEPOSIT  Fixed Term Savings Deposit 1 33.33% 3 100% 2 3 3

INSTRUMENT  Credit 9 50% 18 100% 29 11 18

INSTRUMENT  Savings 9 81.81% 11 100% 13 5 11

INTEREST_BEARING_INSTRUMENT  Credit 6 46.15% 13 100% 29 8 13

INTEREST_BEARING_INSTRUMENT  Savings 11 91.66% 12 100% 13 5 12

MORTGAGE_LOAN_PART  Mortgage Loan Part 11 55% 20 100% 29 8 20

SAVINGS_ACCOUNT  Saving saccount 1 33.33% 3 100% 7 3 3

TOTAL 86 49.14% 175 100% 201 99 175
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Data Coverage Optimization - Synthesized
https://coverage.synthesized.io/
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Resources

Blog post How Weak Anonymization Became a 
Privacy Illusion

https://www.synthesized.io/post/how-weak-an
onymization-became-a-privacy-illusion

Blog post Will Your Data Pass the Test, or Will Your 
Test Pass the Data?

https://www.synthesized.io/post/will-your-data
-pass-the-test

Podcast Mind the Data Gap - Episode 1 Do We 
Want More Data or Better Data?

https://www.synthesized.io/webinars-podcasts/
do-we-want-more-data-or-better-data
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Thank you!

Ton Badal
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