facebook

A Universal Abstraction for

PRESENTED BY
Eric Niebler and David S. Hollman

VA SEFARTYENRT O

ENERGY NS4

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Goals for Async Interfaces

C++ needs an async abstraction:

* That is composable

* That has low abstraction overhead

* That works with coroutines, fibers, and threads, etc.

* That is extensible to multiple execution environments
(both concurrent and parallel)

Disclaimer

This talk doesn’t represent the official views of WG21. It is
merely sketching the ideas behind some recent proposals.

Disclaimer 2

This talk makes use of C-style casts.

Viewer discretion is advised.

|. Background and Introduction

Understanding
Parallelism vs. Concurrency

Spoiler alert: They're not the same thing.

Concurrency vs. Parallelism

Concurrency:

Multiple logical threads of
execution with unknown

inter-task dependencies.

Concurrency vs. Parallelism

Parallelism:

Multiple logical threads of
execution with no inter-task
dependencies.

Concurrency vs. Parallelism

Parallelism:

Scheduler has the
freedom to use the
fastest execution
order.

Concurrency, by Example

// varlable accessible to both workers:
std::atomic<int> x = { 0 }:

// Worker A: |
while(x.load() == 0) { /* yield %/ } // Worker B:
X.store(1);

cout << "Hello" << endl;

 This program is not guaranteed to ever print He L Lo unless
Worker A and Worker B are executed on agents with a

concurrent forward progress guarantee.
* Generally speaking, concurrency imposes extra requirements

on the scheduler.

Parallelism, by Example

// varlable accessible to both workers:
int x = 0;

// Worker A: // Worker B:

// (not an atomic operation) // (not an atomic operation)

X += 1: X += 1:

* This program can resultin X == 1orX == 2 if Worker

A and Worker B are executed in parallel.
* Parallelism is a contract that grants extra freedom to the

scheduler (and imposes extra requirements on the user).

Parallelism and Concurrency are
Opposites

Less freedom for the ¥ . |
scheduler (usually ore Information

because of Missing «— provided to the

information) I I I scheduler (thus more

freedom)
Concurrency Serial Parallelism

Concurrency is a Stronger Scheduling
Guarantee than Serial

std::atomic<int> x = { 0 }:

// Serial program:

std::atomic<int> x = { 0 };
while(x.load() == 0) { /x yield *x/ }
cout << "Hello" << endl;

X.store(1):

// Worker A:
while(x.load() == 0) { /*x yield */ }
cout << "Hello" << endl;

// Worker B:
X.store(1):

When you use serial execution for the program with concurrent
requirements, it (obviously) never prints He L Lo.

Parallelism is a Weaker Scheduling
Requirement than Serial

int X = 0;
[/ worker A: // Serial program:
// (not an atomic operation) . program:
int X = 0;
X += 1;
X += 1;
X += 1;
// Worker B:
// (not an atomic operation)
X += 1;

When you use serial execution for the program with
parallel requirements, it (obviously) results in X ==

Parallelism is "More Universal”

* When you use concurrent features to express
parallelism, you end up with unreasonable overheads.

* The programming model is not restrictive enough for the
compiler or runtime system to avoid these overheads.

Why are the parallel algorithms fast?

* Because they let the user communicate to the scheduler
critical information about (the lack of) cross-task
dependencies.

* |[n other words, it communicates the full structure of the
algorithm’s task graph to the scheduler.

ll. Senders and Receivers

Why are standard futures slow?

Why are Futures slow?

future<int> async_algo() {
promise<int> p;
auto f = p.get_future();
thread t { [p = move(p)]l() mutable {
int answer = // compute!
p.set_value(answer);

i%éetach(); int main() {
return f: auto f = async_algo();
\ auto f2 = f.then([](int i) {
: return i + rand();
) ;

printf("sd\n", f2.get());
}

Why are Futures slow?

future<int> async_algo() {

promise<int> p;

auto f = p.get_future(); ‘ value

thread t { [p = move(p)]l() mutable { ‘ - :
int answer = // compute! continuation
p.set_value(answer); mutex

135

t.detach(); cond var

, et b ref count

int main() {
auto f = async_algo();
auto f2 = f.then([](int i) {
return i + rand():
1)
printf("%sd\n", f2.get());
s

How successful
would the STL be if
iterators all did

allocation,
synchronization,
and
type-erasure?

A simple observation...

template <class Cont>
future<int> async_algo(Cont c) {
promise<int> p;
auto f = p.get_future();
thread t { [p = move(p), cl() mutable {
int answer = // compute!
p.set_value(c(answer));
I3
t.detach();
return f;:

}

)

printf("%sd\n",

}

E

This calling code knows
the continuation at the

point it calls the algorithm!

sync_algo(

[1(int i) {

recurir L T rand(),

f.get());

A less simple observation...

* Passing in a continuation avoids (some) synchronization
overhead because it removes the race on reading and
writing the continuation.

* We can achieve the same result by starting async work
suspended and letting the caller add the continuation

before launching the work.

A less simple observation...

auto async_algo() {
return [](auto p) {
thread t { [p = move(p)]() mutable {

int answer = // compute! .
0.set_value(answer); The function returned from

}}; async_algo is like a lazy future..

Defer the thread launch -- return a
function that takes a promise instead.

t.detach():
1. int main() {
\ auto f = async_algo();
\ . auto f2 = then(f, [](int i) {
return i + rand():
) ;

/] ..

}

then() is just an algorithm

auto then(auto task, auto fun) { then() returns a lazy future that applies a

return [=](auto p) function to the value produced by another

struct _promise { |
— azy future.
decltype(p) p_; 4

decltype(fun) fun_;
void set_value(auto ...vs) { p_.set_value(fun_(vs...)); }
void set_exception(auto e) { p_.set _exception(e); }

rs

task(_promise{p, fun}); int main() A
1 auto f = async_algo();

auto f2 = then(f, [1(int i) {
return i + rand():

- F);
Lazy futures expect promise-like 2.

}

things.

Use then() to compose lazy futures

auto async_algo() { OOPS, printf N wrong thread!

return [](auto p) A
Oops, main no longer blocks!

thread t { [p = move(p)]l() mutable {
p.set_value(answer);)

int answer = // compute!

11 int main() {
t.detach(): auto f = async_algo();
1. auto f2 = then(f, [](int i) {
! return i + rand():
struct sink { = 1)
void set value(auto...) {} auto f3 = then(f2, [1(int j) { // ??7
void set_exception(auto) { printf("%d\n", j);
std::terminate();) ;
+ f3(sink{}); // Launch

b +

Blocking is just an algorithm, too

template< class T, class Task > template< class T >
T sync_wait(Task task) { struct _state {
// Define some state: mutex mtx;
_state<T> state; condition_variable cv;
variant<monostate, exception_ptr, T> data;
// launch the operation: rs

task(_promise<T>{&state});

// walt for 1t to finish: template< class T >
{ struct _promise {

auto lk = unique_lock{state.mtx}; _State<T>x* pst;

state.cv.wait(lk, [&statel{

return state.data.index() '= 0: }): template <int I> void _set(auto... xs) {

1 auto lk = unique_lock{pst—>mtx};
// throw or return the result: pst—>data.template emplace<I>(xS...);
if (state.data.index() == 1) pst—>cv.notify_one();

rethrow_exception(get<l>(state.data)); }

void set value(auto... vs) { set<2>(vs...); }

return move(get<2>(state.data)); void set_exception(auto e) { _set<l>(e); }

Use sync wait() algo to block

auto async_algo() {
return [](auto p) {
thread t { [p = move(p)]() mutable {
int answer = // compute!

p.set_value(answer); | o
}}; 1nt maln() {
t.detach(): auto f = async_algo();
. auto f2 = then(f, [](int 1) {
\ return i + rand():
});
printf("%sd\n", sync_wait<int>(f2));
s

)

f3(sink{}); // Launch
s

Separation of concerns

Why is thread creation the
responsibility of async_algo()?

auto new thread() {
return [](auto p) {
thread t { [p = move(p)]l() mutable {
p.set_value();

}}; new _thread() is an “executor.”
t.detach():
i
I3 . .
int main() A
auto async_algo(auto task) { auto f = async_algo(new_thread());
return then(task’ [1 { auto 2 = then(f; []1(int i) {
int answer = // compute! return i + rand();
return answer, })i L
1 printf("sd\n", sync_wait<int>(f2));

! }

Lazy future advantages

* Async tasks can be composed...
* ... without allocation
* ... Without synchronization

* ... without type-erasure
* Composition is a generic algorithm

* Blocking is a generic algorithm

Generic is as Generic does

template <class P, class E = exception_ptr>
concept Recelver =

requires (P& p, E&& e) {

p.set_error((E&&) e);

p.set_done(); Called by a lazy future in

response to a request for

template <class P, class... cancellation.
concept ReceiverOf =

Receliver<P> &&
Invocable<P, Vs...>;

b

Generic is as Generic does

template <class F>
concept Sender =
is_sender_v<decay_t<F>>;

template <class F, class R>
concept SenderTo =
Sender<F> &&
Receiver<R> &&
requires (F&& f, R&& r) {
submit(forward<F>(f), forward<R>(r));

b

l1l. Sender/Receiver and
Coroutines

Coroutines and callbacks

task<int> async_helper();

task<void> async_algorithm() {

[/
int result = co_await async helper(); |

. printf("%sd\n", result);

Everything after a
CO awalt or a

co_yield expression
is implicitly a
callback.

If suspended coroutines are callbacks,

and if callbacks are Receivers, then...
Coroutines are Receivers

and Awaitables are Senders

(Some) Senders are Awaitable

// In a future version of C++, perhaps?
namespace std { inline namespace awaitable_senders {
template <Sender S>
auto operator co_await(S&& s) {
return awaiter sndr{(S&&)s};
i
}

Must be find-able by ADL

(Some) Senders are Awaitable

struct DuMb_SeNdEr : std::sender_of<int> {
void submit(ReceiverOf<int> auto r) { Senders can be

r(42); : :
1 co awaited in a

g coroutine.

coro_task<int> async_algo(Sender auto s) {
int the _answer = co_awalt s;

assert(the_answer == 42); Awaitables (coro_task)
co_return the_answers; .

}

can be treated as
Senders!

int main() {
int res = sync_wait<int>(async_algo(DuMb_SeNdEr{}));
}

(All) Awaitables are Senders

: // A simple co-awaitable type:
A” awaltable t)’PeS struct my_awaitable {

friend auto operator co_await(my_awaitable) A

satisfy the return ...;
requirements of |2
the Sender // A simple receiver:

struct my_reveiver A
COncePt void operator() (auto...);

void set_error(exception_ptr);
void set done();

ri

int main() A
// OK, can use awaltables as senders:
submit(my_awaitabled}, my_receiverd{});

¥

(All) Awaitables are Senders

// Make all awaitables senders:
template <Awaitable A, ReceilverOf<await result_t<A>> R>
void submit(A awaitable, R to) noexcept {
try 1
invoke([]1(A a, R&& r) —> oneway_task {
R rCopy((R&&) r);
try o
rCopy(co_await (A&&) a);
I3
catch (...) {
rCopy.set_error(current_exception());
I3
}, (A&&) awaitable, (R&&) to);
I3
catch (...) {
to.set_error(current_exception());

L

struct [[maybe unused]] oneway_task {
struct promise_type {
oneway_task get_return_object() noexcept { return {}; }
suspend_never initial_suspend() noexcept { return {}; }
suspend_never final_suspend() noexcept { return {}; }
void return_void() noexcept {}
void unhandled_exception() noexcept { std::terminate(); }

¥

IV. Building on Sender/Receiver

Building on Sender/Receiver

* Higher-level functionality can be built efficiently on top
of Sender/Receiver:

* Generic algorithms: sync wait, wait all, wait any, etc.
* Promises and Futures
* Channels

* Async Ranges and Reactive streams

Example: Futures

We can build eager futures on top of lazy Senders with no
overhead beyond that which is inherent in eager
execution; i.e., allocation and synchronization.

Futures

template <class T>
struct MyFuture {
private:
shared _ptr<_my_state<T>> _st =
make_shared<_my_state<T>>();
public:
template <SenderOf<T> S>
explicit MyFuture(S&& src) A
((S&&)src).submit (
~st->make receiver()):
}
T get() && {
return move(x_st).get();

+
b

Futures

temp template <class T>

strustruct MyFuture { this<_my state<T>> {
va private: _V;
mu shared _ptr<_my_state<T>> st =
CO make_shared<_my_state<T>>();
au public:
template <SenderOf<T> S>)k
} explicit MyFuture(S&& src) {
T ((S&&)src).submit(
_st->make_receiver());
1 lex() '= 0; });
T get() && {
return move(x_st).get();
- ;
P

b

Futures

template <class T>

Stemplate <class T> T>> {
struct _my_recvr {
shared _ptr<_my_ state<T>> _st;
template <class T>
template <int I, class U> void _set(U&& u) A struct MyFuture {
lock_guard 1k(_st->_m); p”ﬁa“ﬁ t et t
_ shared _ptr<_my_state<T>> _st =
_st—>_v.template emplace<I>((U&&%) u); make_shared<_my_state<T>>();
_st—> _cv.notify_one(); public:
1 template <SenderOf<T> S>
| licit MyFuture(S&&
void operator()(T t) { _set<l>(move(t)); } ex?(égg)srz)?sﬂgﬁit(sre) o
void set_error(exception_ptr e) { _set<2>(e); } _st->make_receiver());
void set done]
— () A . _ T get() && A
} _Set<2>(make_excepthn_ptI"(CanCelled{})) ’ return move(*_st)_get();
I3

71 };

Futures: Summary

* Eager interfaces can be layered on top of lazy without
additional overhead.

* The converse is not true: we cannot “lazy-ify” an eager
async operation while also removing its inherent
overhead.

* Therefore, lazy operations are more fundamental.

* The optimal way to “eager-ify” a lazy operation depends
on manv thines: there should be manv such aleorithms.

But remember:

Concurrency is only half of the story
If we can’t also express parallel use cases,

are we really being generic?

FLASHBACK:
Why are the parallel algorithms fast?

* Because they let the user communicate to the scheduler
critical information about (the lack of) cross-task
dependencies.

* [n other words, it communicates the full structure of the
algorithm’s task graph to the scheduler.

Sender/Receiver and Parallelism

* A non-intrusive parallel_ fork algorithm, like then,
creates a node in a task graph of lazy Senders.

* By composing lazy Senders, we build a representation of
the data flow graph independent of its execution.

* How that graph gets executed can then be left up to the
scheduler.

Lazy + Parallel == '

VI. Summary

It is very important that we design a system that does
not only satisfy Facebook's needs, or Nvidia's, or that
satisfies special case argument combinations for
individual use cases, but one that cleanly generalizes
for interoperation between different libraries, from
different vendors with different goals.

Lee Howes, Facebook on the need to formalize callbacks

Async Abstraction

» Sender/Receiver is a generalization of Future/Promise that:
* Accommodates both eager and lazy async
* Supports cancellation and error propagation
* Composes with low overhead

* Permits generic algorithms with efficient default
implementations

* Naturally accommodates “executors” as a special case of a
Sender.

* Generalizes over concurrency and parallelism

Additional Resources

* The Ongoing Saga of Executors by David Hollman

https://www.youtube.com/watch?v=iYM{fYdOO OU

* A Compromise Executors Design Sketch by <lots> P1660
* Callbacks and Composition by Kirk Shoop P1678

* Cancellation is not an Error by Kirk Shoop P1677

https://www.youtube.com/watch?v=iYMfYdO0_OU
http://wg21.link/P1660
http://wg21.link/P1678
http://wg21.link/P1677

