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Computer Science is dead. 



Обновление подсветочных 
текстовыделителей при 

повторном истолковывании 
надписей. 

Highlighters update 
on text reparse. 
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Dependencies compilation 
Tarjan’s algorithm 



Tarjan's algorithm  
(+non-recursive mods). 
 
- Extensions/plugins loading order,  
- type migration,  
- data flow loop analyzer, etc 
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Graph connectivity: Definite assignment. 
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Control flow 
• Block can complete normally. 
• Variable initialized twice. 
• Variable is read before write. 
• Statement is reachable. 
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 Write in 
cycle. 

Q.E.D. 
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Tree edit distance. 

Almost none. Various 
heuristics. 



Reparse text 
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𝐿𝐶𝑆 𝑋𝑖 ,𝑌𝑗 =

 �
𝐿𝐶𝑆 𝑋𝑖−1,𝑌𝑗−1 ∪  𝑥𝑖 ∶ 𝑥𝑖 = 𝑦𝑖

max 𝐿𝐶𝑆 𝑋𝑖 ,𝑌𝑗−1 , 𝐿𝐶𝑆 𝑋𝑖−1,𝑌𝑗 :  𝑥𝑖 ≠ 𝑦𝑖
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Lies, damned lies and presentations 
1. Dependencies compilation: Tarjan. 
2. Suggest members in Refactoring: DFS. 
3. Control flow: DFS. 
4. Highlighters update: Augmented int-tree. 
5. Find In Path: Trigrams + Boyer-Moore. 
6. Allocating tokens: Lock-free fixed pool. 
7. Multi-threaded inspections: Scalable RW-lock 
8. Document Text: Persistent Strings. 
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Outro 

Intellij IDEA: 
github.com/JetBrains/intellij-community 
Algorithms: 
www.wikipedia.org 
Me:  
Alexey.Kudravtsev@jetbrains.com 
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