
1

Computer Science is dead.

Обновление подсветочных
текстовыделителей при

повторном истолковывании
надписей.

Highlighters update
on text reparse.

VS

Problem.

3

Computer Science Name.

4

Algorithm.

5

Cyclic dependencies.

6

7

Cyclic dependencies.

Graph Cycle Detection.

8

Cyclic dependencies.

Graph Cycle Detection.

9

Cyclic dependencies.

Graph Cycle Detection.

Depth-first search.

Depth-first search

10

Cyclic dependencies.

analysis-api platform-api core-impl

usageView

idea-ui roots-impl indexing-api

vcs-api diff-impl lang-api

Depth-first search

11

Cyclic dependencies.

analysis-api platform-api core-impl

usageView

idea-ui roots-impl indexing-api

vcs-api diff-impl lang-api

Depth-first search

12

Cyclic dependencies.

analysis-api platform-api core-impl

usageView

idea-ui roots-impl indexing-api

vcs-api diff-impl lang-api

Depth-first search

13

Cyclic dependencies.

analysis-api platform-api core-impl

usageView

idea-ui roots-impl indexing-api

vcs-api diff-impl lang-api

Depth-first search

14

Cyclic dependencies.

analysis-api platform-api core-impl

usageView

idea-ui roots-impl indexing-api

vcs-api diff-impl lang-api

Depth-first search

15

Cyclic dependencies.

analysis-api platform-api core-impl

usageView

idea-ui roots-impl indexing-api

vcs-api diff-impl lang-api

Depth-first search

16

Cyclic dependencies.

analysis-api platform-api core-impl

usageView

idea-ui roots-impl indexing-api

vcs-api diff-impl lang-api

Depth-first search

17

Cyclic dependencies.

analysis-api platform-api core-impl

usageView

idea-ui roots-impl indexing-api

vcs-api diff-impl lang-api

Depth-first search

18

Cyclic dependencies.

analysis-api platform-api core-impl

usageView

idea-ui roots-impl indexing-api

vcs-api diff-impl lang-api

Depth-first search

19

Cyclic dependencies.

analysis-api platform-api core-impl

usageView

idea-ui roots-impl indexing-api

vcs-api diff-impl lang-api

Depth-first search

20

Cyclic dependencies.

analysis-api platform-api core-impl

usageView

idea-ui roots-impl indexing-api

vcs-api diff-impl lang-api

Q.E.D.

Dependencies compilation

21

22

Dependencies compilation.

Strongly Connected
Components.

23

Dependencies compilation.

Strongly Connected
Components.

24

Dependencies compilation.

Strongly Connected
Components.

Tarjan's algorithm.

Tarjan’s algorithm

25

Dependencies compilation

core-impl java-impl project-impl

util lang-impl index-impl

lvcs-impl vcs-impl roots-impl

26

Dependencies compilation

core-impl java-impl project-impl

util lang-impl index-impl

lvcs-impl vcs-impl roots-impl

Tarjan’s algorithm

27

Dependencies compilation

core-impl java-impl project-impl

util lang-impl index-impl

lvcs-impl vcs-impl roots-impl

Tarjan’s algorithm

28

Dependencies compilation

core-impl java-impl project-impl

util lang-impl index-impl

lvcs-impl vcs-impl roots-impl

Tarjan’s algorithm

29

Dependencies compilation

core-impl java-impl project-impl

util lang-impl index-impl

lvcs-impl vcs-impl roots-impl

Tarjan’s algorithm

30

Dependencies compilation

core-impl java-impl project-impl

util lang-impl index-impl

lvcs-impl vcs-impl roots-impl

Tarjan’s algorithm

31

Dependencies compilation

core-impl java-impl project-impl

util lang-impl index-impl

lvcs-impl vcs-impl roots-impl

Tarjan’s algorithm

32

Dependencies compilation

core-impl java-impl project-impl

util lang-impl index-impl

lvcs-impl vcs-impl roots-impl

Tarjan’s algorithm

33

Dependencies compilation

core-impl java-impl project-impl

util lang-impl index-impl

lvcs-impl vcs-impl roots-impl

Tarjan’s algorithm

34

Dependencies compilation

core-impl java-impl project-impl

util lang-impl index-impl

lvcs-impl vcs-impl roots-impl

Tarjan’s algorithm

35

Dependencies compilation

core-impl java-impl project-impl

util lang-impl index-impl

lvcs-impl vcs-impl roots-impl

Tarjan’s algorithm

36

Dependencies compilation

core-impl java-impl project-impl

util lang-impl index-impl

lvcs-impl vcs-impl roots-impl

Tarjan’s algorithm

core-impl java-impl project-impl

util lang-impl index-impl

lvcs-impl vcs-impl roots-impl

37

Dependencies compilation
Tarjan’s algorithm

Tarjan's algorithm
(+non-recursive mods).

- Extensions/plugins loading order,
- type migration,
- data flow loop analyzer, etc

38

Dependencies compilation

Q.E.D.

Suggest members

39

40

Suggest members.

Transitive closure.

41

Suggest members.

Transitive closure.

42

Suggest members.

Transitive closure.

Depth-first search.

Suggest members
Transitive closure: Depth-first search

43

createCenterPanel()

updateMemberInfo()

doCancel()

createMemberSelection()

createMemberInfo()

myMemberInfo

myOKAction

LOG

myMemberSelection

myCancelButton

Suggest members
Transitive closure: Depth-first search

44

createCenterPanel()

updateMemberInfo()

doCancel()

createMemberSelection()

createMemberInfo()

myMemberInfo

myOKAction

LOG

myMemberSelection

myCancelButton

Suggest members
Transitive closure: Depth-first search

45

createCenterPanel()

updateMemberInfo()

doCancel()

createMemberSelection()

createMemberInfo()

myMemberInfo

myOKAction

LOG

myMemberSelection

myCancelButton

Suggest members
Transitive closure: Depth-first search

46

createCenterPanel()

updateMemberInfo()

doCancel()

createMemberSelection()

createMemberInfo()

myMemberInfo

myOKAction

LOG

myMemberSelection

myCancelButton

Suggest members
Transitive closure: Depth-first search

47

createCenterPanel()

updateMemberInfo()

doCancel()

createMemberSelection()

createMemberInfo()

myMemberInfo

myOKAction

LOG

myMemberSelection

myCancelButton

Suggest members
Transitive closure: Depth-first search

48

createCenterPanel()

updateMemberInfo()

doCancel()

createMemberSelection()

createMemberInfo()

myMemberInfo

myOKAction

LOG

myMemberSelection

myCancelButton

Suggest members
Transitive closure: Depth-first search

49

createCenterPanel()

updateMemberInfo()

doCancel()

createMemberSelection()

createMemberInfo()

myMemberInfo

myOKAction

LOG

myMemberSelection

myCancelButton

Suggest members
Transitive closure: Depth-first search

 createCenterPanel()

updateMemberInfo()

doCancel()

createMemberSelection()

createMemberInfo()

myMemberInfo

myOKAction

LOG

myMemberSelection

myCancelButton

50 Q.E.D.

Control flow

51

52

Control flow.

Graph connectivity
problems.

53

Control flow.

Graph connectivity
problems.

54

Control flow.

Graph connectivity
problems.

Depth-first search.

Control flow
Graph connectivity: Definite assignment.

55

if (delay == 0)

text = “N/A”; if (delay < 0)

end text = “Periodic”;

start

Control flow
Graph connectivity: Definite assignment.

56

if (delay == 0)

text = “N/A”; if (delay < 0)

end text = “Periodic”;

start

Control flow
Graph connectivity: Definite assignment.

57

if (delay == 0)

text = “N/A”; if (delay < 0)

end text = “Periodic”;

start

Control flow
Graph connectivity: Definite assignment.

58

if (delay == 0)

text = “N/A”; if (delay < 0)

end text = “Periodic”;

start

Control flow
Graph connectivity: Definite assignment.

59

if (delay == 0)

text = “N/A”; if (delay < 0)

end text = “Periodic”;

start

Control flow
Graph connectivity: Definite assignment.

60

if (delay == 0)

text = “N/A”; if (delay < 0)

end text = “Periodic”;

start

Control flow
• Block can complete normally.
• Variable initialized twice.
• Variable is read before write.
• Statement is reachable.
• Variable is assigned in loop:
• Variable is definitely assigned.
• Variable is definitely not assigned.

61

Control flow
• Block can complete normally.
• Variable initialized twice.
• Variable is read before write.
• Statement is reachable.
• Variable is assigned in loop:
• Variable is definitely assigned.
• Variable is definitely not assigned.

62

Control flow
• Block can complete normally.
• Variable initialized twice.
• Variable is read before write.
• Statement is reachable.
• Variable is assigned in loop:
• Variable is definitely assigned.
• Variable is definitely not assigned.

63

 Write in
cycle.

Q.E.D.

Reparse text

64

Reparse text

65

Tree edit distance.

Reparse text

66

Tree edit distance.

Reparse text

67

Tree edit distance.

Almost none. Various
heuristics.

Reparse text

68 Q.E.D.

Highlighters update

69

Highlighters update

70

Intervals stabbing
queries/update.

Highlighters update

71

Intervals stabbing
queries/update.

Highlighters update

72

Intervals stabbing
queries/update.

Augmented interval tree.

Highlighters update
Augmented interval tree

13

9 18

5 12 17 22

73

Highlighters update
Augmented interval tree

13

9 18

5 12 17 22

74

 =+2

Q.E.D.

Find In Path

75

Find In Path

76

Fast substring search.

Find In Path

77

Fast substring search.

Find In Path

78

Fast substring search.

Trigram index +
Boyer–Moore.

Find In Path
Trigram index:

 getInstance

PsiManager.java,
TokenSet.java, UiUtil.java

Exceptions.java, TokenSet.java,
PsiElement.java, Pair.java

79

PsiElement.java, TokenSet.java

Find In Path
Trigram index:

80

PsiManager.java,
TokenSet.java, UiUtil.java

Exceptions.java, TokenSet.java,
PsiElement.java, Pair.java

PsiElement.java, TokenSet.java

Find In Path
Trigram index:

81

PsiExpression.java

Exceptions.java,
PsiElement.java,

Pair.java

PsiManager.java,
UIUtil.java

TokenSet.java

Q.E.D.

Diff

82

Diff

83

Longest common
subsequence.

Diff

84

Longest common
subsequence.

Diff

85

Longest common
subsequence.

Dynamic programming +
Patience Diff.

Diff

LCS via dynamic programming

86

𝐿𝐶𝑆 𝑋𝑖 ,𝑌𝑗 =

 �
𝐿𝐶𝑆 𝑋𝑖−1,𝑌𝑗−1 ∪ 𝑥𝑖 ∶ 𝑥𝑖 = 𝑦𝑖

max 𝐿𝐶𝑆 𝑋𝑖 ,𝑌𝑗−1 , 𝐿𝐶𝑆 𝑋𝑖−1,𝑌𝑗 : 𝑥𝑖 ≠ 𝑦𝑖

Q.E.D.

Allocating tokens

87

Allocating tokens

88

Object pooling.

Allocating tokens

89

Object pooling.

Allocating tokens

90

Object pooling.

Lock-free fixed-size
object pool.

Allocating tokens
Lock-free fixed-size object pool

object1

object2

object3

object4

object5

object6

object7

object8

object9

object0

91

Allocating tokens
Lock-free fixed-size object pool

object1

object2

object3

object4

object5

object6

object7

object8

object9

object0

92

Allocating tokens
Lock-free fixed-size object pool

object1

object2

object3

object4

object5

object6

object7

object8

object9

object0

93

Allocating tokens
Lock-free fixed-size object pool

object1

object2

object3

object4

object5

object6

object7

object8

object9

object0

94

Allocating tokens
Lock-free fixed-size object pool

object1

object2

object3

object4

object5

object6

object7

object8

object9

object0

95 Q.E.D.

Multi-threaded inspections

96

Multi-threaded inspections

97

Scalable read-write lock.

Multi-threaded inspections

98

Scalable read-write lock.

Multi-threaded inspections

99

Scalable read-write lock.

Thread-local-based
storage +
volatile flags.

Thread-locals + volatile flags

Read
thread1

Read
thread2

Read
thread3

Write
thread

100

Multi-threaded inspections

Thread-locals + volatile flags

Read
thread1

Read
thread2

Read
thread3

Write
thread

101

Multi-threaded inspections

Thread-locals + volatile flags

Read
thread1

Read
thread2

Read
thread3

Write
thread

102

Multi-threaded inspections

?

Thread-locals + volatile flags

Read
thread1

Read
thread2

Read
thread3

Write
thread

103

Multi-threaded inspections

Thread-locals + volatile flags

Read
thread1

Read
thread2

Read
thread3

Write
thread

104

Multi-threaded inspections

?

Thread-locals + volatile flags

Read
thread1

Read
thread2

Read
thread3

Write
thread

105

Multi-threaded inspections

Thread-locals + volatile flags

Read
thread1

Read
thread2

Read
thread3

Write
thread

106

Multi-threaded inspections

Thread-locals + volatile flags

Read
thread1

Read
thread2

Read
thread3

Write
thread

107

Multi-threaded inspections

Q.E.D.

108

Document Text.

109

Document Text.

Persistent Data
Structures.

110

Document Text.

Persistent Data
Structures.

111

Document Text.

Persistent Data
Structures.

Persistent string.

112

Document Text.

Hello world

Version 1

113

Document Text.

Hello world

cruel

Version 1

114

Document Text.

Hello world cruel world

Version 1 Version 2

Q.E.D.

Lies, damned lies and presentations
1. Dependencies compilation: Tarjan.
2. Suggest members in Refactoring: DFS.
3. Control flow: DFS.
4. Highlighters update: Augmented int-tree.
5. Find In Path: Trigrams + Boyer-Moore.
6. Allocating tokens: Lock-free fixed pool.
7. Multi-threaded inspections: Scalable RW-lock
8. Document Text: Persistent Strings.

115

Lies, damned lies and presentations
1. Dependencies compilation: Tarjan.
2. Suggest members in Refactoring: DFS.
3. Control flow: DFS.
4. Highlighters update: Augmented int-tree.
5. Find In Path: Trigrams + Boyer-Moore.
6. Allocating tokens: Lock-free fixed pool.
7. Multi-threaded inspections: Scalable RW-lock
8. Document Text: Persistent Strings.

116

Lies, damned lies and presentations
1. Dependencies compilation: Tarjan.
2. Suggest members in Refactoring: DFS.
3. Control flow: DFS.
4. Highlighters update: Augmented int-tree.
5. Find In Path: Trigrams + Boyer-Moore.
6. Allocating tokens: Lock-free fixed pool.
7. Multi-threaded inspections: Scalable RW-lock
8. Document Text: Persistent Strings.

117 Q.E.D.

118

Too Many Algorithms.

119

Too Many Algorithms.

O()

120

Too Many Algorithms.

O()

121

Too Many Algorithms.

O()
The method of least
squares.

122

Too Many Algorithms.

0
5

10
15
20
25
30
35

0 5 10 15 20 25 30

Se
co

nd
s

N

Java15APIUsageInspection time

123

Too Many Algorithms.

0
5

10
15
20
25
30
35

0 5 10 15 20 25 30

Se
co

nd
s

N

Java15APIUsageInspection time

O(n)

124

Too Many Algorithms.

0
10
20
30
40
50
60
70

0 5 10 15 20 25 30 35

Se
co

nd
s

N

DataFlowInspection Time

125

Too Many Algorithms.

O(2^n)
0

10
20
30
40
50
60
70

0 5 10 15 20 25 30 35

Se
co

nd
s

N

DataFlowInspection Time

126

Too Many Algorithms.

0

10

20

30

40

50

0 5 10 15 20 25 30 35

Se
co

nd
s

N

Inspection Time

127

Too Many Algorithms.

0

10

20

30

40

50

0 5 10 15 20 25 30 35

Se
co

nd
s

N

Inspection Time

𝑇𝑇 ≈ 0.01 𝑁𝑁2 + 1.22 𝑁𝑁 + 1.7

128

Too Many Algorithms.

0

10

20

30

40

50

0 5 10 15 20 25 30 35

Se
co

nd
s

N

Inspection Time

𝑇𝑇 ≈ 0.01 𝑁𝑁2 + 1.22 𝑁𝑁 + 1.7

129

Too Many Algorithms.

0
100
200
300
400
500
600
700

0 5 10 15 20 25 30 35

Se
co

nd
s

N

Inspection Time

130

Too Many Algorithms.

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35

Se
co

nd
s

N

Inspection Time

𝑇𝑇 ≈ 0.51 𝑁𝑁2 − 12 𝑁𝑁 + 7

Q.E.D.

Outro

131

Outro

132

Outro

Intellij IDEA:
github.com/JetBrains/intellij-community
Algorithms:
www.wikipedia.org
Me:
Alexey.Kudravtsev@jetbrains.com

133

https://github.com/JetBrains/intellij-community
https://www.wikipedia.org/
mailto:Alexey.Kudravtsev@jetbrains.com

	Computer Science is dead.
	Slide Number 2
	Problem.
	Computer Science Name.
	Algorithm.
	Cyclic dependencies.
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Cyclic dependencies.
	Cyclic dependencies.
	Cyclic dependencies.
	Cyclic dependencies.
	Cyclic dependencies.
	Cyclic dependencies.
	Cyclic dependencies.
	Cyclic dependencies.
	Cyclic dependencies.
	Cyclic dependencies.
	Cyclic dependencies.
	Dependencies compilation
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Dependencies compilation
	Dependencies compilation
	Dependencies compilation
	Dependencies compilation
	Dependencies compilation
	Dependencies compilation
	Dependencies compilation
	Dependencies compilation
	Dependencies compilation
	Dependencies compilation
	Dependencies compilation
	Dependencies compilation
	Dependencies compilation
	Dependencies compilation
	Suggest members
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Suggest members
	Suggest members
	Suggest members
	Suggest members
	Suggest members
	Suggest members
	Suggest members
	Suggest members
	Control flow
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Control flow
	Control flow
	Control flow
	Control flow
	Control flow
	Control flow
	Control flow
	Control flow
	Control flow
	Reparse text
	Reparse text
	Reparse text
	Reparse text
	Reparse text
	Highlighters update
	Highlighters update
	Highlighters update
	Highlighters update
	Highlighters update
	Highlighters update
	Find In Path
	Find In Path
	Find In Path
	Find In Path
	Find In Path�Trigram index:�
	Find In Path�Trigram index:�
	Find In Path�Trigram index:�
	Diff
	Diff
	Diff
	Diff
	Diff
	Allocating tokens
	Allocating tokens
	Allocating tokens
	Allocating tokens
	Allocating tokens
	Allocating tokens
	Allocating tokens
	Allocating tokens
	Allocating tokens
	Multi-threaded inspections
	Multi-threaded inspections
	Multi-threaded inspections
	Multi-threaded inspections
	Multi-threaded inspections
	Multi-threaded inspections
	Multi-threaded inspections
	Multi-threaded inspections
	Multi-threaded inspections
	Multi-threaded inspections
	Multi-threaded inspections
	Multi-threaded inspections
	Document Text.
	Document Text.
	Document Text.
	Document Text.
	Document Text.
	Document Text.
	Document Text.
	Lies, damned lies and presentations
	Lies, damned lies and presentations
	Lies, damned lies and presentations
	Too Many Algorithms.
	Too Many Algorithms.
	Too Many Algorithms.
	Too Many Algorithms.
	Too Many Algorithms.
	Too Many Algorithms.
	Too Many Algorithms.
	Too Many Algorithms.
	Too Many Algorithms.
	Too Many Algorithms.
	Too Many Algorithms.
	Too Many Algorithms.
	Too Many Algorithms.
	Outro
	Outro
	Outro

