
01 03 05

02 04

Detection

Response Analysis

Remediation Readiness

A DevOps Guide to

Incident Response
Software

Your Guide to Collaborative
Incident Response

Incident: a problem, represented by an
alert, that could negatively impact customers,
your employees, and the stakeholders inside
or outside of your organization.

In order to stay competitive in today’s market, businesses are expected to

innovate — quickly. Many engineering teams feel pressure to build, deploy, and

operate services with increasing speed. High performing teams innovate faster

and maintain their sanity because they’re able to quickly recover from incidents.

As we move from agile development to rapid deployment, teams need to think

beyond a reactive operations center. That’s why choosing the right on-call and

incident response system is more than just the icing on the cake to a successful

DevOps culture. Incident response is the cornerstone to engaging high-perform-

ing engineering and ops teams who champion uptime and own on-call — instead

of fear it. Ultimately, rethinking and retooling your approach to DevOps and

incident response is imperative to delivering products and applications that keep

businesses relevant.

The purpose of this buyer’s guide is to discuss why progressive, high-performing

teams choose to invest in high-performance incident response software. From

the challenges across the SDLC to specific incident response product features,

we’ll lay out everything you need to consider when choosing an incident

response solution.

The Challenges

Issues Commonly Faced by Organizations without an Established Incident

Response Process

• Alert Noise and Fatigue

• Disorganized Communication

• Poor Alert Flow from Disparate IT Systems

• Siloed Communication

• Wrong People Being Alerted

• Unprepared for a Crisis

• Disconnected Workflows

• Repeating Previous Mistakes

Building a Culture of Urgency
and Availability

High availability is essential to business success—an issue complicated by the

increasing deployment demands of a highly competitive market. Accordingly,

investing in processes to ensure near-zero downtime alongside rapid deployment

is mission critical for the entire engineering and IT department.

Here, we break down how incident response is key to maintaining a culture of

availability without slowing down the innovation process—and how DevOps is

the essential piece for successfully executing this shift.

The Negative Economic Impact of Downtime
For the fortune 1000, the average total cost of unplanned application downtime

is $1.25B to $2.5B annually. The average hourly cost of an infrastructure failure is

$100,000 per hour. The average cost of critical application failure is $500,000 to

$1 million per hour.

These aren’t outliers limited to the enterprise. Outages (and their subsequent

costs) affect companies large and small. These types of errors are full of negative

externalities, including branding and overall customer trust. For example, in 2017,

GitLab lost a massive amount of customer data after an error (and subsequent

failures of multiple redundant backup protocols). Customer projects, comments,

and other data were all gone. While source code repositories were safeguarded,

it was problematic for a company whose business involved data stewardship.

In the VictorOps 2017 State of On-Call Report, we learned 56% of respondent

mentioned revenue impacts as the biggest negative result of downtime in their

business. Of course, downtime is more than just revenue, the repercussions of a

major outage are felt throughout the business.

Competitive Advantage of Minimal Downtime
More advanced companies use historical incident data to proactively prepare

teams to resolve events faster, and to prevent those events in the first place. This

in turn becomes a competitive advantage as highly functional “on-call” teams

help protect revenue loss, maintain brand reputation, and drive customer

satisfaction.

Recent research demonstrates these high performers are deploying 46x more

frequently, with a 440x faster lead time from commit to deploy, all while

maintaining a mean time to recover (MTTR) that’s 96x faster. And change failure

rate? It’s 5x lower, so changes are as likely to fail*

Shift from ITIL: DevOps and
Modern IT

The traditional Information Technology Infrastructure Library (ITIL) model was

developed in the late 1980s, a time when people were shipped physical disks for

application updates. And while not every company then was in the business of

selling software, almost every business now relies on running software and

delivering online services. Software is disrupting every industry—entertainment,

agriculture, finance…* This is where ITIL falls flat. ITIL separates duties and

process approvals in an effort to support standardization and reduce duplication

of work. This siloed and process-laden approach inherently slows down change.

Nevertheless, many organizations still rely on this model, expecting to adhere to

SLAs and maintain near-zero downtime despite incredibly rapid deployment

demands.

In order to drive innovation, maintain uptime, and support employee growth, ITIL

won’t hold up in the always-on, 24/7 IT paradigm. Accordingly, we advocate for a

DevOps model as a cornerstone of incident response.

DevOps is an approach to work where teams continuously look for methods to

evaluate and improve technology, process, and people as they relate to building,

deploying, operating, and supporting the value our organization provides. It’s a

broader shift in mindset that leads to addressing the needs of the business

through the lens of the customer. We accomplish this through an increased focus

on collaboration, measuring and improving processes, getting customer

feedback, and improved transparency.

Bring DevOps Into Your Life

Benefits of DevOps + Collaborative
Incident Response

Combining DevOps with a forward-thinking incident response tool means the

end of a sh*t on-call experience.

For Ops: On-Call That Doesn’t Suck

1. Collaborate with Developers Behind the Code

2. Ditch the Shared Pager—Ack and Resolve from Your Own Mobile Device

3. Integrate across Your Toolchain (Monitoring & More) for

 Centralized Information

4. Access the Context You Need, Quickly—No Vague 2 a.m.

5. Improved Alert Speed to deploy quickly without Sacrificing Safety

 or Efficiency

For Devs: Owning Your Code

1. Empower Development Teams

2. Create More Stable Operating Environments

3. Spend Time Building and Innovating—Not Fixing and Maintaining

4. Improve Overall Quality of Your Code

5. Support Ownership and Accountability, Regardless of Role or Title

For the Business: Increase Efficiency and Boost the Customer Experience

1. Stay Ahead of the Competition

2. Limit Downtime & Improve Service Quality

3. Increase Productivity—and Happiness—of IT Staff

4. Drive Quality Communication Across Teams

5. Increase Overall Organizational Velocity

Modern On-Call Incident Life Cycle

Today’s teams must manage incidents across the entire lifecycle — folding in

detection, response, remediation, analysis, and readiness. In this section, we’ll

dive into the five different phases of the incident life cycle.

For each stage, we’ll cover the definition. Then, we’ll discuss how they relate to

the features and functionality you need in on-call and incident response software

to do more than react to alerts.

Stage 1: Detection

How It Relates to Incident Response Software

Simply put, detection is monitoring insights, looking for the signs and signals

of an incident.

However, in organizations with legacy monitoring configurations, actually

improving detection is tough. Environments are configured with broadly applied,

arbitrarily set thresholds. The impact on on-call teams is measurable:

Too many false alerts + Too many interruptions = Acute Alert Fatigue

For the above reasons, high-performing teams focus on two things in addition to

the basics. The first is time series analysis in their monitoring and detection

systems. For example, some progressive, in-market solutions offer a time-series

database, enabling wide adoption in both new projects and within existing

environments. Your incident response tool should be able to seamlessly integrate

with advanced monitoring tools to improve measurement fidelity.

The second is an accurate feed of what’s happening in your environment. In

VictorOps, we call it the “Timeline.” A timeline provides continuous data from

across your ecosystem as alerts flow through the system, providing a broad,

holistic picture for the size, scope, and urgency of any given alert at any given

moment in time.

Stage 2: Response

How It Relates to Incident Response Software

There are a few key features to ensure the response happens effectively. You can

think about these features as on-call essentials or, depending on how thin the

feature set is, “basic alerting.” Thus, the leading incident response tools in market

will offer:

• Dynamic scheduling

• Team-specific rotations

• Automated escalation(s)

• Scheduled overrides

These feature sets are essential, yet in isolation, they’re simply not robust enough

to support a true DevOps culture. High-performing DevOps teams tend to focus

on less reactive environments, investing in the people, process, and tooling to

ensure teams are proactively preparing, minimizing, and preventing incidents.

Accordingly, every second during response provides an opportunity for improved

reliability and uptime.

This is an important point: Developers will not positively respond to (read: adopt)

a highly-reactive on-call management tool. The tool needs to offer context,

collaboration, and visibility.

Many high-performing teams have found success through ChatOps tooling and

workflows that centralize communication and setup the first responder for

success. While receiving a basic notification in Slack/Stride/Mattermost is great,

a contextual alert with a visual indication of the current state, plus links to

relevant runbooks or dashboards, saves the responder valuable time digging into

the error.

When purchasing an incident response tool, buyers should look not only for

bidirectional chat integrations and ChatOps functionality but also the ability to

configure alerts to fit team needs—any information present in the alert payload

can be used to provide additional details to the on-call responder. Straightfor-

ward contextual details attached to each alert will reduce the stress of on-call

and provide a next-level technique for resolving incidents faster.

Stage 3: Remediation

How It Relates to Incident Response Software

A variety of factors impact the length of the remediation stage, often a

combination of severity and unknowns. However, the severity of the incident is, of

course, often the most direct correlation to MTTR. This “severity” factor may

leave teams feeling like the overall time to repair is outside their control; however,

there are a variety of ways the combination of incident response software,

processes, and team can put the control back in their hands.

The first piece depends on contextual alerts: what data does the team have

access to and, perhaps more importantly, do they have the ability to understand

the real-life implications of the data. Contextualization of data allows teams to

turn metrics into actionable insights that provide a higher fidelity picture of the

incident.

Incident response software can act as a black box for time-series systems (e.g.,

InfluxDB), log analytics systems (e.g., Splunk), and changes to production (e.g.,

Jenkins, GitHub).

Regardless of your specific approach to these metrics, your incident response

ought to support a holistic picture of your systems and data. Robust integrations,

contextual alerts, and runbooks attached to alerts serve as a collective

knowledge base for dealing with a variety of issues, no matter your role or tenure.

Stage 4: Analysis

How It Relates to Incident Response Software

When we discuss analysis, there are a few key pieces necessary for incident

response software to support a healthy Post-Incident Review (PIR). The first is

the the Incident Dashboard or Timeline, which is helpful for providing a quick

view of misbehaving systems before and during the incident; who shipped

something to production; who was taking action; what actions was that individual

taking; and what communication was happening throughout the incident. All of

these pieces serve as critical data for an effective PIR.

Close readers may notice some nuances to words we’ve chosen (or avoided)

as we discuss incident analysis, namely “Post-Incident Review” and

“root-cause analysis” (RCA).

Post-Incident Review is our replacement for post-mortems. You can learn more

about our approach to the Post-Incident Review, including why it’s so essential

for DevOps teams—here. The decision to not use RCA mirrors this sentiment

based on the current complexity of people and systems.

The second is also reporting related: Mean time to acknowledge (MTTA) and

mean time to resolve (MTTR). MTTA/MTTR reporting allow your teams to

visualize and uncover the underlying trends regarding a team’s ability to respond

to and resolve incidents. By wholistically analyzing the impact of incident volume

— and your teams use of the incident response software — you can determine

levers to lower MTTA/MTTR specifically and minimize the cost of downtime.

The third is a Post-Incident Review—different than the actual process of an

internal PIR, this PIR is a tangible report where individuals, including Leadership,

can quickly pull a timeframe of data (no more manual aggregation of emails,

Slack, SMS, and monitoring systems) for key learnings. This report facilitates a

PIR, or “retrospective”, and documents long-term action items. Out-of-the-box

PIR reporting allows your team to quickly and easily access monitoring data,

system actions, and human remediation to better understand the who, what,

when, where, and why of an incident. All of this analysis is essential for the

preparedness and readiness required for teams to not only quickly resolve

incidents in production, but also improve the reliability of systems to proactively

address issues before they occur.

Stage 5: Readiness

How It Relates to Incident Response Software

Readiness is the full package of incident response software. As you review the

various facets of your team, from systems to processes, does your software

enable your team to proactively, collaboratively, and seamlessly address

incidents to lower MTTA/MTTR—and minimize the cost of downtime?

In practice, this stage can be the most difficult. Despite a team’s best efforts,

action items are often left unanswered and day-to-day work supersedes

suggestions and improvements. While response often expects full prevention of

problems, high-priority projects somehow take the place of supporting these

fragile systems.

Of course, one of the best ways to be prepared is to integrate readiness into the

software delivery lifecycle (SDLC). Creating a culture where ownership doesn’t

end when something is shipped into production is an essential piece of

minimizing downtime. After all, what’s the point of DevOps if the dev team gets to

ship something into production at 5pm on a Friday only to leave an Ops team

firefighting all weekend long? While the two aren’t always complete causational

(let’s avoid RCA), software releases are the single biggest factor contributing to

downtime.*

Teams must find a way to incorporate reliability into releasing, and while you

need the right people and processes in place, tooling can help. Look for an

incident response solution that provides visibility into the SDLC via developer

tooling integrations (e.g., Github, Jenkins). With this visibility, developers and ops

alike have a holistic view of what’s happening across systems—including

shipments to production.

Additionally, you should take time to optimize your alert structure, configuring

alerts to meet a teams and organizations needs. A noisy alert system or “paging”

system can leave teams fatigued and unaware of which alerts actually require

action. At VictorOps, our Transmogrifier is our unique alert rules engine,

empowering teams to set up a few processes essential to readiness in the face of

the most important alerts. Here are a couple key configurations:

1. Alert Rules: Match behavior to fields in alert payloads and create cascading

 logic to meet often demanding automation needs.

2. Noise Suppression: Using suppression and classification (either critical,

 warning, or info), unactionable alerts will be visible in Timeline and Reporting

 but won’t distrub users. Alert aggregation further reduces noise by bucketing

 related alerts into a single incident, adding even more intelligence to your

 input stream.

3. Alert Annotations: Link alerts to relevant and helpful instructions, images,

 graphics, data, notes, or wiki-based runbooks to help responders have

 everything they need to quickly investigate and resolve the incident.

4. Routing: Set up unique escalation policies in line with team needs and

 fine-tune. Kick off escalation

Incident Response Maturity
Beyond the stages of an incident, from readiness to resolution, there is a

continuum of maturity for organizations and their overall approach to incident

response.

Reducing Mean Time to Resolution (MTTR) requires strong collaboration and

feedback loops between delivery and operations teams.

This culture of learning is fundamental to modern incident response and

excellent DevOps practices.

Questions to Ask Before
Purchasing a Solution
Here’s the thing: The majority of incident response tools on the market address

the basics of “alerting.” These basic feature sets, i.e., enriched alerting, on-call

scheduling, broad integrations, and varied notifications methods are all standard

features.

During the evaluation process, buyer’s should think about the next level of

feature sets aside from basic functionality — essentially, you want to invest in a

platform that continues to advance beyond alerting, building features that

support a culture of high availability (reduced alert noise, improved uptime and

SLAs, a culture of near-zero downtime) as well as DevOps standardization.

Perhaps most importantly, you want to look for software that treats you like a

human being, i.e., being on-call shouldn’t crush your soul. In today’s connected

workplace, most people don’t work 9-5 anymore. For employees, that have to

answer an on-call page in the middle of the night, you’d like to know the software

(and the people behind the software) have you backs. Take a look at the support

team for the incident response solution you’re evaluating and determine if they

have a progressive, user-first mindset. Do they build features for the user or the

CEO? Do they care about your experience waking up to an outage at 2:00 AM?

Your software needs to do more than check boxes, it should make your on-call

life not suck while simultaneously growing and scaling along with the organiza-

tion.

These are the most important questions to
ask of your solution:

Questions for on-call management

1. Will I find contextual alerts with abundant information for resolution?

2. Does the tool have built-in automation to reduce noise and alert responders

 only during critical incidents?

3. Does the tool support collaboration with bidirectional group chat

 integrations?

4. Does the software support international notifications?

5. Does this tool support/integrate with my existing critical toolchain

 components?

6. Can I access a variety of reports, including MTTA/MTTR and overall

 incident frequency?

7. Is there a native mobile app that supports on-the-go on-call?

8. How easy is it to conduct a thorough post-incident review? How hard is it to

 access historical data?

9. How can I configure alerts?

10 . Are there varied levels of user permissions

11. Do I have SDLC visibility to see when things are shipped to production

Questions for DevOps teams

1. How likely is it that my development team would use this tool?

2. Would they find value in alerting? Or, would they simply be inundated with

 noisy alerts that make on-call miserable?

3. Does this tool prepare me for continuous learning and continuous

 improvement?

4. Can I access out-of-the-box performance metrics to report on SLAs

 and uptime?

5. How easy is it to conduct a thorough post-incident review?

6. Does this tool surface when new code is pushed into production?

7. Is this tool build for DevOps standardization? Or would we need to migrate to a

 new tool as our team progresses?

Why VictorOps
VictorOps is Collaborative Incident Response. Unlike our competitors, our system

leans into the progressive vision of DevOps — providing broad visibility, from

deployments to production, to even the noisiest systems.

We centralize user activity for next-level event transparency, so your team can

lean into the speed of DevOps.

Ready to see VictorOps end-to-end incident response in action?

Start your free, 14-day trial here.

$100,000
an hour

Hourly cost
of an

infrastructure
failure

$500,000
to $1 million

Average cost
of a critical
application

failure

56%

Mentioned revenue
impacts as the

biggest negative
result of downtime

$1.25B
to $2.5B

Total cost
of unplanned

application
downtime

High-performing teams tend to fare
far better than competitors when it comes

to both throughput and stability.

Detection: the observation of a metric, at
certain intervals, and the comparison of
that observation against an expected value.
Monitoring systems then trigger notifications
and alerts based on the observation of
those metrics.

Response: the response phase is the delivery
of a notification to an incident responder via
any means and the first steps the responder
takes to address the alert. Thus, a detection
threshold is passed, an email/SMS/chat/phone
call is sent (notification), and someone
acknowledges receipt (response).

Remediation: the true “firefighting” stage of
incident response, where teams aim to quickly
diagnose and solve the problem.

Analysis: the analysis phase, often referred to
as postmortem or post-incident review, is the
learning process after an incident is resolved.
While the historic approach to this phase
has relied heavily on Root Cause Analysis
(RCA), increasingly complex systems have led
progressive teams away from relying only on
single causal entity analysis. Instead, teams
are increasingly looking towards models that
address system complexities, e.g. Cynefin, to
better understand the holistic, multi-faceted
cause of an incident.

Readiness: the next logical step, is the phase
where teams take action to enact improvements
to people, process, and technology in order to
prepare and, as much as possible, prevent
future incidents. Actions taken during this phase
vary from architecture and application changes,
creating and updating runbooks, or Game Days.

Slow Mean Time to Resolution (MTTR) Proactive Problem Solving

Reactive
• No stack awareness

• Poor collaboration

• Undefined roles

• Lack of remediation

Holistic
• Self remediation

• Advanced metrics

• Increased empathy

• Consistent continuous
 learning

Tactical
• Some defined process
 and rolls

• Segmented roles

• Collaboration in crisis

• Understood protocols

Integrated
• Post-incident
 review process

• Triage documentation

• Collaboration
 across roles

• Consistent
 communication

On-Call
Rotations

Teams and
Collaboration

Monitoring

Post-Incident
Reviews

Runbooks

Incident
Tracking

Learning
Organizations

Entire SDLC
Monitoring

Metrics

Tool Migration and Success

Want to make a switch? Migrating to a new tool doesn’t have to be a pain — at least
when it comes to VictorOps. The VictorOps customer support and success teams
guide organizations of all types and sizes to a better on-call experience. Whether
you’re enterprise or SMB, using a current on-call tool or an old-school phone tree,
we’ll dig in to get you up and running quickly.

