
Программирование с Grafana и InfluxDB: сборник рецептов

Смирнов Вячеслав





Рассказ о том, как выделить неделю на программирование, и сэкономить недели на получении отчетов по нагрузке



Писал отчеты по тестированию много лет, в разных тулах, от Word до Confluence; гордясь их подробностью, используя лишь руки

- 1. Результаты
- 1.1. Объекты тестирования
- 1.2. Цели и итоги
- 1.2.1. Причины
- 1.2.2. Виды тестирования
- 1.3. Проверенные гипотезы
- 1.4. Обнаруженные проблемы

- 1. Результаты
- 2. Результаты по видам тестов
- 2.1. Нагрузочное тестирование
- 2.2. Тестирование стабильности
- 2.3. Объёмное тестирование
- 2.4. Стрессовое тестирование

- 1. Результаты
- 2. Результаты по видам тестов
- 3. Архитектура и конфигурации системы
- 3.1. Структура тестового стенда
- 3.2. Конфигурация балансировщика
- 3.3. Конфигурация ...

- 1. Результаты
- 2. Результаты по видам тестов
- 3. Архитектура и конфигурации системы
- 4. Результаты синтетического тестирования узлов стенда 4.1. ...

- 1. Результаты
- 2. Результаты по видам тестов
- 3. Архитектура и конфигурации системы
- 4. Результаты синтетического тестирования узлов стенда
- 5. Рекомендации ...

# Неделя работы Десятки страниц Один просмотр

один просмотр Ноль комментариев

# Неделя работы

Десятки страниц


Один просмотр Ноль комментариев

Писал отчеты по тестированию много лет, в разных тулах, от Word до Confluence; гордясь их подробностью, используя лишь руки

# Автоматизируем формирование отчётов с Grafana u InfluxDB

### Это продолжение доклада







youtu.be/sEcudxQB62M?t=573

### Это продолжение доклада







speakerdeck.com/polarnik/ proghrammirovaniie-s-grafana-i-influxdb

# В текущем докладе новая информация

- 1. Подход к разработке мониторинга
- 2. Инструменты для нагрузки и InfluxDB
- 3. Подготовка окружения разработчика
- 4. Делаем много баз данных и выбор баз
- 5. Фильтрация списков тегов
- 6. Кеш InfluxQL в Variable и отклонения
- 7. Сложные таблицы в Grafana и % успехов
- 8. Длительность теста и колонка Time
- 9. Переход к отчёту по ссылке
- 10. Демонстрация



- 1. Подход к разработке мониторинга
- 2. Инструменты для нагрузки и InfluxDB
- 3. Подготовка окружения разработчика
- 4. Делаем много баз данных и выбор баз
- 5. Фильтрация списков тегов
- 6. Кеш InfluxQL в Variable и отклонения
- 7. Сложные таблицы в Grafana и % успехов
- 8. Длительность теста и колонка Time
- 9. Переход к отчёту по ссылке
- 10. Демонстрация



# Подход к разработке мониторинга

## Если делать задачу с 0-ля:

- а какой отчет нужен?
- какие графики нужны?
- готовим схему данных
- готовим простой отчет

## Если схема данных есть:

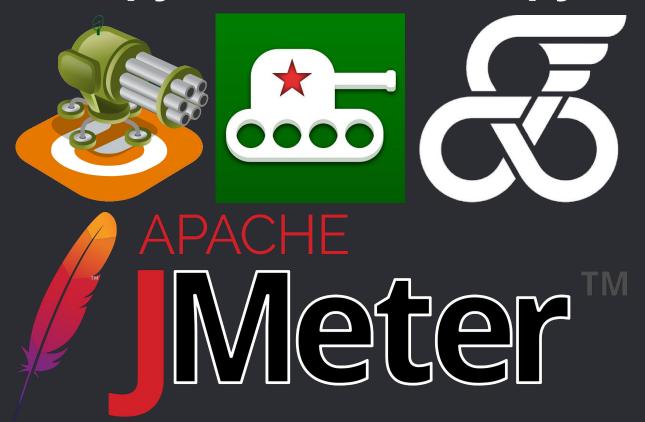
- а какой отчет нужен?
- какие графики нужны?
- готовим сложный отчет с готовой схемой данных

## Если схема данных есть:

- а какой отчет нужен?
- какие графики нужны?
- FCTCBUM CACMON GAINLIN

### Если схема данных есть:

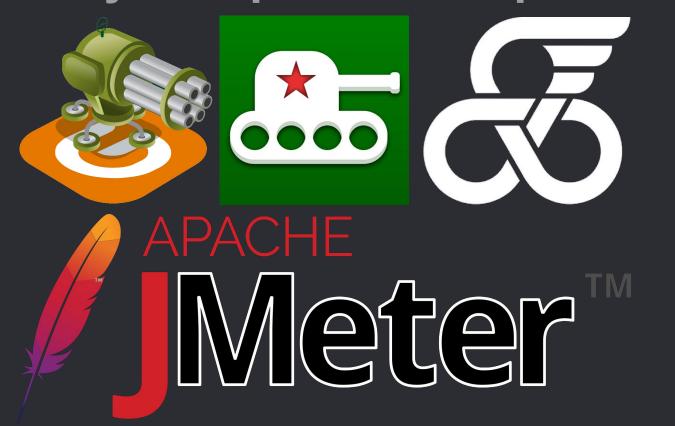
- а какой отчет нужен?
- какие графики нужны?
- изменяем схему данных
- готовим простой отчет


Схему данных InfluxDB можно изменять. Чтобы запросы на выборку данных были простыми и быстрыми.

- 1. Подход к разработке мониторинга
- 2. Инструменты для нагрузки и InfluxDB
- 3. Подготовка окружения разработчика
- 4. Делаем много баз данных и выбор баз
- 5. Фильтрация списков тегов
- 6. Кеш InfluxQL в Variable и отклонения
- 7. Сложные таблицы в Grafana и % успехов
- 8. Длительность теста и колонка Time
- 9. Переход к отчёту по ссылке
- 10. Демонстрация



# Инструменты для нагрузки и InfluxDB

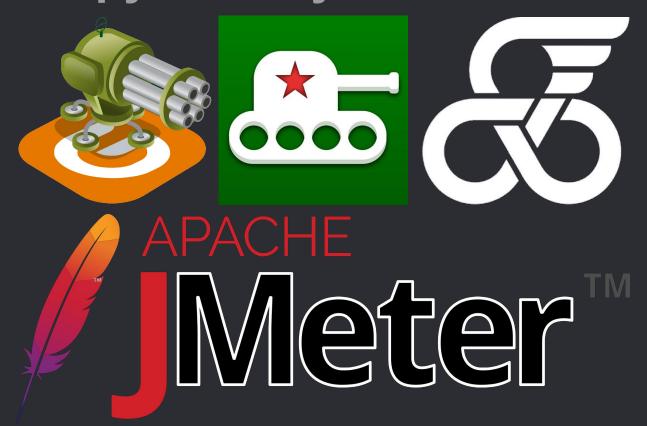

#### Инструменты для нагрузки



#### Могут сохранять метрики в ....



#### Могут сохранять метрики в InfluxDB





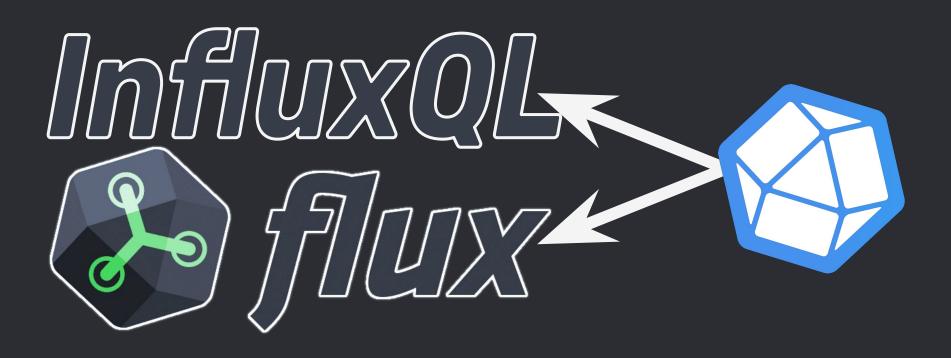

#### InfluxDB 1.8 поддерживается всеми

|        | Инструмент            | Протокол       | Приёмник     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------|-----------------------|----------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Gatling               | Graphite       | InfluxDB 1.8 | A TOP OF THE PROPERTY OF THE P |
| *      | Yandex.Tank           | InfluxLine     | InfluxDB 1.8 | A TOP OF THE PROPERTY OF THE P |
| €<br>5 | LoadRunner Enterprise | InfluxLine     | InfluxDB 1.8 | A P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |                       | Graphite       | InfluxDB 1.8 | A P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        | Apache.JMeter         | InfluxLine     | InfluxDB 1.8 | A TOP OF THE PROPERTY OF THE P |
|        |                       | InfluxLine 2.0 | InfluxDB 2.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### Нагрузочнику важно знать InfluxDB






#### Уметь вставлять данные в InfluxDB




#### Уметь вставлять данные в InfluxDB



#### Уметь получать данные из InfluxDB



#### Уметь работать с данными InfluxDB



#### Уметь работать с InfluxDB из Grafana



### Используемые версии:

- InfluxDB 1.8 (не 2.0)
- Grafana 7.0
  - Используемый синтаксис:
- InfluxQL (He Flux)

- 1. Подход к разработке мониторинга
- 2. Инструменты для нагрузки и InfluxDB
- 3. Подготовка окружения разработчика
- 4. Делаем много баз данных и выбор баз
- 5. Фильтрация выпадающих списков
- 6. Кеш InfluxQL в Variable и отклонения
- 7. Сложные таблицы в Grafana и % успехов
- 8. Длительность теста и колонка Time
- 9. Переход к отчёту по ссылке
- 10. Демонстрация



### Подготовка окружения разработчика

У хорошей Grafana-доски есть версия и указана версия окружения: версии Grafana, Grafana-плагинов, InfluxDB, ...

#### VMware vSphere - Overview by Jorge de la Cruz

**DASHBOARD** 

VMware vSphere Dashboard using the new Telegraf plugin Last updated: 2 months ago

Downloads: 4801 Reviews: 6

\*\*\*\*

Add your review!

Overview

Revisions

Reviews

#### **Dashboard Revisions**

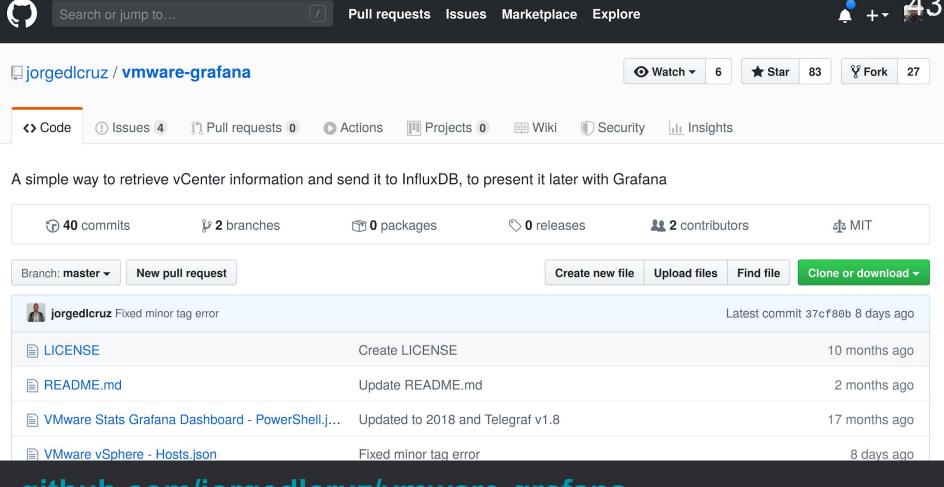
| Revision | Description                                            | Created                    |          |
|----------|--------------------------------------------------------|----------------------------|----------|
| 28       | VMware vSphere Dashboard using the new Telegraf plugin | January 11th 2020, 4:04 am | Download |
| 27       | VMware vSphere Dashboard using the new Telegraf plugin | January 8th 2020, 4:12 pm  | Download |
| 26       | VMware vSphere Dashboard using the new Telegraf plugin | January 8th 2020, 1:15 pm  | Download |
| 25       | VMware vSphere Dashboard using the new Telegraf plugin | October 2nd 2019, 12:13 pm | Download |
| 24       | VMware vSphere Dashboard using the new Telegraf plugin | October 2nd 2019, 12:06 pm | Download |
| 23       | VMware vSphere Dashboard using the new Telegraf plugin | October 1st 2019, 8:53 pm  | Download |
| 22       | VMware vSphere Dashboard using the new Telegraf plugin | June 27th 2019, 9:28 pm    | Download |
| 21       | VMware vSphere Dashboard using the new Telegraf plugin | June 25th 2019, 10:09 am   | Download |
| 20       | VMware vSphere Dashboard using the new Telegraf plugin | June 19th 2019, 10:59 pm   | Download |
| 10       | VMware vSphere Dashboard using the new Telegraf        | May 29th 2019 1:53 am      | Download |

#### Get this dashboard:

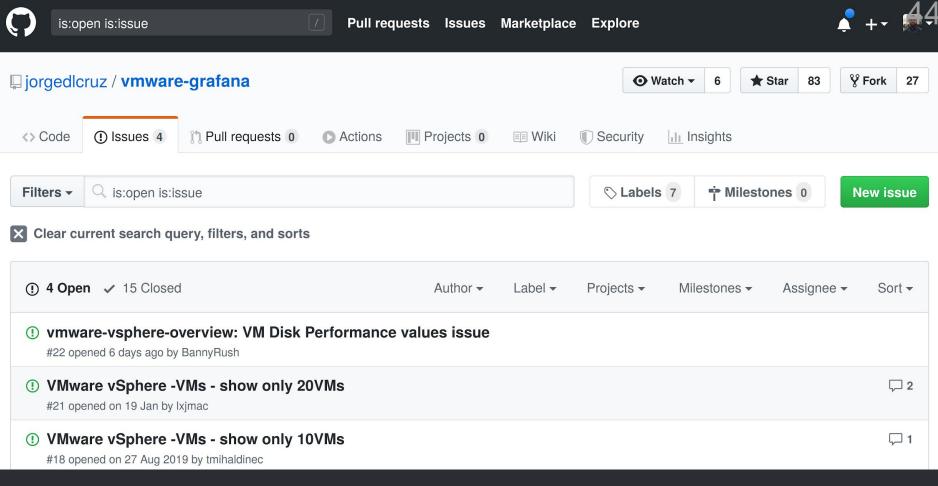
8159

🖺 Copy ID to Clipboard

Download JSON


How do I import this dashboard?

#### Dependencies:


- GRAFANA 6.5.0
- BAR GAUGE
- **GAUGE**
- **GRAPH**
- INFLUXDB 1.0.0
- SINGLESTAT

VMware vSphere Dashboard using the new Telegraf

# У отличной Grafana-доски есть репозиторий и багтрекер: github, gitlab, ...



#### github.com/jorgedlcruz/vmware-grafana



#### github.com/jorgedlcruz/vmware-grafana

Нам нужно окружение разработчика, для создания самых лучших досок

### Окружение храним в git:

- параметры старта Docker
- конфиги Grafana, InfluxDB
- плагины Grafana
- доски Grafana

#### Параметры старта Docker: InfluxDB

```
docker network create test
docker pull influxdb:1.8
DEV=$(pwd)
docker run --name=influxdb \
  --network=test -p 8086:8086 -p 2003:2003 -p 2004:2004 \
  -v $DEV/influxdb.conf:/etc/influxdb/influxdb.conf:ro \
  -v $DEV/var/lib/influxdb:/var/lib/influxdb \
  influxdb:1.8 -config /etc/influxdb/influxdb.conf
```

#### Параметры старта Docker: Grafana

```
docker pull grafana/grafana
ID=$(id -u)
```

```
docker run --name=grafana \
 --network=test --user $ID -p 3000:3000 \
 -v $DEV/grafana.ini:/etc/grafana/grafana.ini \
 -v $DEV/plugins:/var/lib/grafana/plugins \
 -v $DEV/provisioning:/etc/grafana/provisioning \
 -v $DEV/var/lib/grafana:/var/lib/grafana \
 -v $DEV/usr/share/grafana:/var/usr/share/grafana \
 -v $DEV/var/log/grafana:/var/log/grafana \
 grafana/grafana
```

#### Конфиги храним в git

docker pull grafana/grafana

grafana/grafana

```
ID=\$(id -u)
docker run --name=grafana \
 -v $DEV/grafana.ini:/etc/grafana/grafana.ini \
         prugriis./vai/rrb/grafaila/prugriis
 -v $DEV/provisioning:/etc/grafana/provisioning \
 -v $DEV/var/lib/grafana:/var/lib/grafana \
 -v $DEV/usr/share/grafana:/var/usr/share/grafana \
```

-v \$DEV/var/log/grafana:/var/log/grafana \

#### Плагины храним в git

docker pull grafana/grafana

```
ID=\$(id -u)
docker run --name=grafana \
 --network=test --user $ID -p 3000:3000 \
 -v $DEV/plugins:/var/lib/grafana/plugins \
         provisioning./ecc/granana/provisioning
 -v $DEV/var/lib/grafana:/var/lib/grafana \
 -v $DEV/usr/share/grafana:/var/usr/share/grafana \
 -v $DEV/var/log/grafana:/var/log/grafana \
 grafana/grafana
```

#### Плагины из сети качаются с ощибкой

```
docker pull grafana/grafana
ID=\$(id -u)
docker run --name=grafana \
 --network=test --user $ID -p 3000:3000 \
 -e "GF_INSTALL_PLUGINS=yesoreyeram-boomtable-panel"
        provisioning./ecc/granana/provisioning
 -v $DEV/var/lib/grafana:/var/lib/grafana \
 -v $DEV/usr/share/grafana:/var/usr/share/grafana
 -v $DEV/var/log/grafana:/var/log/grafana \
 grafana/grafana
```

#### Доски храним в git

docker pull grafana/grafana

grafana/grafana

```
ID=\$(id -u)
docker run --name=grafana \
 --network=test --user $ID -p 3000:3000 \
 -v $DEV/grafana.ini:/etc/grafana/grafana.ini \
 -v $DEV/provisioning:/etc/grafana/provisioning \
                     alia. / vai / TTD/
 -v $DEV/usr/share/grafana:/var/usr/share/grafana \
 -v $DEV/var/log/grafana:/var/log/grafana \
```

#### Базы данных и логи в .gitignore

docker pull grafana/grafana

ID=\$(id -u)

```
docker run --name=grafana \
 --network=test --user $ID -p 3000:3000 \
 -v $DEV/grafana.ini:/etc/grafana/grafana.ini \
 -v $DEV/plugins:/var/lib/grafana/plugins \
    CDEV/provicioning:/etc/grafana/provicioning
 -v $DEV/var/lib/grafana:/var/lib/grafana \
 -v $DEV/usr/share/grafana:/var/usr/share/grafana \
 -v $DEV/var/log/grafana:/var/log/grafana \
 grafana/grafana
```

### Работа с досками:

- 1. Процесс разработки
  - о идёт в sqlite (.gitignore)
- 2. Результат разработки
  - о храним в provisioning

### Работа с досками:

- 1. Процесс разработки
  - о идёт в sqlite (.gitignore)
- 2. Результат разработки в git
  - о храним в provisioning

#### Доски хранятся в sqlite (default)

versions\_to\_keep = 200

```
[database]
# Either "mysql", "postgres" or "sqlite3", it's your choice
type = sqlite3
# For "sqlite3" only, path relative to data_path setting
path = grafana.db
[dashboards]
# Number dashboard versions to keep. Default:20
```

#### Количество версий можно увеличить

```
[database]
# Either "mysql", "postgres" or "sqlite3", it's your choic
type = sqlite3
# For "sqlite3" only, path relative to data_path setting
path = grafana.db
```

```
[dashboards]
# Number dashboard versions to keep. Default: 20
versions_to_keep = 200
```

### Работа с досками:

- 1. Процесс разработки
  - о идёт в sqlite (.gitignore)
- 2. Результат разработки в git
  - о храним в provisioning

#### Grafana может читать доски из папки



#### Docker монтирует папку в контейнер

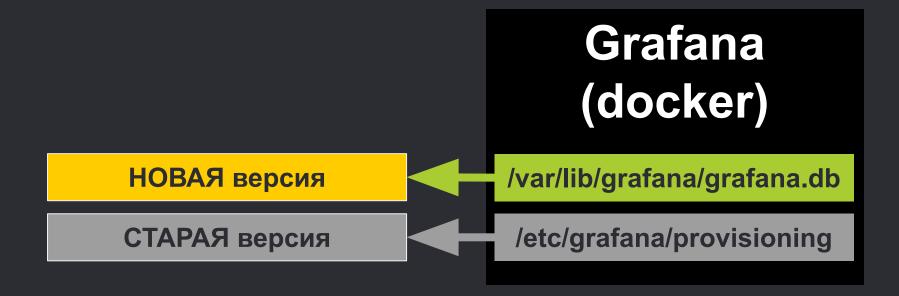


#### **GIT** версионирует содержимое папки

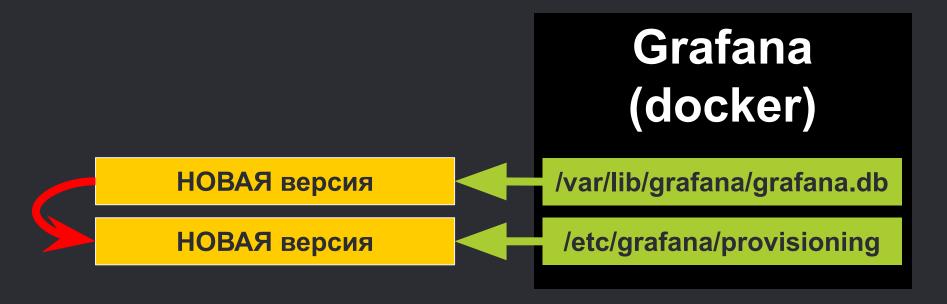


#### Только читаем allowUiUpdates: false

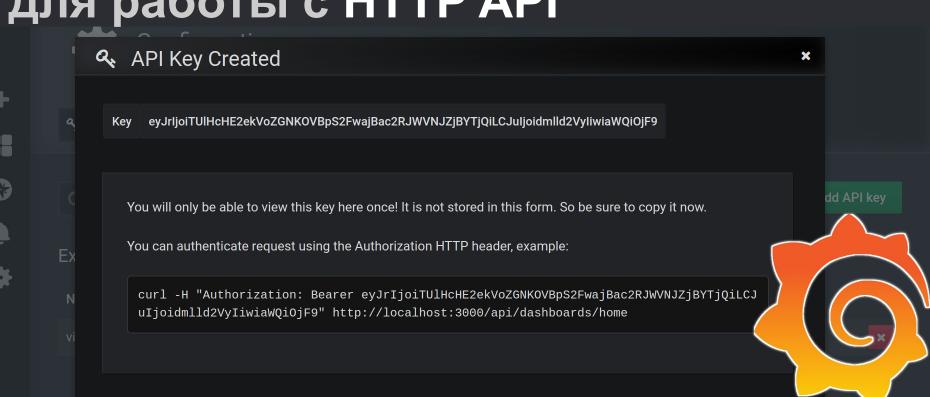
```
apiVersion: 1
providers:
 - name: 'GIT boards'
   orgId: 1
   folder: 'GIT'
   allowUiUpdates: false
   options:
     path: /etc/grafana/provisioning/dashboards/json
```


#### Вот так не надо allowUiUpdates: true

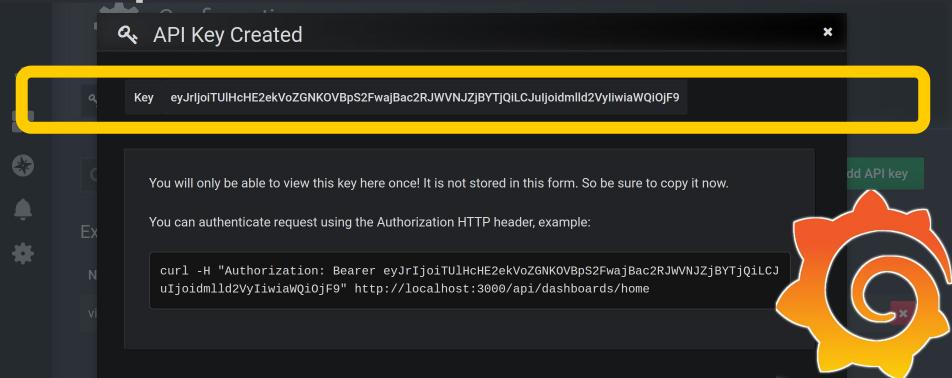
apiVersion: 1 providers: - name: 'GIT boards' orgId: 1 folder: 'GIT' allowUiUpdates: true options: path: /etc/grafana/provisioning/dashboards/json


Вот так не надо allowUiUpdates: true

```
apiVersion: 1
providers:
  orgId: 1
  folder: 'GIT'
  allowUiUpdates: true (CP)
   options:
    path: /etc/grafana/provisioning
```


## Разрабатываем, сохраняя доску в интерфейсе Grafana (кнопка Save)




## Периодически выгружаем доску из БД в файл и сохраняем в GIT



# 0. Получаем API KEY из Grafana для работы с HTTP API



# 0. Получаем API KEY из Grafana для работы с HTTP API



### 1. Сохраняем файл \$UID.json с помощью CURL и HTTP API

#!/bin/sh -x

https://grafana.com/docs/grafana/latest/http\_api/dashboard

## 2. Выделяем из JSON-файла содержимое доски с помощью JQ

```
#!/bin/sh -x
DIR="./provisioning/dashboards/json/"
UID="gatlingTrend"
jq .dashboard "/tmp/$UID.json" > "$DIR/$UID.json"
```

https://stedolan.github.io/jq/

### 3. Добавляем к имени доски суффикс GIT с помощью JQ

https://ru.wikipedia.org/wiki/Sed

### 4. Добавляем к UID доски суффикс GIT с помощью JQ

https://ru.wikipedia.org/wiki/Sed

### 5. Сохраняем JSON-файл в GIT

```
#!/bin/sh -x
FOLDER="$DEV/provisioning/dashboards/json/"
UID="gatlingTrend"

git add "$FOLDER/$UID.json"
git commit -m "Update $UID"
```

https://git-scm.com/docs/git-commit

### 5. Все вместе

```
#!/bin/sh -x
```

```
KEY="eyJrIjoiR3dsbXA0szd1dEtudVNOdmF5YnM0dDlDeXN1bW9nY3UiLCJuIjoiVmlld2VyIiwiaWQiOjF9"
UID="gatlingTrend"
DIR="./provisioning/dashboards/json/"
tmpFile=$ (mktemp)
curl -H "Authorization: Bearer $KEY" \
       "http://localhost:3000/api/dashboards/uid/ $UID"\
    -o "$tmp"
jq .dashboard "$tmpFile" > "$DIR/$UID.json"
jq --arg a "${TITLE} (GIT)" '.title = $a' "$DIR/$UID.json" > "$tmpFile"
mv "$tmpFile" "$DIR/$UID.json"
jg --arg a "${UID} GIT" '.uid = $a' "$DIR/$UID.json" > "$tmpFile"
mv "$tmpFile" "$DIR/$UID.json"
git add "$DIR/$UID.json"
git commit -m "Update $UID"
```



## Настроенное окружение







github.com/polarnik/ gatling-grafana-dashboard

- 1. Подход к разработке мониторинга
- 2. Инструменты для нагрузки и InfluxDB
- 3. Подготовка окружения разработчика
- 4. Делаем много баз данных и выбор баз
- 5. Фильтрация списков тегов
- 6. Кеш InfluxQL в Variable и отклонения
- 7. Сложные таблицы в Grafana и % успехов
- 8. Длительность теста и колонка Time
- 9. Переход к отчёту по ссылке
- 10. Демонстрация



## Делаем много баз данных и выбор баз

- OpenSource без кластера
- Enterprise с кластером

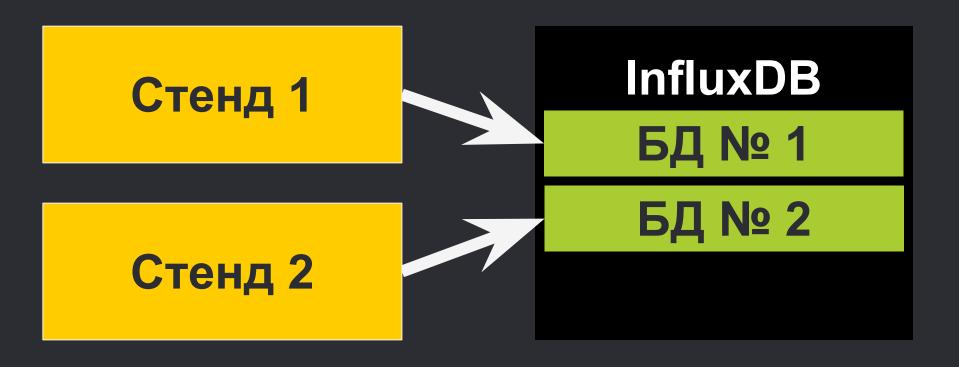
- OpenSource без кластера
  - о есть опыт работы
- Enterprise с кластером

- OpenSource без кластера
  - о удобно использовать несколько серверов

- OpenSource без кластера
  - удобно использовать несколько серверов
  - о «масштабирование»

- огромных баз данных
- неуникальных тегов
- длинных строк в тегах

- огромных баз данных
- неуникальных тегов
- длинных строк в тегах


- огромных баз данных
  - о удобно использовать несколько баз данных

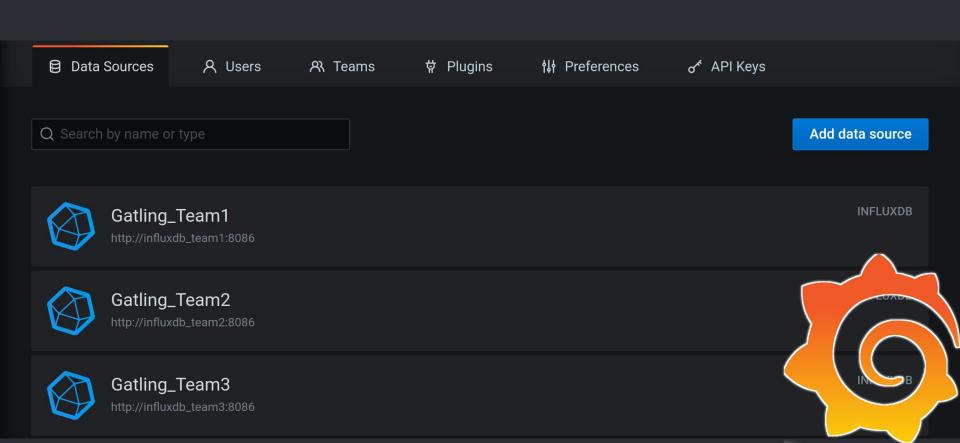
- огромных баз данных
  - удобно использовать несколько баз данных
  - о «шардирование»

### Плохо: все пишут в одну БД

**InfluxDB** Стенд 1 Стенд 2

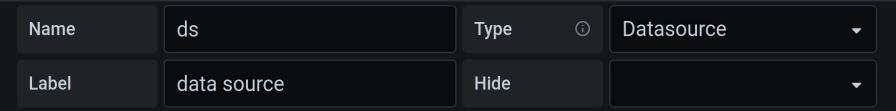
### Хорошо: у каждого своя БД




### Отлично: у каждого своя БД и сервер

InfluxDB 1 Стенд 1 БД № 1 InfluxDB 2 Стенд 2

## Ускорение InfluxDB OSS:

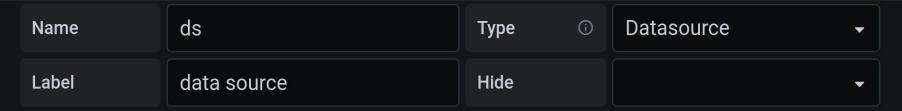

- несколько серверов
- несколько баз данных
- сложнее поддерживать
- проще использовать

### Несколько Data Sources в Grafana



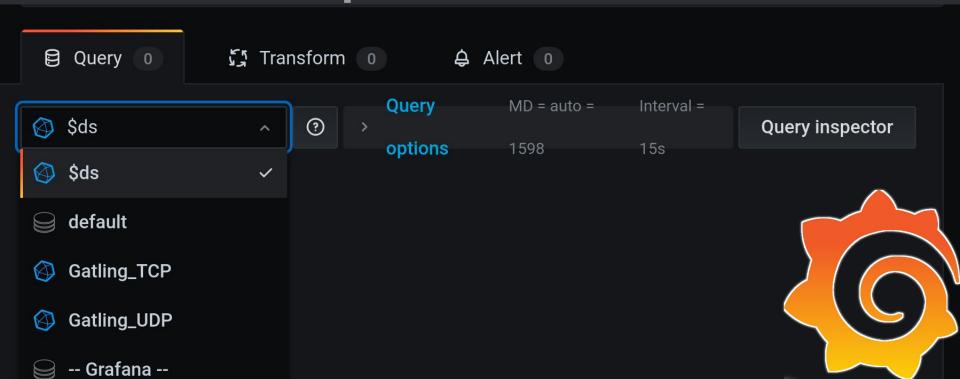

# Grafana-доске нужно переключение между Data Sources c InfluxDB

# Data Sources выбираем регуляркой /.\*gatling.\*/i, /.\*telegraf.\*/i

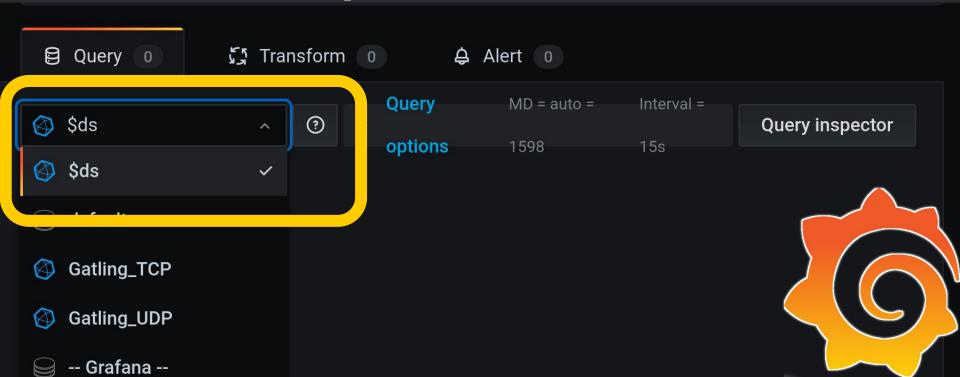



#### Data source options

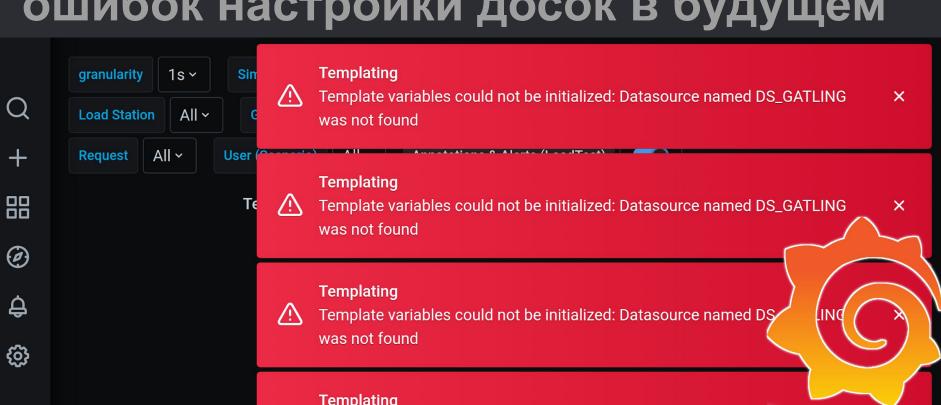





# Data Sources выбираем регуляркой /.\*gatling.\*/i, /.\*telegraf.\*/i

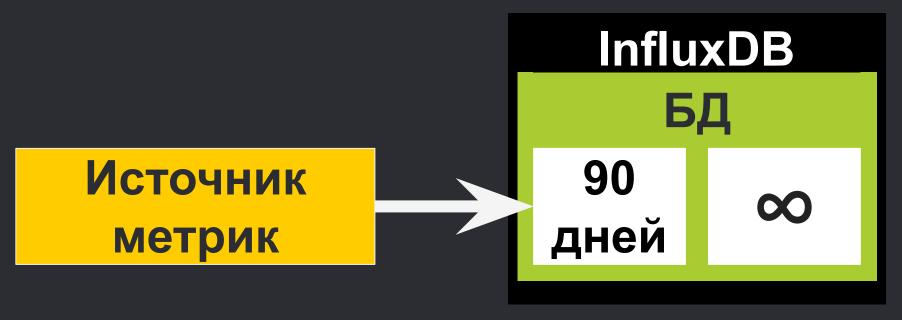




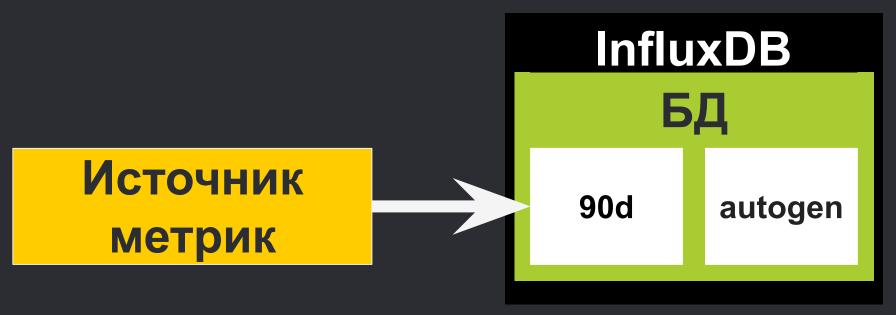


# Data Sources задаем переменной \$ds для всех запросов



### Data Sources задаем переменной \$ds для всех запросов




# + Переменная \$ds избавляет от ошибок настройки досок в будущем




- огромных баз данных
  - удобно сменить
    retention policy (default)
     с ∞ на 90 дней

# Новые метрики храним лишь 90 дней Исторические метрики храним вечно



# Новые метрики храним лишь 90 дней Исторические метрики храним вечно



Создаём «схему» 90d на 90 дней (политику хранения по умолчанию)

CREATE RETENTION POLICY "90d" ON "database\_name" **DURATION 90d REPLICATION 1** SHARD DURATION 1d DEFAULT

Удобно задать имя, как длительность (нам это ещё пригодится в Grafana)

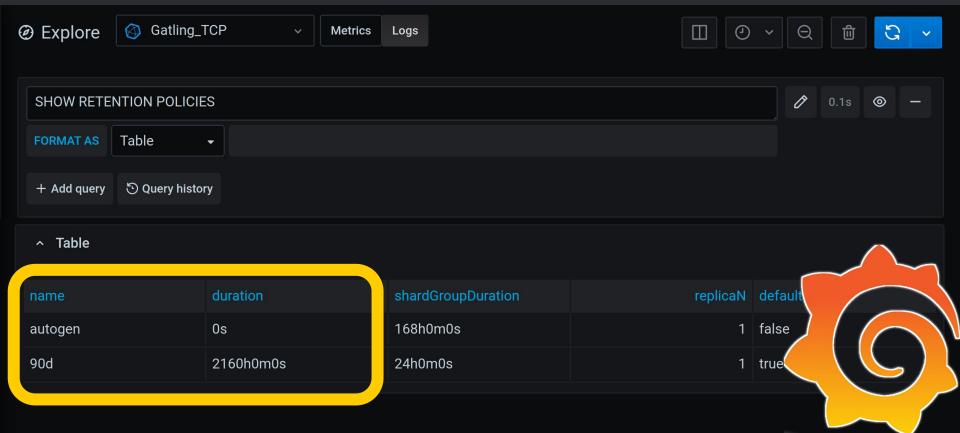
CREATE RETENTION POLICY "90d"

UN "database\_name"
DURATION 90d REPLICATION 1
SHARD DURATION 1d
DEFAULT

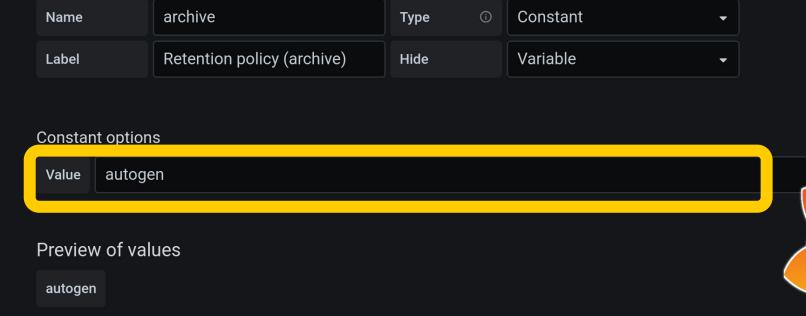
В ней данные от now() –90d до now() (нам это ещё пригодится в Grafana)

CREATE RETENTION POLICY "90d"

UN "database\_name"
DURATION 90d REPLICATION 1
SHARD DURATION 1d
DEFAULT

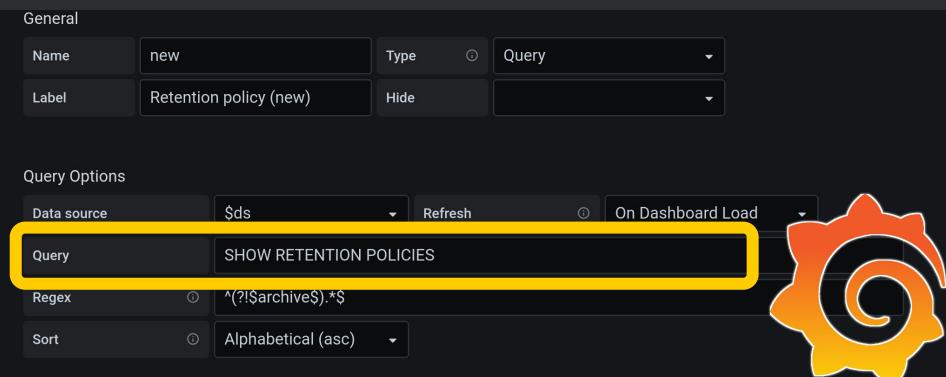



# Заполняем новую «схему» данными (если в autogen уже были данные)

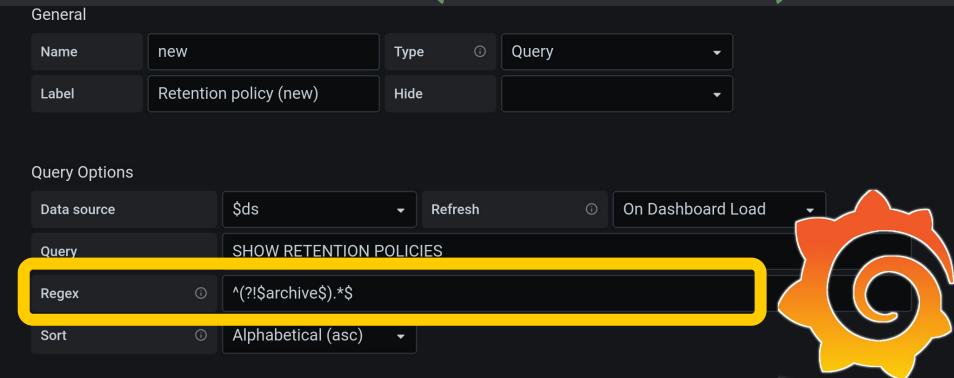

```
SELECT *
INTO "90d"."gatling"
FROM "autogen". "gatling"
WHERE time >= now() - 90d
GROUP BY *
```

Заполняем новую «схему» данными (если в autogen уже были данные) Для всех измерений SELECT \* INTO "90d"."gatling.users" FROM "autogen". "gatling.users WHERE time >= now() - 90d GROUP BY \*

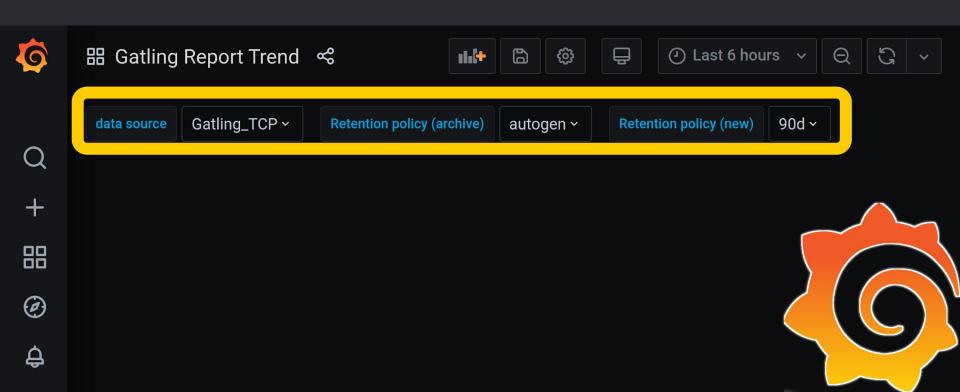
### Теперь две политики хранения




# Retention Policy в Grafana задаём константой: autogen для архива




General


## Retention Policy можем брать из базы SHOW RETENTION POLICIES



## Выборку можно фильтровать new != archive: ^(?!\$archive\$).\*\$



#### Теперь три параметра на доске



Из-за гибкости настроек источников данных могут меняться и имена measurements (измерений)

eques:

### Измерение (таблица) для Gatling

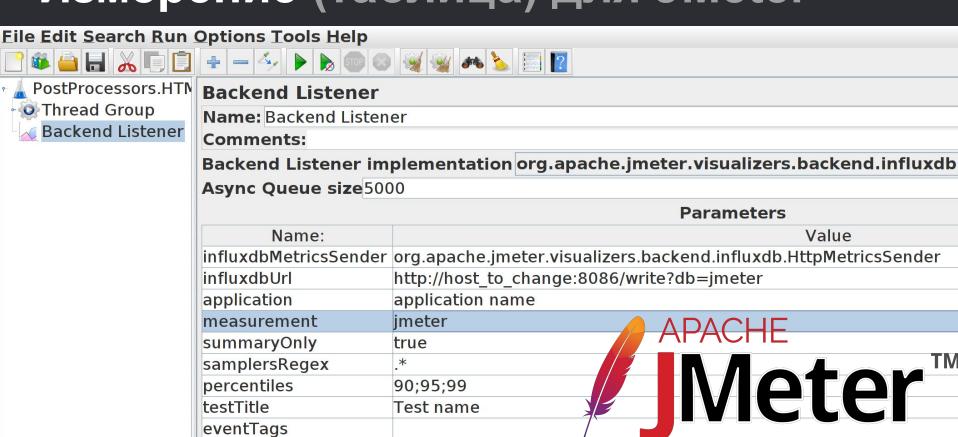
```
410
411 [[graphite]]
412 # Determines whether the graphite endpoint is enabled.
413 enabled = true
414 database = "gatling"
415 # retention-policy = ""
416 bind-address = ":2003"
417 protocol = "tcp"
418 # consistency-level = "one"
419 templates = [
     "gatling.*.users.*.*
                               measurement.simulation.meas
420
     "gatling.*.*.*.*.*.*.*.*
421
                                    measurement.simulatio
      "gatling.*.*.*.*.*.*.*.
422
                                  measurement.simulation.d
      "gatling.*.*.*.*.*.*.*
423
                                measurement.simulation.gro
```

measurement.simulation.group

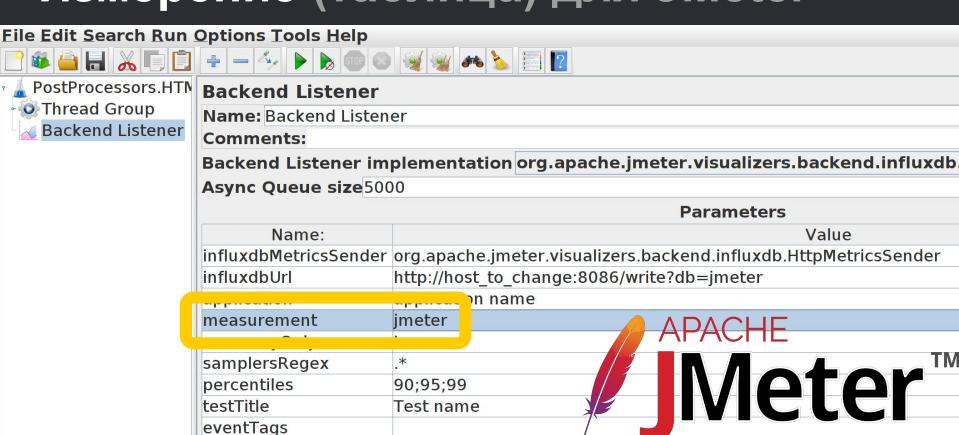
measurement.simulation.group1.group2

"gatling.\*.\*.\*.\*.\*.

"gatling.\*.\*.\*.\*.\*


424

425


### Измерение (таблица) для Gatling

```
410
411 [[graphite]]
412 # Determines whether the graphite endpoint is enabled.
413 enabled = true
414 database = "gatling"
415 # retention-policy =
416 bind-address = ":2003"
417 protocol = "tcp"
418 # consistency-level = "one"
419 te praces
      'gatling.
                                 measurement.simulation.meas
420
                .users.*.*
      'gatling.
421
                                      measurement.simulatio
      'gatling.
                                    measurement.simulation.d
422
                     . * . * . * . * . *
423
      'gatling.
                                  measurement.simulation.gro
      'gatling.
                                measurement.simulation.group1
424
                                                                         ou
      datling/
                              measurement.simulation.group1.group2
425
                                                                      eques'
```

#### Измерение (таблица) для JMeter



#### Измерение (таблица) для JMeter

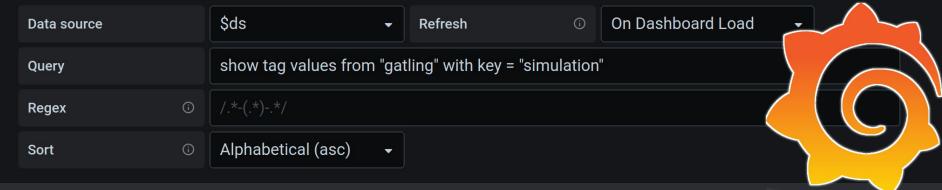


Из-за гибкости настроек источников данных могут меняться и имена measurements (измерений) но мы пока это пропустим

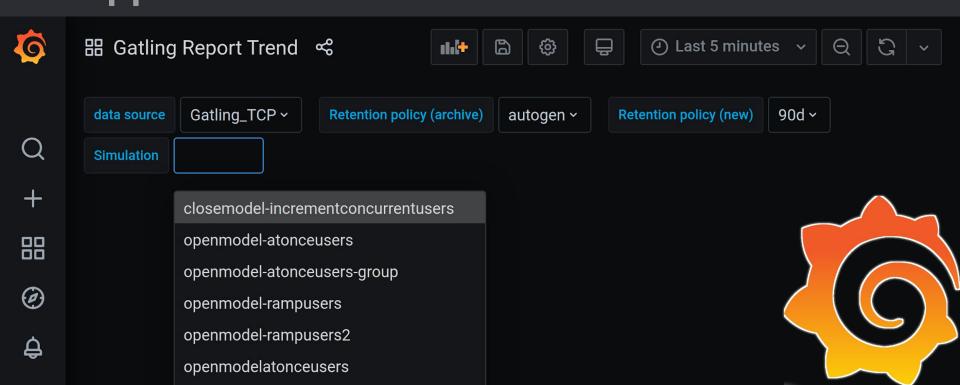
Grafana-доске нужно переключение между Data Sources c InfluxDB выбор Retention Policy и выбор Measurement

Grafana-доске нужно Data Sources с Influx ружны выбор Retention Police переключение между и выбор Measurententox

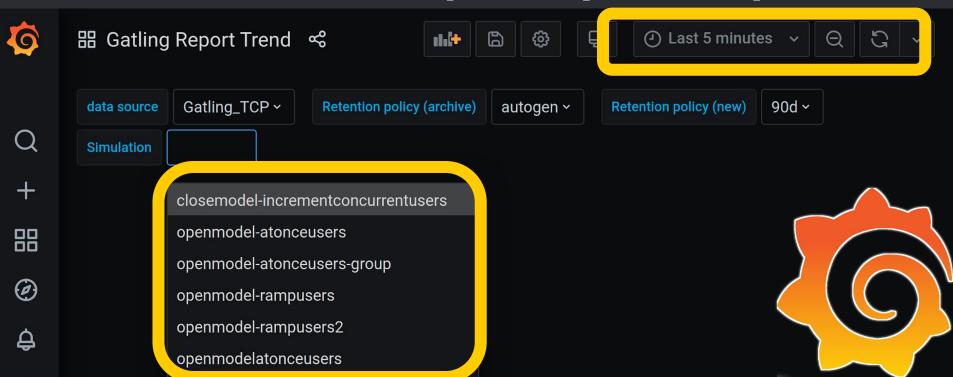
- 1. Подход к разработке мониторинга
- 2. Инструменты для нагрузки и InfluxDB
- 3. Подготовка окружения разработчика
- 4. Делаем много баз данных и выбор баз
- 5. Фильтрация списков тегов
- 6. Кеш InfluxQL в Variable и отклонения
- 7. Сложные таблицы в Grafana и % успехов
- 8. Длительность теста и колонка Time
- 9. Переход к отчёту по ссылке
- 10. Демонстрация



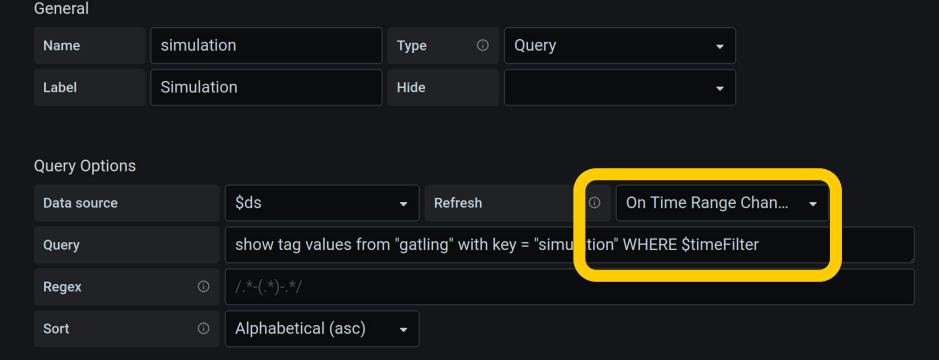

Фильтрация выпадающих списков тегов (с поддержкой retention policy)


## Простая выборка тегов из Influx Фильтрация по тестам (симуляциям)

## General Name simulation Type ③ Query ▼ Label Simulation Hide ▼


#### **Query Options**




## Простая выборка тегов из InfluxDB выдаёт теги

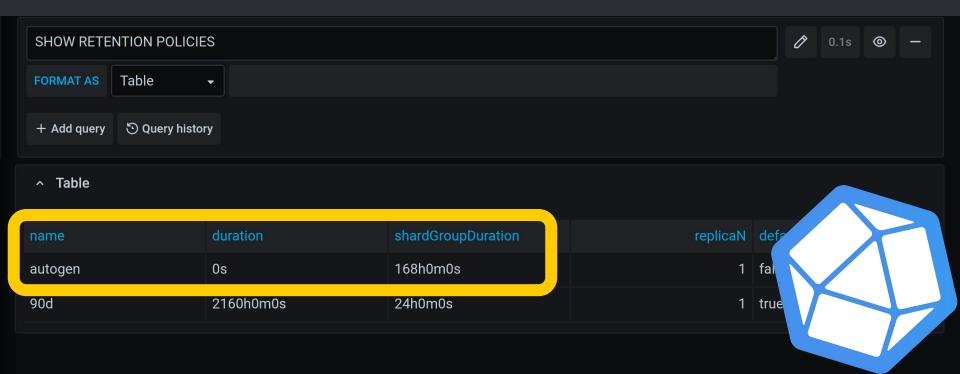


## Простая выборка тегов из InfluxDB выдаёт теги без фильтра по времени

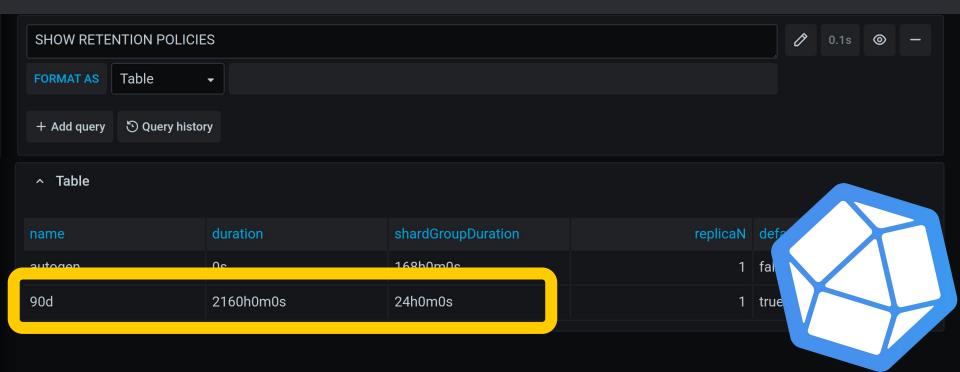


## Refresh: On Time Range Change нужно для фильтра \$timeFilter




## Простая выборка тегов из InfluxDB с фильтром по времени

```
SHOW TAG VALUES
FROM "gatling"
WITH KEY = "simulation"
WHERE $timeFilter
```


## Простая выборка тегов из InfluxDB с фильтром по времени

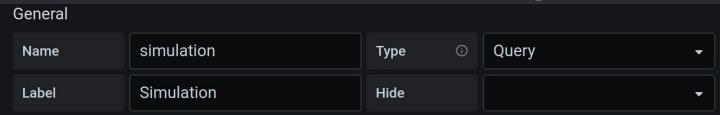
```
SHOW TAG VALUES
```

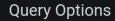
## Размер шарды в autogen 168 часов точность фильтрации 168 часов

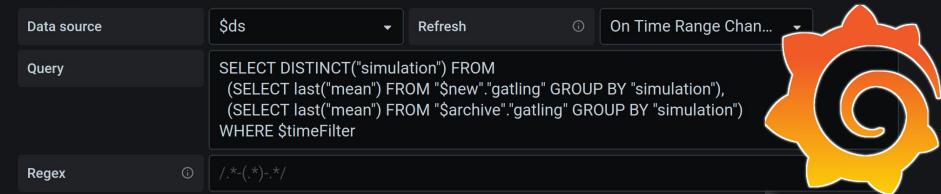


## Размер шарды в 90d: 24 часа точность фильтрации 24 часа

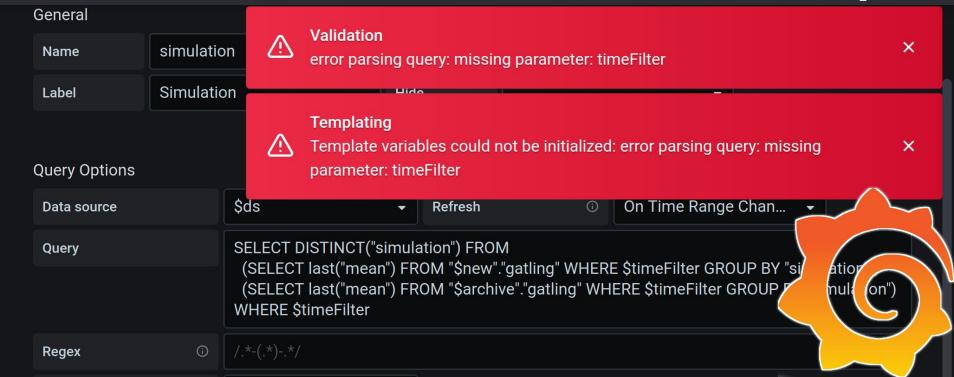



Для точной выборки по времени нужно Explore data using InfluxQL, а не Explore your schema

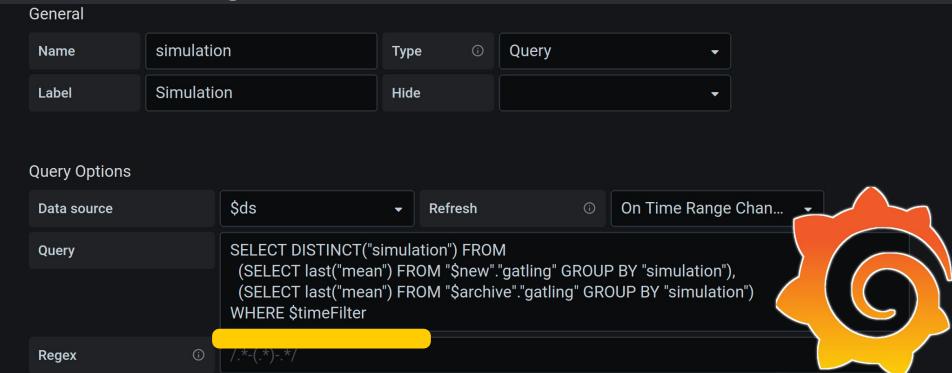

Для точной выборки по времени нужно выбрать данные за период времени и сгруппировать по тегу


GROUP BY "tag" в подзапросе точно фильтрует теги по времени SELECT "tag\_name" **FROM** (SELECT last("field\_name") FROM "\$new"."measurement" GROUP BY "tag\_name") WHERE \$timeFilter

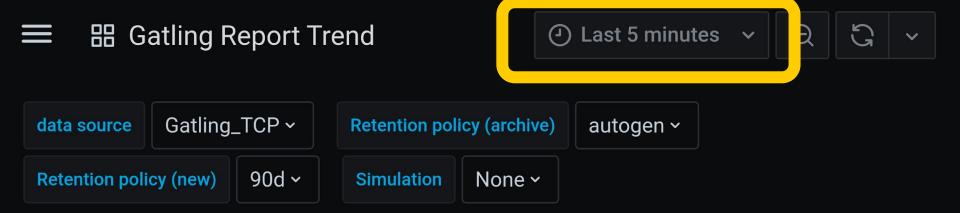
GROUP BY "tag" в подзапросе легко расширяется на несколько схем SELECT DISTINCT("tag\_name") **FROM** (SELECT last("field\_name") FROM "\$new"."measurement' GROUP BY "tag\_name"),...


## GROUP BY "tag" в подзапросе точно и гибко фильтрует теги



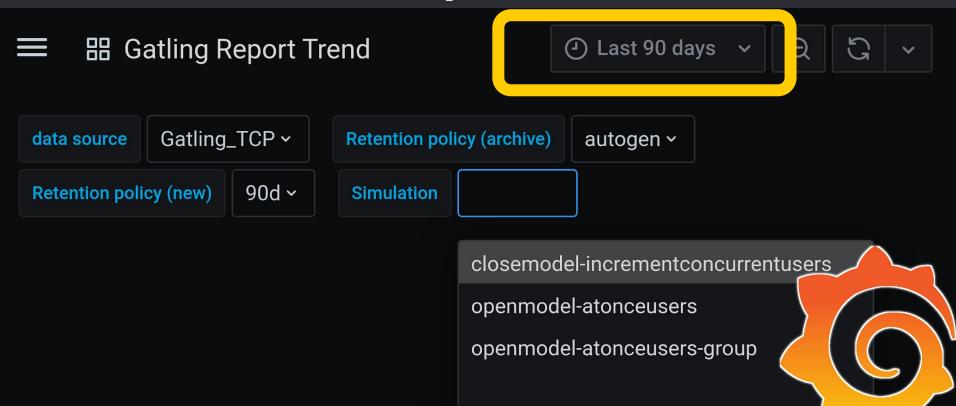




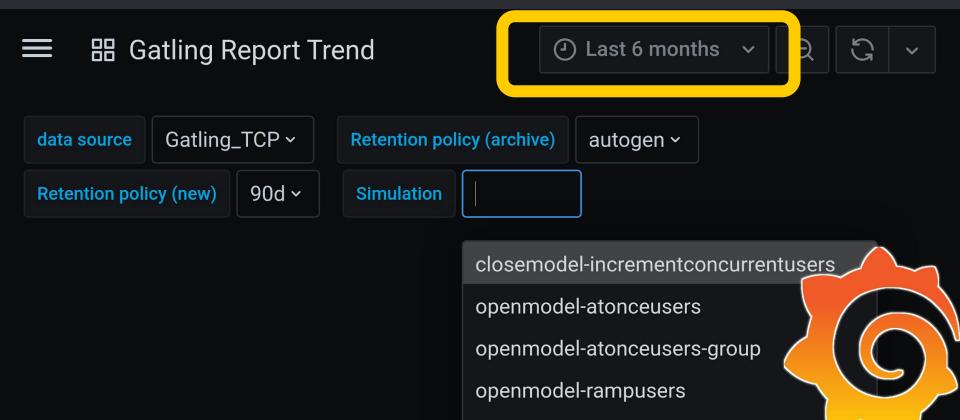


## Дефект!: \$timeFilter в Variable Query можно использовать только один раз



## Поэтому \$timeFilter в Variables используется только в конце запроса




#### Теперь за 5 минут нет тегов






#### За 90 дней есть три значения



#### За 6 месяцев масса значений



onenmodel-rampusers?

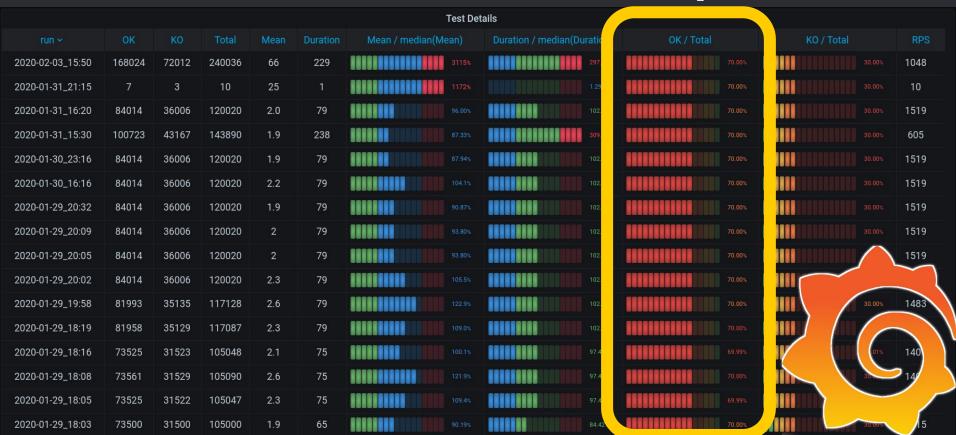
# Решим прикладную задачу

## Сводный отчет по запускам тестов

| Test Details     |        |       |        |      |          |                     |                             |            |            |      |
|------------------|--------|-------|--------|------|----------|---------------------|-----------------------------|------------|------------|------|
|                  | ОК     | КО    | Total  | Mean | Duration | Mean / median(Mean) | Duration / median(Duration) | OK / Total | KO / Total | RPS  |
| 2020-02-03_15:50 | 168024 | 72012 | 240036 | 66   | 229      | 3115%               | 297.4%                      | 70.00%     | 30.00%     | 1048 |
| 2020-01-31_21:15 | 7      | 3     | 10     | 25   | 1        | 1172%               |                             | 70.00%     | 30.00%     | 10   |
| 2020-01-31_16:20 | 84014  | 36006 | 120020 | 2.0  | 79       | 96.00%              | 102.6%                      | 70.00%     | 30.00%     | 1519 |
| 2020-01-31_15:30 | 100723 | 43167 | 143890 | 1.9  | 238      | 87.33%              | 309.1%                      | 70.00%     | 30.00%     | 605  |
| 2020-01-30_23:16 | 84014  | 36006 | 120020 | 1.9  | 79       | 87.94%              | 102.6%                      | 70.00%     | 30.00%     | 1519 |
| 2020-01-30_16:16 | 84014  | 36006 | 120020 | 2.2  | 79       | 104.1%              | 102.6%                      | 70.00%     | 30.00%     | 1519 |
| 2020-01-29_20:32 | 84014  | 36006 | 120020 | 1.9  | 79       | 90.87%              | 102.6%                      | 70.00%     | 30.00%     | 1519 |
| 2020-01-29_20:09 | 84014  | 36006 | 120020 | 2    | 79       | 93.80%              | 102.6%                      | 70.00%     | 30.00%     | 1519 |
| 2020-01-29_20:05 | 84014  | 36006 | 120020 | 2    | 79       | 93.80%              | 102.6%                      | 70.00%     |            | 1519 |
| 2020-01-29_20:02 | 84014  | 36006 | 120020 | 2.3  | 79       | 105.5%              | 102.6%                      | 70.00%     |            |      |
| 2020-01-29_19:58 | 81993  | 35135 | 117128 | 2.6  | 79       | 122.9%              | 102.6%                      | 70.00%     | 30.00%     | 1483 |
| 2020-01-29_18:19 | 81958  | 35129 | 117087 | 2.3  | 79       | 109.0%              | 102.6%                      | 70.00%     |            |      |
| 2020-01-29_18:16 | 73525  | 31523 | 105048 | 2.1  | 75       | 100.1%              | 97.40%                      | 69.99%     |            | 140  |
| 2020-01-29_18:08 | 73561  | 31529 | 105090 | 2.6  | 75       | 121,9%              | 97.40%                      | 70.00%     |            | 14   |
| 2020-01-29_18:05 | 73525  | 31522 | 105047 | 2.3  | 75       | 109.4%              | 97.40%                      | 69.99%     |            |      |
| 2020-01-29_18:03 | 73500  | 31500 | 105000 | 1.9  | 65       | 90.19%              | 84.42%                      | 70.00%     | 30.002     | 15   |

#### Со сводными результатами по ОК/КО



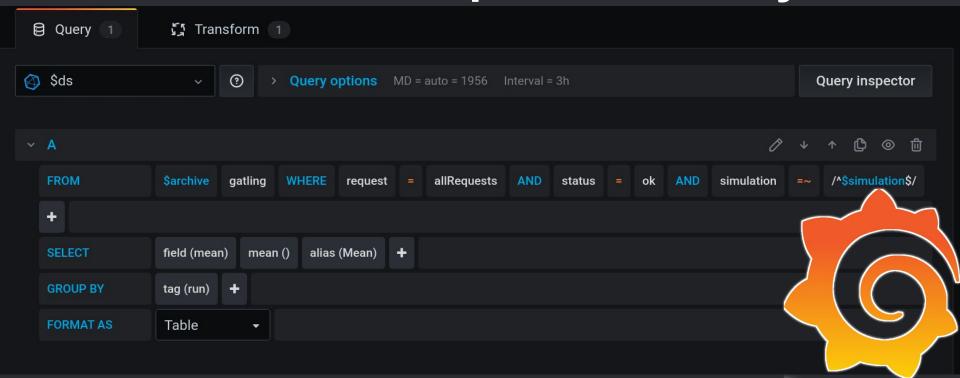

#### С вычислением длительности теста



#### Расчетом отклонения метрик



#### Расчётом соотношений метрик




- 1. Подход к разработке мониторинга
- 2. Инструменты для нагрузки и InfluxDB
- 3. Подготовка окружения разработчика
- 4. Делаем много баз данных и выбор баз
- 5. Фильтрация списков тегов
- 6. Кеш InfluxQL в Variable и отклонения
- 7. Сложные таблицы в Grafana и % успехов
- 8. Длительность теста и колонка Time
- 9. Переход к отчёту по ссылке
- 10. Демонстрация



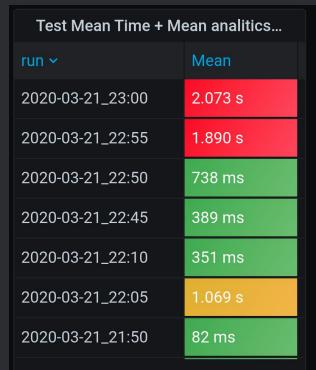
# Keш InfluxQL в Grafana Variable и отклонения

#### Сделаем таблицу средней длительности запросов по запускам



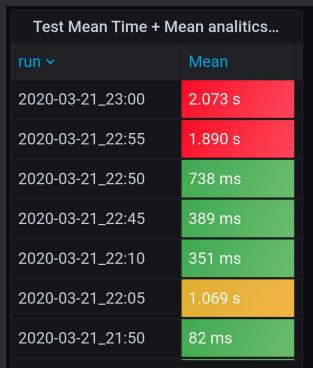
#### Получаем таблицу, значения в которой нужно сравнивать глазами

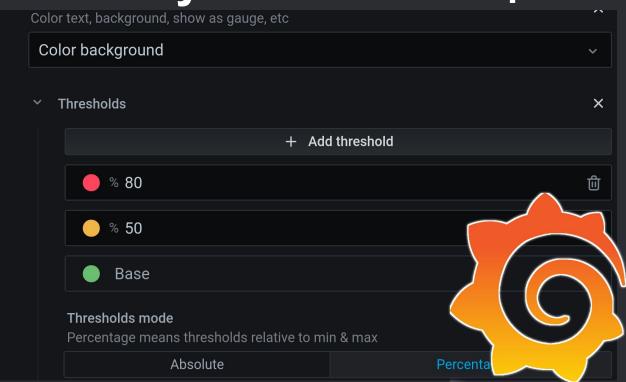
| run 🗸            | Mean    |
|------------------|---------|
| 2020-03-21_23:00 | 2.073 s |
| 2020-03-21_22:55 | 1.890 s |
| 2020-03-21_22:50 | 738 ms  |
| 2020-03-21_22:45 | 389 ms  |
| 2020-03-21_22:10 | 351 ms  |
| 2020-03-21_22:05 | 1.069 s |
| 2020-03-21_21:50 | 82 ms   |




#### В Grafana есть механизм Treshold заливки на основе порогов значений

| run 🗸            | Mean    |
|------------------|---------|
| 2020-03-21_23:00 | 2.073 s |
| 2020-03-21_22:55 | 1.890 s |
| 2020-03-21_22:50 | 738 ms  |
| 2020-03-21_22:45 | 389 ms  |
| 2020-03-21_22:10 | 351 ms  |
| 2020-03-21_22:05 | 1.069 s |
| 2020-03-21_21:50 | 82 ms   |





#### В Grafana есть механизм Treshold заливки на основе порогов значений

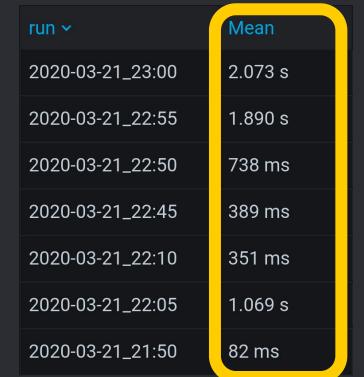




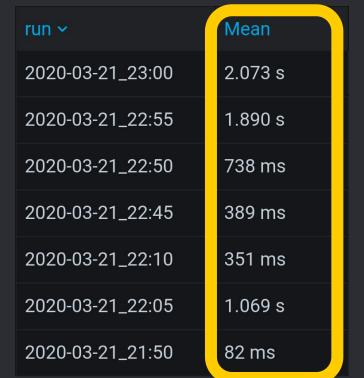
#### Treshold работает хорошо, считая % от максимума по таблице






#### Treshold работает плохо, когда в таблице есть другие колонки




#### Нужен способ выбирать данные, с которыми будем сравнивать

| run 🗸            | OK     | КО     | Total | Mean | uration |  |
|------------------|--------|--------|-------|------|---------|--|
| 2020-03-21_23:00 | 156195 | 555856 | 71205 | 2073 | 99      |  |
| 2020-03-21_22:55 | 113237 | 342006 | 45524 | 1890 | 157     |  |
| 2020-03-21_22:50 | 142504 | 427512 | 57001 | 738  | 296     |  |
| 2020-03-21_22:45 | 46252  | 138756 | 18500 | 389  | 99      |  |
| 2020-03-21_22:10 | 38002  | 114006 | 15200 | 351  | 99      |  |
| 2020-03-21_22:05 | 16502  | 49506  | 66008 | 1069 | 13      |  |
| 2020-03-21_21:50 | 5502   | 16506  | 22008 | 82   | 54      |  |

#### Посчитаем отношение колонки к max, mean и median по колонке (am)



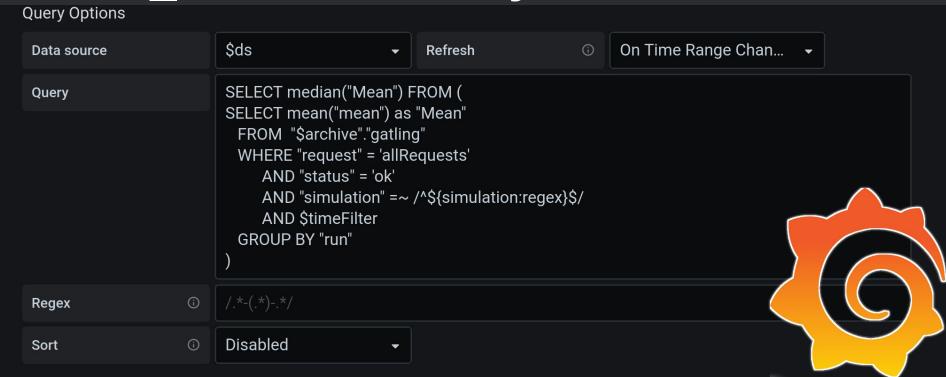
#### Grafana поможет разделить строку на max, mean и median по колонке



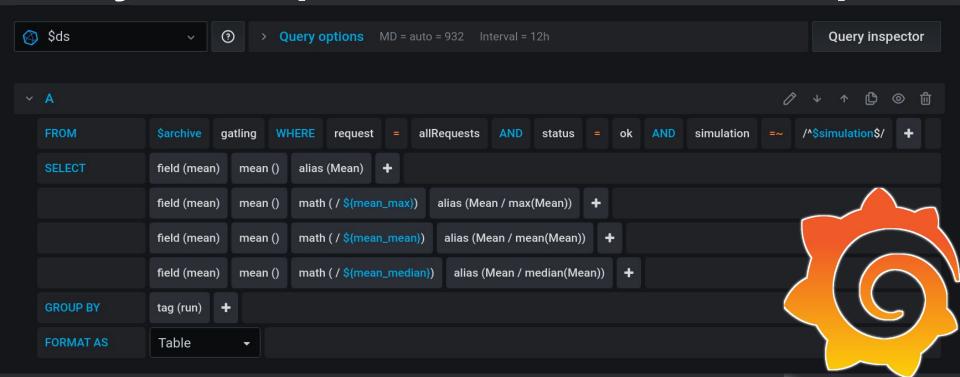


#### Используем Grafava Variable, как кеш max, mean и median по колонке

| Variable    | Definition                                                             |          |          |          |    |
|-------------|------------------------------------------------------------------------|----------|----------|----------|----|
| ds          | influxdb                                                               |          | <b>4</b> | <b>C</b> | ⑪  |
| archive     | SHOW RETENTION POLICIES                                                | <b>↑</b> | <b>4</b> | <b>C</b> | ŵ  |
| new         | SHOW RETENTION POLICIES                                                | <b>↑</b> | <b>+</b> | Ф        | ⑪  |
| simulation  | SELECT DISTINCT("simulation") FROM (SELECT last("mean") FROM "\$new"." | <b>^</b> | <b>*</b> |          |    |
| mean_max    | SELECT max("Mean") FROM ( SELECT mean("mean") as "Mean" FROM "\$arc    | <b>↑</b> | <u> </u> | <b>P</b> |    |
| mean_mean   | SELECT mean("Mean") FROM ( SELECT mean("mean") as "Mean" FROM "\$ar    | 1        |          |          |    |
| mean_median | SELECT median("Mean") FROM ( SELECT mean("mean") as "Mean" FROM "\$    | <b>↑</b> | 3        | <u></u>  | رر |
|             |                                                                        |          |          |          |    |


#### Максимальное среднее mean\_max по запускам тестов

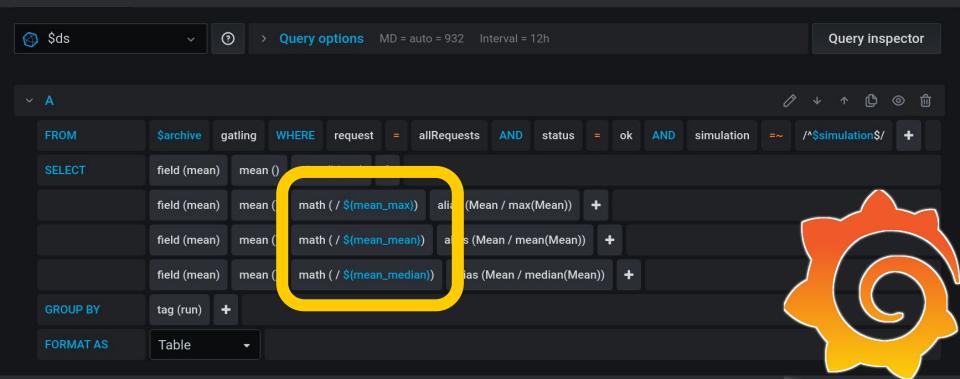
**Query Options** \$ds On Time Range Chan... Data source Refresh SELECT max("Mean") FROM ( Query SELECT mean("mean") as "Mean" FROM "\$archive"."gatling" WHERE "request" = 'allRequests' AND "status" = 'ok' AND "simulation" =~ /^\${simulation:regex}\$/ AND StimeFilter **GROUP BY "run"** Regex Disabled Sort


#### Среднее среднее mean\_mean по запускам тестов

**Query Options** \$ds On Time Range Chan... Data source Refresh SELECT mean("Mean") FROM ( Query SELECT mean("mean") as "Mean" FROM "\$archive"."gatling" WHERE "request" = 'allRequests' AND "status" = 'ok' AND "simulation" =~ /^\${simulation:regex}\$/ AND \$timeFilter **GROUP BY "run"** Regex Disabled Sort


### Медианное среднее (50 перцентиль) mean\_median по запускам тестов




### Теперь просто вычислить отношение текущего среднего к общей выборке



#### Теперь просто вычислить отношение текущего среднего к переменной



#### И у таких отношений есть ожидаемые значения для Treshold



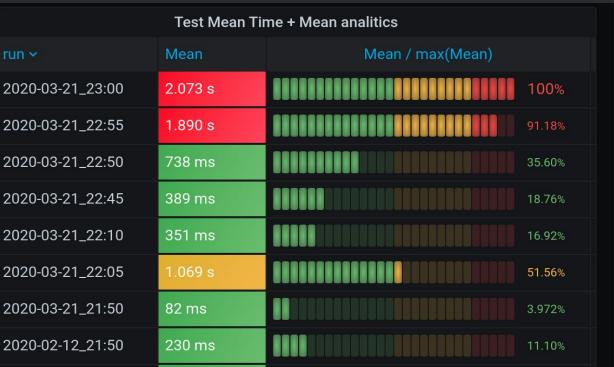
#### Treshold для значений < 50% от Мах

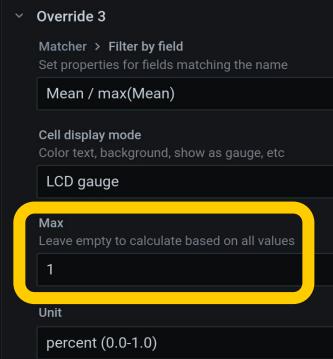
#### мы уже задавали

| run ~            | Mean    | Mean / max(Mean) |
|------------------|---------|------------------|
| 2020-03-21_23:00 | 2.073 s | 100%             |
| 2020-03-21_22:55 | 1.890 s | 91.18%           |
| 2020-03-21_22:50 | 738 ms  | 35.60%           |
| 2020-03-21_22:45 | 389 ms  | 18.76%           |
| 2020-03-21_22:10 | 351 ms  | 16.92%           |
| 2020-03-21_22:05 | 1.069 s | 51.56%           |
| 2020-03-21_21:50 | 82 ms   | 3.972%           |

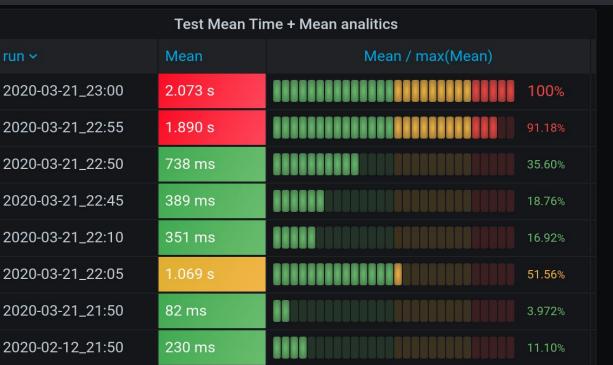
#### Treshold для значений < 50% от Мах мы уже задавали: зеленый цвет

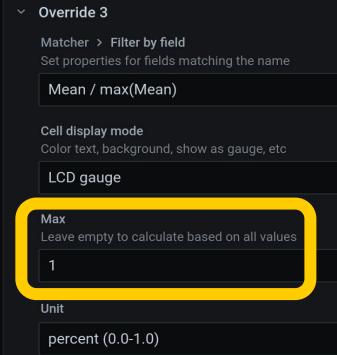
| run ~            | Mean   | Mean / max(Mean) |
|------------------|--------|------------------|
|                  |        |                  |
|                  |        |                  |
| 2020-03-21_22:50 | 738 ms | 35.60%           |
| 2020-03-21_22:45 | 389 ms | 18.76%           |
| 2020-03-21_22:10 | 351 ms | 16.92%           |
|                  |        |                  |
| 2020-03-21_21:50 | 82 ms  | 3.972%           |


#### Treshold от 50% до 80% от Мах тоже задавали: желтый цвет

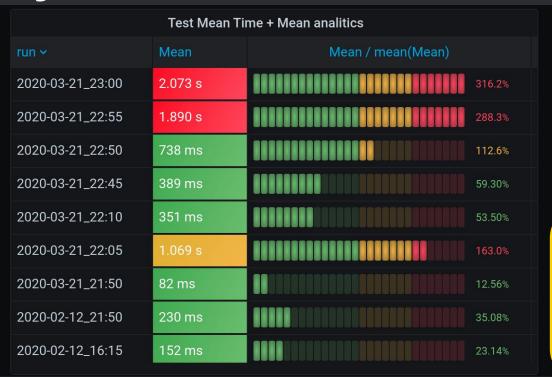

| run ~            | Mean    | Mean / max(Mean) |
|------------------|---------|------------------|
|                  |         |                  |
|                  |         |                  |
|                  |         |                  |
|                  |         |                  |
|                  |         |                  |
| 2020-03-21_22:05 | 1.069 s | 51.56%           |
|                  | 82 ms   |                  |

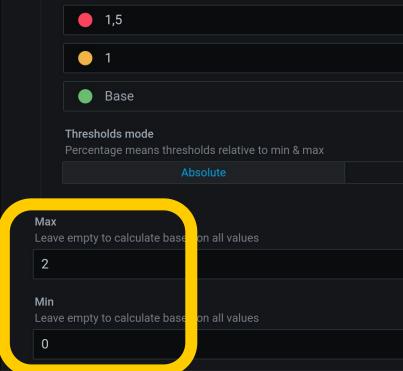
### Treshold если выше 80% от Мах прежний: красный цвет


| run ~            | Mean    | Mean / max(Mean) |        |
|------------------|---------|------------------|--------|
| 2020-03-21_23:00 | 2.073 s |                  | 100%   |
| 2020-03-21_22:55 | 1.890 s |                  | 91.18% |
|                  |         |                  |        |
|                  |         |                  |        |
|                  |         |                  |        |
|                  |         |                  |        |
|                  |         |                  |        |

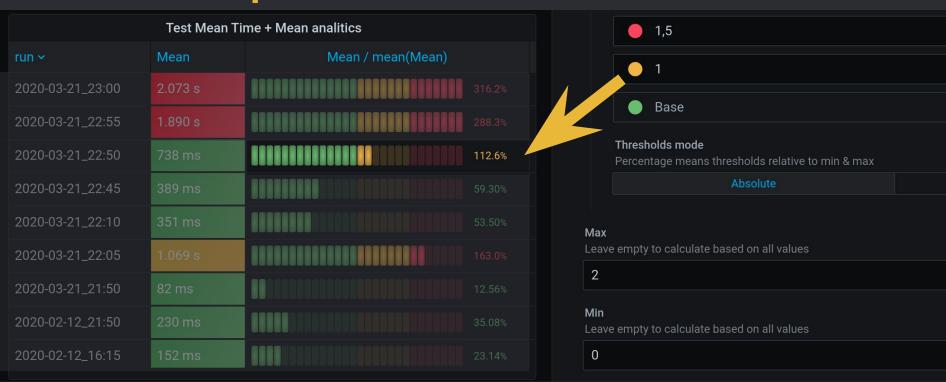

### Интервал для Mean / max(Mean) будет от 0 до 1 (Min = 0, Max = 1)



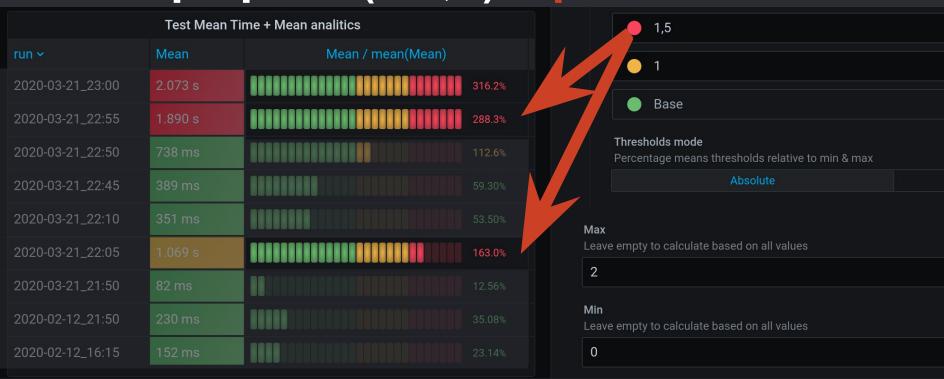




#### Интервал для Mean / max(Mean) не зависит от всех значений таблицы





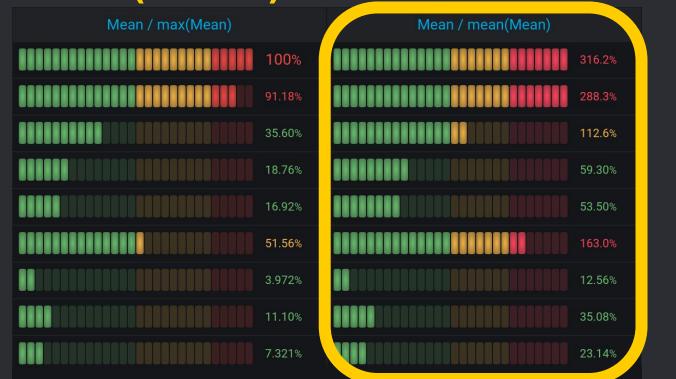

#### Интервал для Mean / mean(Mean) удобнее задать от 0 до 2






#### Treshold значений больше среднего: желтый цвет




## Treshold значений больше среднего в полтора раза (х 1,5): красный цвет

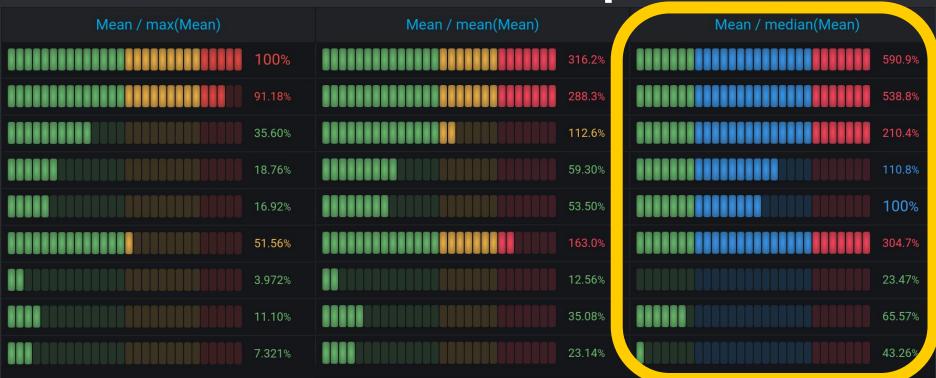


### Mean / mean(Mean) нагляднее, чем Mean / max(Mean) для анализа

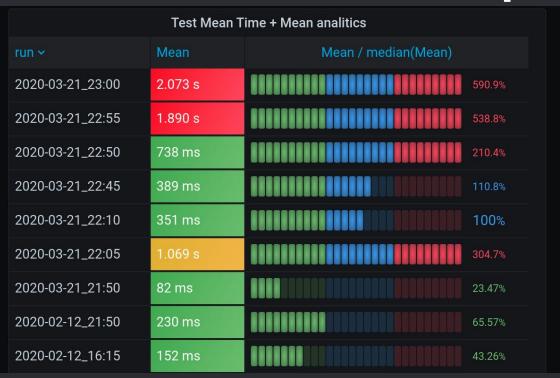


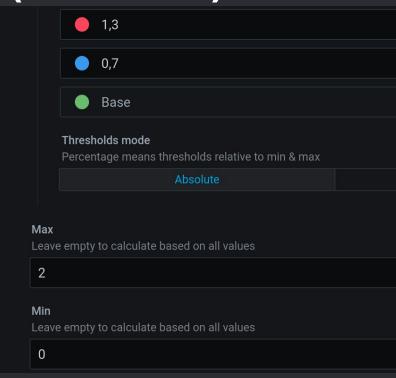
#### Mean / mean(Mean) нагляднее, чем Mean / max(Mean) для анализа



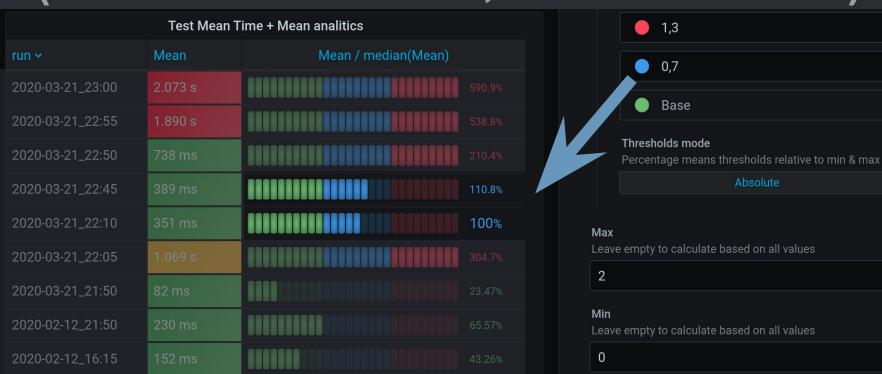

#### Mean / mean(Mean) подвержен влиянию локальных пиков (сбоев)



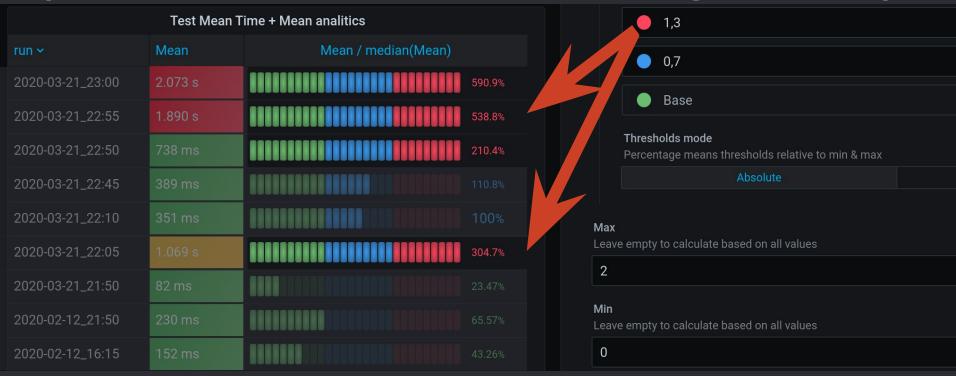

#### Mean / median(Mean) не подвержен влиянию локальных пиков (сбоев)


| Mean / max(Mean) | Mean / mean(Mean) | Mean / median(Mean) |
|------------------|-------------------|---------------------|
| 100%             | 316.2%            | 590.9%              |
| 91.18%           | 288.3%            | 538.8%              |
| 35.60%           | 112.6%            | 210.4%              |
| 18.76%           | 59.30%            | 110.8%              |
| 16.92%           | 53.50%            | 100%                |
| 51.56%           | 163.0%            | 304.7%              |
| 3.972%           | 12.56%            | 23.47%              |
| 11.10%           | 35.08%            | 65.57%              |
| 7.321%           | 23.14%            | 43.26%              |

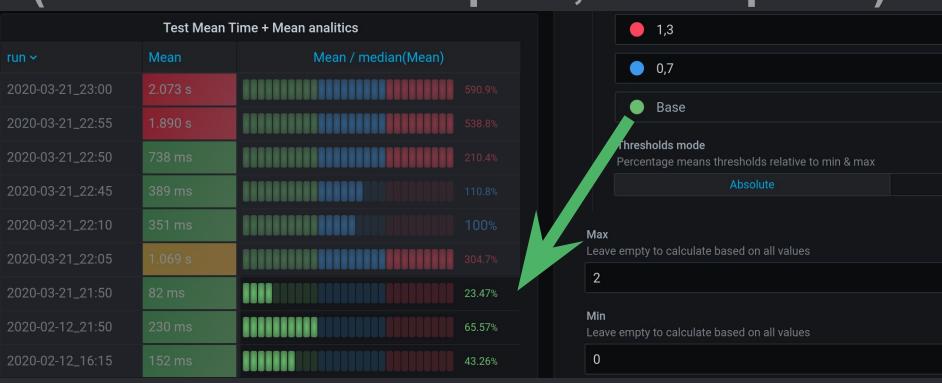
#### Mean / median(Mean) выявляет отклонения от общей картины



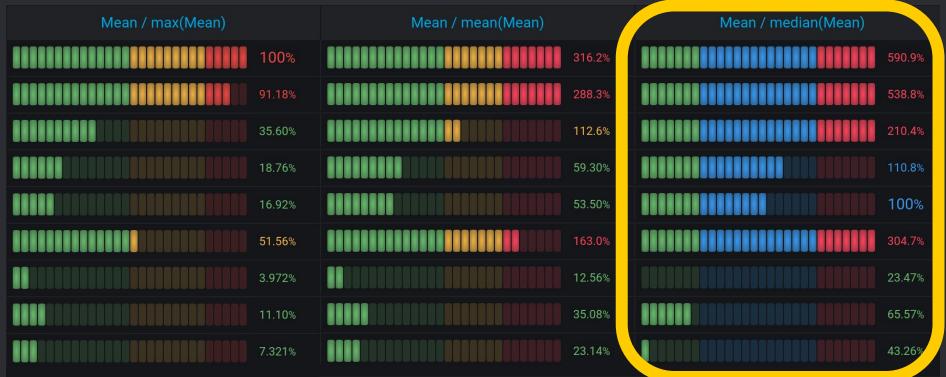

#### Mean / median(Mean) измеряет отклонение от центра (от 100%)







#### Treshold для ± 30% от 100%: синий (значение застыло, не колеблется)




## Treshold для +130%: красный (значение превысило норму, плохо)



#### Treshold для 0..70%: зеленый (значение ниже нормы, это хорошо)



#### Выбрал Mean / median(Mean) для поиска отклонения от общей картины



- 1. Подход к разработке мониторинга
- 2. Инструменты для нагрузки и InfluxDB
- 3. Подготовка окружения разработчика
- 4. Делаем много баз данных и выбор баз
- 5. Фильтрация списков тегов
- 6. Кеш InfluxQL в Variable и отклонения
- 7. Сложные таблицы в Grafana и % успехов
- 8. Длительность теста и колонка Time
- 9. Переход к отчёту по ссылке
- 10. Демонстрация



# Сложные таблицы в Grafana и % успехов

### Есть ли JOIN в InfluxQL? (InfluxDB 1.8 + InfluxQL + Grafana)

InfluxDB Cloud
The elastic time series
platform as a service.

Sign up now!

#### About the project

Release notes Contribute to InfluxDB Contributor license agreemen InfluxDB license

#### How do I query data across measurements?

Currently, there is no way to perform cross-measurement math or grouping. All data must be under a single measurement to query it together. InfluxDB is not a relational database and mapping data across measurements is not currently a recommended **schema**. See GitHub Issue **#3552** for a discussion of implementing JOIN in InfluxDB.

#### Does the order of the timestamps matter?

No. Our tests indicate that there is a only a negligible difference between the times it takes InfluxDB to complete the following queries:

SELECT ... FROM ... WHERE time > 'timestamp1' AND time < 'timestamp2

### Het, в InfluxQL нет JOIN-ов (InfluxDB 1.8 + InfluxQL + Grafana)

InfluxDB Cloud
The elastic time series
platform as a service.

Sign up now!

#### How do I query data across measurements?

Currently, there is no way to perform cross-measurement math or grouping. All data must be under a single measurement to query it together. InfluxDB is not a relational database and mapping data across measurements is not currently a recommended **schema**. See GitHub Issue **#3552** for a discussion of implementing JOIN in InfluxDB.

docs.influxdata.com/influxdb/v1.8/troubleshooting/frequently-asked-questions/#how-do-i-query-data-acros

s-measurements

### Есть ли JOIN во Flux? (InfluxDB 1.8 + Kapacotor + Flux + ...)

Unlock powerful insights that help you delight your customers.

Try InfluxDB Enterprise

JoinNode

#### About the project

Contributing

CLA

Release Notes/Changelo

Introduction

The <code>join</code> node joins data from any number of nodes. As each data point is received from a parent node is paired with the next data points from the other parent nodes with a matching timestamp. Each parent node contributes at most one point to each joined point. A tolerance can be supplied to join points that do not have perfectly aligned timestamps. Any points that fall within the tolerance are joined on the timestamp. If multiple points fall within the same tolerance window than they are joined in the order they

Aliases are used to prefix all fields from the respective nodes

The join can be an inner or outer join, see the JoinNode.Fill property

#### Example: Joining two measurements

In the example below, the errors, and requests, streams are joined and transformed to calculate

Working with Kapacito

### Да, JOIN по time давно есть во Flux (InfluxDB 1.8 + Kapacitor + Flux + ...)

Unlock powerful insights that help you delight your customers.

**Try InfluxDB Enterprise** 

JoinNode

#### About the project

Contributing CLA

License

Release Notes/Changelog

The join node joins data from any number of nodes. As each data point is received from a parent node it is paired with the next data points from the other parent nodes with a matching timestamp. Each parent node contributes at most one point to each joined point. A tolerance can be supplied to join points that do not have perfectly aligned timestamps. Any points that fall within the tolerance are joined on the timestamp. If multiple points fall within the same tolerance window than they are joined in the order they

Aliases are used to prefix all fields from the respective nodes

The join can be an inner or outer join, see the **JoinNode.Fill** property.

Introduction

#### docs.influxdata.com/kapacitor/v1.5/nodes/join node/

# Да, JOIN по time давно есть во Flux (InfluxDB 1.8 + Kapacitor + Flux + ...

Unlock powerful insights that help you delight your customers.

**Try InfluxDB Enterprise** 

JoinNode

#### About the project

Contributing

CLA

Release Notes/Changelog

Introduction

The join node joins data from any number of nodes. As each data point is seen a parent node it is paired with the next data points from the other parent nodes with a matching stamp. Each parent node contributes at most one point to each joined point. A tolerance can be supplied to join points to have perfectly aligned timestamps. Any points that fall within the tolerance are joined on the timestamp. If multiple points fall within the same tolerance window than they are joined.

Aliases are used to prefix all fields from the respective nodes

The join can be an inner or outer join, see the **JoinNode.Fill** prop

#### docs.influxdata.com/kapacitor/v1.5/nodes/join\_node/

# Есть ли JOIN во Flux без Kapacitor? (InfluxDB 1.8 + Flux + Grafana)


Unlock powerful insights that help you delight your customers.

> Try InfluxDB Enterprise

About the project

Release notes Contributing InfluxData Contributor License Agreement (CLA) Chronograf 1.8 documentation

Chronograf is InfluxData's open source web application. Use Chronograf with the other components of the **TICK stack** to visualize your monitoring data and easily create alerting and automation rules



### Да, есть JOIN во Flux без Kapacitor (InfluxDB 1.8 + Flux + <del>Grafana</del>)

Unlock powerful insights that help you delight your customers.

Try InfluxDB Enterprise

About the project

Release notes Contributing InfluxData Contributor License Agreement (CLA) Chronograf 1.8 documentation

Chronograf is InfluxData's open sould web application. Use the recomponents of the TICK stack to visualize your moniformal and easily create alerting and automation rules.

### Да, есть JOIN во Flux без Kapacitor (InfluxDB 1.8 + Flux + Chronograf)

Unlock powerful insights that help you delight your customers.

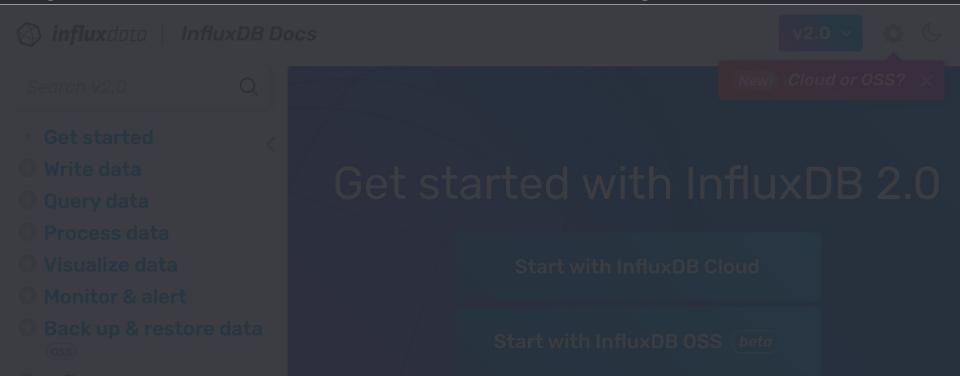
> **Try InfluxDB Enterprise**

Chronograf 1.8 documentation

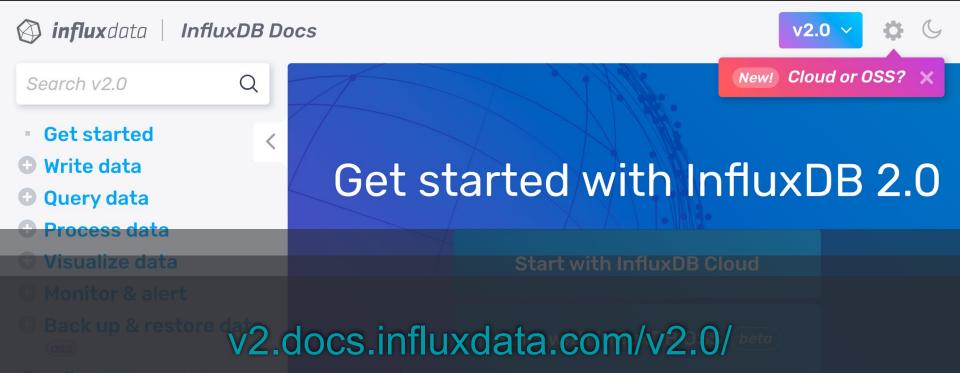
Chronograf is InfluxData's open source web application. Use Chronograf with the other components of the TICK stack to visualize your monitoring data and easily create alerting and automation rules.

InfluxData Contrib does.influxdata.com/chronograf/v1.8/

### Да, есть JOIN во Flux без Kapacitor (InfluxDB 1.8 + Flux + Chronograf),


Try InfluxDB **Enterprise** 

Chronograf 1.8 documentation


Chronograf is InfluxData's per source web apply components of the TICK stack to visualize your monitoring data and and automation rules.

docs.influxdata.com/chronograf/v1.8/


### Есть ли JOIN во Flux без Chronograf? (InfluxDB + Flux + Grafana)



# Да, есть JOIN во Flux без Chronograf (InfluxDB 2.0 + Flux + Grafana)



# Да, есть JOIN во Flux без Chronograf (InfluxDB 2.0 + Flux + Grafana)



# Есть ли JOIN для InfluxDB не 2.0? (как-нибудь ещё, по другому)

Blog Case Studies Community Documentation GrafanaCon 2020 Tutorials



Join by field (outer join)

Use this transformation to join multiple time series from a result set by field.

This transformation is especially useful if you want to combine queries so that you can calculate results from the fields.

In the example below, I have a template query displaying time series data from multiple servers in a table visualization. I can only view the results of one query at a time.

server requests ~

2020-05-12 05-17-20

web\_server\_01

#### Да, появился JOIN в <mark>Grafana 7.0</mark> (InfluxDB 1.8 + InfluxQL + Grafana 7.0)

Blog Case Studies Community Documentation GrafanaCon 2020 Tutorials



Join by field (outer join)

Use this transformation to join multiple time series from a result set by field.

This transformation is especially useful if you want to combine queries so that you can calculate results from the fields.

In the example below, I have a template query displaying time series data from multiple

<u>grafana.com/docs/grafana/latest/panels/transformations/#join-by-field-outer-join</u>

# Merge есть в Grafana 5.2+, но он требует совпадения:

- тегов из group by (просто)
- значения time (сложно)

# Merge есть в Grafana 5.2+, но он требует совпадения:

- тегов из group by (просто)
- значения time (сложно)

для 2, 3, 4, ... колонок

### MERGE в Grafana 5.2+:

- сохраняет первый time
- 2, 3, ... time уже ключевые

### MERGE в Grafana 5.2+:

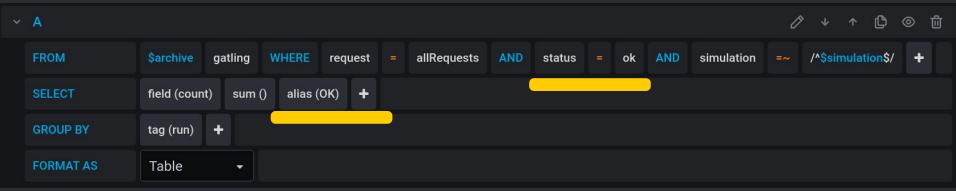
- сохраняет первый time
- 2, 3, ... time уже ключевые
  - о их удобно сбросить в 0

### Сброс колонки time в 0: **SELECT** last(A) + first(A) - last(A) **FROM** (SELECT A FROM ... GROUP BY B) WHERE \$timeFilter GROUP BY B

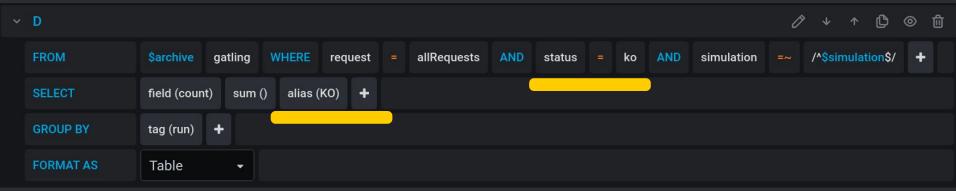
### Сброс колонки time в 0: last(A) + first(A) - last(A) (SELECT A FROM ... GROUP BY B)

WHERE \$timeFilter
GROUP BY B

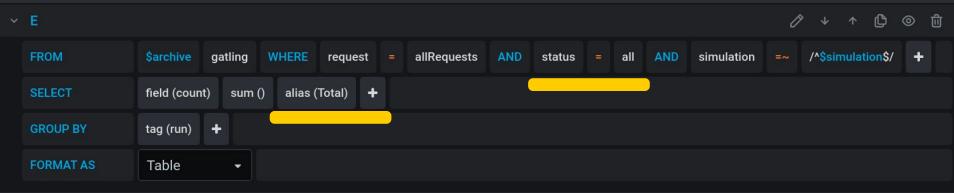
### MERGE позволяет создавать красивые таблицы (Table)


|                 |                   |                    |        |       | STATIS | STICS - |     |          |          |          |          |     |      |         |
|-----------------|-------------------|--------------------|--------|-------|--------|---------|-----|----------|----------|----------|----------|-----|------|---------|
| Group (level 1) | Group (level 2) ▼ | Requests           | Total  | ОК    | КО     | % KO    | Min | 50th pct | 75th pct | 95th pct | 99th pct | Max | Mean | Std Dev |
|                 |                   | ubuntu-logo-png    | 12002  | 0     | 12002  | 10%     | 1   |          |          | 6        | 16       | 89  | 1    |         |
|                 |                   | Global Information | 120020 | 84014 | 36006  | 30%     | 1   |          |          | 9        | 65       | 161 | 2    |         |
|                 |                   | /_(GET)            | 12002  | 12002 | 0      | 0%      | 1   |          |          | 14       | 132      | 153 | 4    | 6       |
| images          |                   | /image3-png        | 12002  | 12002 | 0      | 0%      | 1   |          |          | 10       | 34       | 74  | 2    |         |
| images          |                   | /image2-png        | 12002  | 12002 | 0      | 0%      | 1   |          |          | 9        | 27       | 161 | 2    |         |
| images          |                   | /image1-png        | 12002  | 12002 | 0      | 0%      | 1   |          |          | 9        | 26       | 55  | 2    |         |
| errorPages      |                   | /50x-html_(GET)    | 12002  | 0     | 12002  | 10%     | 1   |          |          | 6        | 26       | 115 | 1    |         |
| errorPages      |                   | /40x-html_(GET)    | 12002  | 0     | 12002  | 10%     | 1   |          |          | 6        | 14       | 59  | 1    |         |
| images          | biglmages         | /image4-png        | 12002  | 12002 | 0      | 0%      | 1   |          |          | 9        | 26       | 66  | 2    |         |

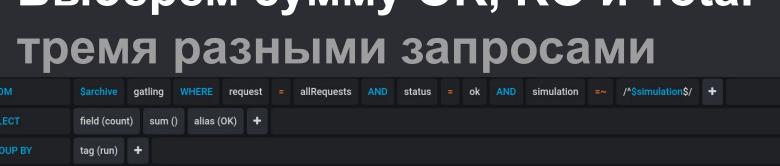
### MERGE позволяет создавать красивые таблицы (BoomTable)


|                                  |         |       |       | STATIS | TICS - |          |          |          |          |     |      |         |
|----------------------------------|---------|-------|-------|--------|--------|----------|----------|----------|----------|-----|------|---------|
| Request                          | Total 🖖 | ок    | ко    | % КО   | Min    | 50th pct | 75th pct | 95th pct | 99th pct | Max | Mean | Std dev |
| Global Information               | 120020  | 84014 | 36006 | 30%    | 1      |          | 3        | 9        | 65       | 161 | 2    | 3       |
| images > bigImages > /image4-png | 12002   | 12002 | 0     | 0%     | 1      |          | 3        | 9        | 26       | 66  | 2    | 4       |
| errorPages > /40x-html_(GET)     | 12002   | 0     | 12002 | 10%    | 1      |          |          | 6        | 14       | 59  | 1    | 2       |
| errorPages > /50x-html_(GET)     | 12002   | 0     | 12002 | 10%    | 1      |          |          | 6        | 26       | 115 | 1    | 2       |
| images > /image1-png             | 12002   | 12002 | 0     | 0%     | 1      |          | 3        | 9        | 26       | 55  | 2    | 3       |
| images > /image2-png             | 12002   | 12002 | 0     | 0%     | 1      |          | 3        | 9        | 27       | 161 | 2    | 3       |
| images > /image3-png             | 12002   | 12002 | 0     | 0%     | 1      |          | 3        | 10       | 34       | 74  | 2    | 4       |
| /_(GET)                          | 12002   | 12002 | 0     | 0%     | 1      | 2        |          | 14       | 132      | 153 | 4    | 6       |
|                                  |         |       | 10000 | 100    | -1     |          |          |          |          | ~~  |      |         |

Протестируем новый OUTER JOIN по полю из Grafana 7.0 на примере нашего отчета


# Выберем сумму ОК, КО и Total с группировкой по запускам (run)




# Выберем сумму ОК, KO и Total с группировкой по запускам (run)



# Выберем сумму ОК, КО и Total с группировкой по запускам (run)



### Выберем сумму ОК, КО и Total тремя разными запросами



**GROUP BY** 

alias (KO) +

alias (Total) +

field (count)

tag (run) +

field (count)

tag (run) +

Table

sum ()

Table

**GROUP BY** 

**FORMAT AS** 

**FROM** 

SELECT

**GROUP BY** 

**FORMAT AS** 

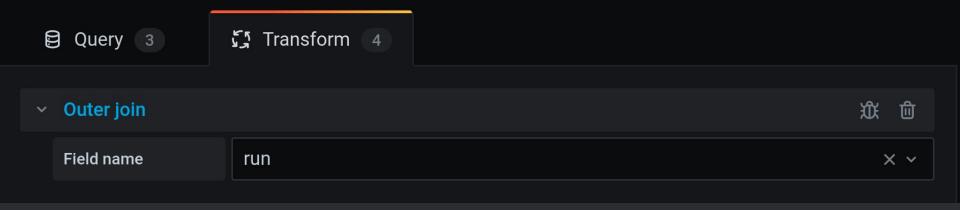
FORMAT AS Table

allRequests

allRequests

status

status


all

simulation

simulation

/\*\$simulation\$/

### И объединим их по тегу run, просто перейдя на вкладку Transform



### OUTER JOIN по попю run объединяет

| OOIL             |                     |        |                     |       |                     |        |  |  |  |  |
|------------------|---------------------|--------|---------------------|-------|---------------------|--------|--|--|--|--|
| OK, KO и Total   |                     |        |                     |       |                     |        |  |  |  |  |
| run ~            | Time                | OK     | Time                | КО    | Time                | Total  |  |  |  |  |
| 2020-02-03_15:50 | 2019-06-16 12:14:59 | 168024 | 2019-06-16 12:14:59 | 72012 | 2019-06-16 12:14:59 | 240036 |  |  |  |  |
| 2020-01-31_21:15 | 2019-06-16 12:14:59 | 7      | 2019-06-16 12:14:59 | 3     | 2019-06-16 12:14:59 | 10     |  |  |  |  |
| 2020-01-31_16:20 | 2019-06-16 12:14:59 | 84014  | 2019-06-16 12:14:59 | 36006 | 2019-06-16 12:14:59 | 120020 |  |  |  |  |
| 2020-01-31_15:30 | 2019-06-16 12:14:59 | 100723 | 2019-06-16 12:14:59 | 43167 | 2019-06-16 12:14:59 | 143890 |  |  |  |  |

| 2020-01-31_21:15 | 2019-06-16 12:14:59 | 7      | 2019-06-16 12:14:59 | 3     | 2019-06-16 12:14:59 | 10     |
|------------------|---------------------|--------|---------------------|-------|---------------------|--------|
| 2020-01-31_16:20 | 2019-06-16 12:14:59 | 84014  | 2019-06-16 12:14:59 | 36006 | 2019-06-16 12:14:59 | 120020 |
| 2020-01-31_15:30 | 2019-06-16 12:14:59 | 100723 | 2019-06-16 12:14:59 | 43167 | 2019-06-16 12:14:59 | 143890 |
| 2020-01-30_23:16 | 2019-06-16 12:14:59 | 84014  | 2019-06-16 12:14:59 | 36006 | 2019-06-16 12:14:59 | 120020 |
| 2020-01-30_16:16 | 2019-06-16 12:14:59 | 84014  | 2019-06-16 12:14:59 | 36006 | 2019-06-16 12:14:59 | 120020 |
| 2020-01-29_20:32 | 2019-06-16 12:14:59 | 84014  | 2019-06-16 12:14:59 | 36006 | 2019-06-16 12:14:59 | 120020 |
| 2020-01-29_20:09 | 2019-06-16 12:14:59 | 84014  | 2019-06-16 12:14:59 | 36006 | 2019-06-16 12:14:59 | 120020 |
| 2020-01-29_20:05 | 2019-06-16 12:14:59 | 84014  | 2019-06-16 12:14:59 | 36006 | 2019-06-16 12:14:59 | 120020 |

120020

120020

120020

019-06-16 12:14:59

019-06-16 12:14:59

.019-06-16 12:14:59

36006

36006

36006

### OUTER JOIN по попю run объединяет

|                  | COTER COM NO HOMO TON CODEMNIACI |        |                     |       |                    |        |  |  |  |  |
|------------------|----------------------------------|--------|---------------------|-------|--------------------|--------|--|--|--|--|
| OK, KO и Total   |                                  |        |                     |       |                    |        |  |  |  |  |
| run v            | Time                             | ОК     | Time                | КО    | Time               | Total  |  |  |  |  |
| 2020-02-03_15:50 | 2019-06-16 12:14:59              | 168024 | 2019-06-16 12:14:59 | 72012 | 019-06-16 12:14:59 | 240036 |  |  |  |  |
| 2020-01-31_21:15 | 2019-06-16 12:14:59              | 7      | 2019-06-16 12:14:59 | 3     | 019-06-16 12:14:59 | 10     |  |  |  |  |
| 2020-01-31_16:20 | 2019-06-16 12:14:59              | 84014  | 2019-06-16 12:14:59 | 36006 | 019-06-16 12:14:59 | 120020 |  |  |  |  |
| 2020-01-31_15:30 | 2019-06-16 12:14:59              | 100723 | 2019-06-16 12:14:59 | 43167 | 019-06-16 12:14:59 | 143890 |  |  |  |  |
|                  |                                  |        |                     |       |                    |        |  |  |  |  |

| OK,              | KO и To             | tal    |                     |       |                    |        |
|------------------|---------------------|--------|---------------------|-------|--------------------|--------|
| run 🗸            | Time                | ОК     | Time                | КО    | Time               | Tota   |
| 2020-02-03_15:50 | 2019-06-16 12:14:59 | 168024 | 2019-06-16 12:14:59 | 72012 | 019-06-16 12:14:59 | 240036 |
| 2020-01-31_21:15 | 2019-06-16 12:14:59 | 7      | 2019-06-16 12:14:59 | 3     | 019-06-16 12:14:59 | 10     |
| 2020-01-31_16:20 | 2019-06-16 12:14:59 | 84014  | 2019-06-16 12:14:59 | 36006 | 019-06-16 12:14:59 | 120020 |
| 2020-01-31_15:30 | 2019-06-16 12:14:59 | 100723 | 2019-06-16 12:14:59 | 43167 | 019-06-16 12:14:59 | 143890 |
| 2020-01-30_23:16 | 2019-06-16 12:14:59 | 84014  | 2019-06-16 12:14:59 | 36006 | 019-06-16 12:14:59 | 120020 |
| 2020-01-30_16:16 | 2019-06-16 12:14:59 | 84014  | 2019-06-16 12:14:59 | 36006 | 019-06-16 12:14:59 | 120020 |

84014

84014

84014

2020-01-29\_20:32

2020-01-29\_20:09

2020-01-29\_20:05

2019-06-16 12:14:59

2019-06-16 12:14:59

2019-06-16 12:14:59

2019-06-16 12:14:59

2019-06-16 12:14:59

2019-06-16 12:14:59

### OUTER JOIN по полю run объединяет OK, KO и Total

| run ~            | Time                | ОК     | Time                | ко    | Time                | Total  |
|------------------|---------------------|--------|---------------------|-------|---------------------|--------|
| 2020-02-03_15:50 | 2019-06-16 12:14:59 | 168024 | 2019-06-16 12:14:59 | 72012 | 2019-06-16 12:14:59 | 240036 |
| 2020-01-31_21:15 | 2019-06-16 12:14:59 | 7      | 2019-06-16 12:14:59 | 3     | 2019-06-16 12:14:59 | 10     |
| 2020-01-31_16:20 | 2019-06-16 12:14:59 | 84014  | 2019-06-16 12:14:59 | 36006 | 2019-06-16 12:14:59 | 120020 |
| 2020-01-31_15:30 | 2019-06-16 12:14:59 | 100723 | 2019-06-16 12:14:59 | 43167 | 2019-06-16 12:14:59 | 143890 |
| 2020-01-30_23:16 | 2019-06-16 12:14:59 | 84014  | 2019-06-16 12:14:59 | 36006 | 2019-06-16 12:14:59 | 120020 |
| 2020-01-30_16:16 | 2019-06-16 12:14:59 | 84014  | 2019-06-16 12:14:59 | 36006 | 2019-06-16 12:14:59 | 120020 |
| 2020-01-29_20:32 | 2019-06-16 12:14:59 | 84014  | 2019-06-16 12:14:59 | 36006 | 2019-06-16 12:14:59 | 120020 |
| 2020-01-29_20:09 | 2019-06-16 12:14:59 | 84014  | 2019-06-16 12:14:59 | 36006 | 2019-06-16 12:14:59 | 120020 |
| 2020-01-29_20:05 | 2019-06-16 12:14:59 | 84014  | 2019-06-16 12:14:59 | 36006 | 2019-06-16 12:14:59 | 120020 |
|                  |                     |        |                     |       |                     |        |

10

120020

143890

120020

120020

120020

120020

120020

2019-06-16 12:14:59

2019-06-16 12:14:59

2019-06-16 12:14:59

2019-06-16 12:14:59

2019-06-16 12:14:59

2019-06-16 12:14:59

2019-06-16 12:14:59

2019-06-16 12:14:59

36006

43167

36006

36006

36006

36006

36006

### OUTER JOIN по полю run объединяет

| OK, Ł | (О и То | tal |      |    |      |      |
|-------|---------|-----|------|----|------|------|
| ın v  | Time    | ок  | Time | КО | Time | Tota |
|       |         |     |      |    |      |      |

2019-06-16 12:14:59

2019-06-16 12:14:59

2019-06-16 12:14:59

2019-06-16 12:14:59

2019-06-16 12:14:59

2019-06-16 12:14:59

2019-06-16 12:14:59

2019-06-16 12:14:59

| OK, KO и Total   |                     |        |                     |       |                     |        |  |  |  |  |
|------------------|---------------------|--------|---------------------|-------|---------------------|--------|--|--|--|--|
| run 🗸            | Time                | ОК     | Time                | ко    | Time                | Tot    |  |  |  |  |
| 2020-02-03_15:50 | 2019-06-16 12:14:59 | 168024 | 2019-06-16 12:14:59 | 72012 | 2019-06-16 12:14:59 | 240036 |  |  |  |  |

| OK, Ł            | (О и То             | tal    |                     |       |                     |       |
|------------------|---------------------|--------|---------------------|-------|---------------------|-------|
| run v            | Time                | ОК     | Time                | ко    | Time                | To    |
| 2020-02-03_15:50 | 2019-06-16 12:14:59 | 168024 | 2019-06-16 12:14:59 | 72012 | 2019-06-16 12:14:59 | 24003 |

84014

100723

84014

84014

84014

84014

84014

2020-01-31\_21:15

2020-01-31\_16:20

2020-01-31\_15:30

2020-01-30\_23:16

2020-01-30\_16:16

2020-01-29\_20:32

2020-01-29\_20:09

2020-01-29\_20:05

2019-06-16 12:14:59

2019-06-16 12:14:59

2019-06-16 12:14:59

2019-06-16 12:14:59

2019-06-16 12:14:59

2019-06-16 12:14:59

2019-06-16 12:14:59

2019-06-16 12:14:59

120020

120020

120020

120020

120020

2019-06-16 12:14:59

2019-06-16 12:14:59

2019-06-16 12:14:59

2019-06-16 12:14:59

2019-06-16 12:14:59

36006

36006

36006

36006

36006

| OUIE             | EK JUIN             | пог    | іолю ru              | n oc  | ъединя              | нет        |
|------------------|---------------------|--------|----------------------|-------|---------------------|------------|
| OK, k            | KO и Tot            | al: T  | <mark>ime</mark> сбр | оше   | H B NOV             | <b>v()</b> |
| un v             | Time                | ок     | Time                 | ко    | Time                | Tot        |
| 2020-02-03_15:50 | 2019-06-16 12:14:59 | 168024 | 2019-06-16 12:14:59  | 72012 | 2019-06-16 12:14:59 | 240036     |
| 2020-01-31_21:15 | 2019-06-16 12:14:59 | 7      | 2019-06-16 12:14:59  | 3     | 2019-06-16 12:14:59 | 10         |
|                  |                     |        |                      |       |                     |            |

| ON, r            | CON TOU             | ai:    | ime cop             | ЮШЕ   | H B UOA             | <b>V()</b> |
|------------------|---------------------|--------|---------------------|-------|---------------------|------------|
| run ~            | Time                | ок     | Time                | ко    | Time                | То         |
| 2020-02-03_15:50 | 2019-06-16 12:14:59 | 168024 | 2019-06-16 12:14:59 | 72012 | 2019-06-16 12:14:59 | 240036     |
| 2020-01-31_21:15 | 2019-06-16 12:14:59 | 7      | 2019-06-16 12:14:59 | 3     | 2019-06-16 12:14:59 | 10         |
| 2020-01-31_16:20 | 2019-06-16 12:14:59 | 84014  | 2019-06-16 12:14:59 | 36006 | 2019-06-16 12:14:59 | 120020     |

84014

84014

84014

84014

84014

2019-06-16 12:14:59

2019-06-16 12:14:59

2019-06-16 12:14:59

2019-06-16 12:14:59

2019-06-16 12:14:59

2020-01-30\_23:16

2020-01-30\_16:16

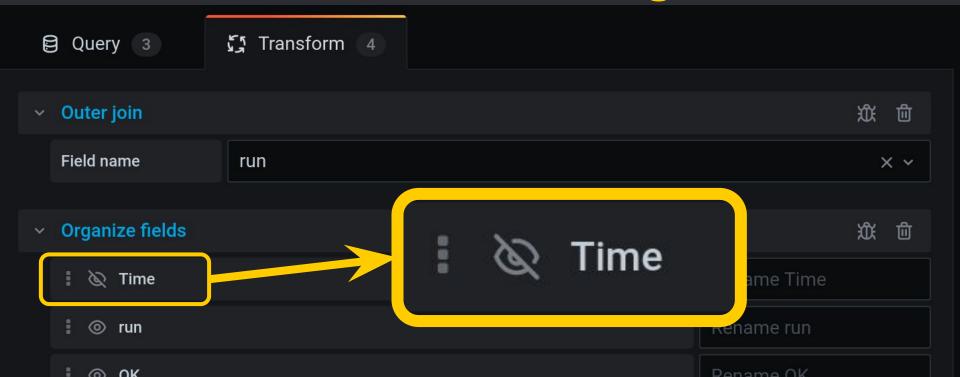
2020-01-29\_20:32

2020-01-29\_20:09

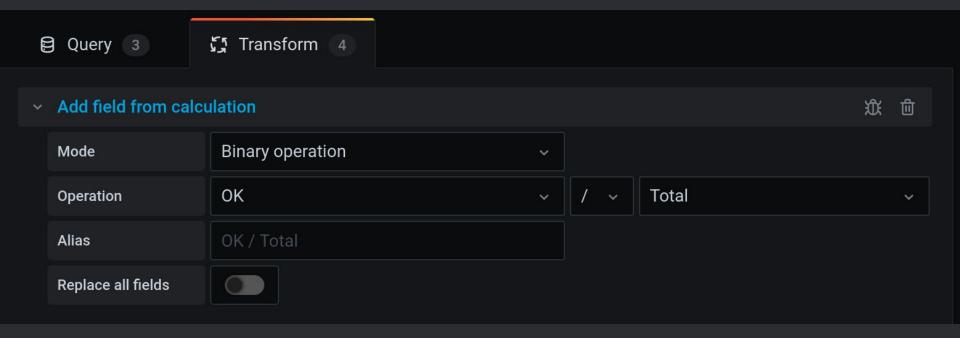
2020-01-29\_20:05

| OK, KO и Total: Time сброшен в now() |                     |        |                     |       |                     |        |
|--------------------------------------|---------------------|--------|---------------------|-------|---------------------|--------|
| run v                                | Time                | ок     | Time                | ко    | Time                | Total  |
| 2020-02-03_15:50                     | 2019-06-16 12:14:59 | 168024 | 2019-06-16 12:14:59 | 72012 | 2019-06-16 12:14:59 | 240036 |
| 2020-01-31_21:15                     | 2019-06-16 12:14:59 | 7      | 2019-06-16 12:14:59 | 3     | 2019-06-16 12:14:59 | 10     |
| 2020-01-31_16:20                     | 2019-06-16 12:14:59 | 84014  | 2019-06-16 12:14:59 | 36006 | 2019-06-16 12:14:59 | 120020 |
| 2020-01-31_15:30                     | 2019-06-16 12:14:59 | 100723 | 2019-06-16 12:14:59 | 43167 | 2019-06-16 12:14:59 | 143890 |

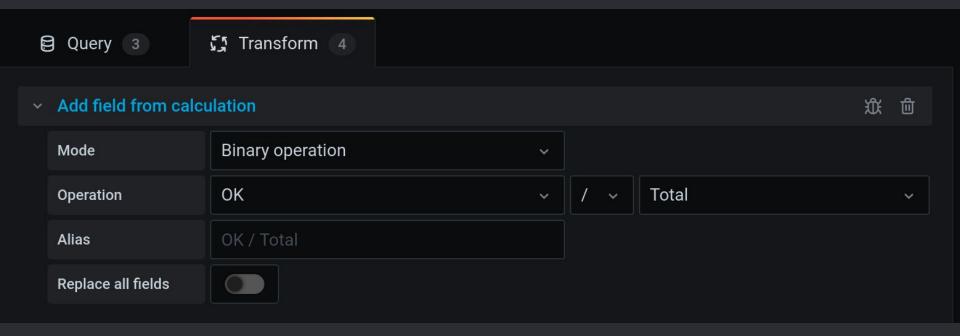
2019-06-16 12:14:59


2019-06-16 12:14:59

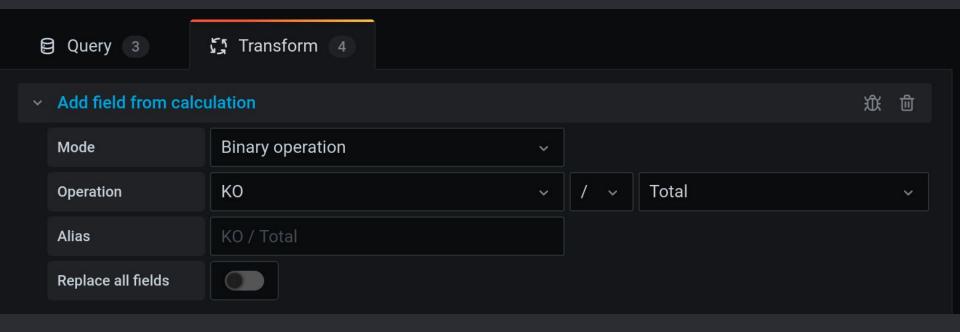
2019-06-16 12:14:59


2019-06-16 12:14:59

2019-06-16 12:14:59


### Можно скрыть колонку Time на вкладке Transform / Organaze fields




#### И испольвать новую фичу: Transform / Add field from calculation



#### Рассчитаем % успехов с Transform / Add field from calculation



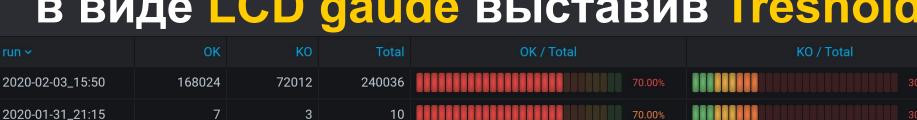
#### Рассчитаем % провалов с Transform / Add field from calculation



#### Проценты удобно визуапизировать

| ripodellibi ydoollo bhayannanpobalb |                   |       |        |            |            |  |  |  |
|-------------------------------------|-------------------|-------|--------|------------|------------|--|--|--|
| ВВИ                                 | де <mark>L</mark> | .CD   | gau    | de выстави | B Treshold |  |  |  |
| run ~                               | ОК                | ко    | Total  | OK / Total | KO / Total |  |  |  |
| 2020-02-03_15:50                    | 168024            | 72012 | 240036 | 70.00%     | 30.00      |  |  |  |
| 2020-01-31 21:15                    | 7                 | 3     | 10     | 70.00%     | 20.00      |  |  |  |

70.00%


70.00%

70.00%

70.00%

70.00%

70.00%



2020-01-31 16:20

2020-01-31\_15:30

2020-01-30\_23:16

2020-01-30\_16:16

2020-01-29\_20:32

2020-01-29\_20:09

2020-01-29\_20:05

2020-01-29\_20:02

2020-01-29 19:58

#### Проценты удобно визуализировать

| в виде LCD gaude выставив Treshold |        |        |        |                         |             |  |  |
|------------------------------------|--------|--------|--------|-------------------------|-------------|--|--|
| ВВИ                                | іде ц  | -CD    | gau    | <mark>ае</mark> выстави | IB Iresnoid |  |  |
| run v                              | ОК     | КО     | Total  | OK / Total              | KO / Total  |  |  |
| 2020-03-21_23:00                   | 156195 | 555856 | 712051 | 21.94%                  | 78.06%      |  |  |
| 2020-03-21_22:55                   | 113237 | 342006 | 455243 | 24.87%                  | 75.13%      |  |  |
| 2020-03-21_22:50                   | 142504 | 427512 | 570016 | 25.00%                  | 75.00%      |  |  |
| 2020-03-21_22:45                   | 46252  | 138756 | 185008 | 25.00%                  | 75.00%      |  |  |



2020-02-12\_21:50

2020-02-12\_16:15

2020-02-12\_16:5

Мы попробовали OUTER JOIN по полю из Grafana 7.0 и узнали его ограничения: он меняет все Time на now()

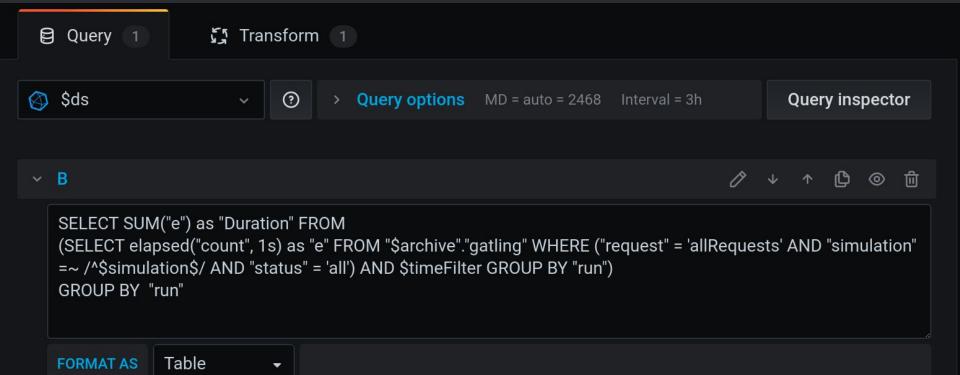
- 1. Подход к разработке мониторинга
- 2. Инструменты для нагрузки и InfluxDB
- 3. Подготовка окружения разработчика
- 4. Делаем много баз данных и выбор баз
- 5. Фильтрация списков тегов
- 6. Кеш InfluxQL в Variable и отклонения
- 7. Сложные таблицы в Grafana и % успехов
- 8. Длительность теста и колонка Time
- 9. Переход к отчёту по ссылке
- 10. Демонстрация



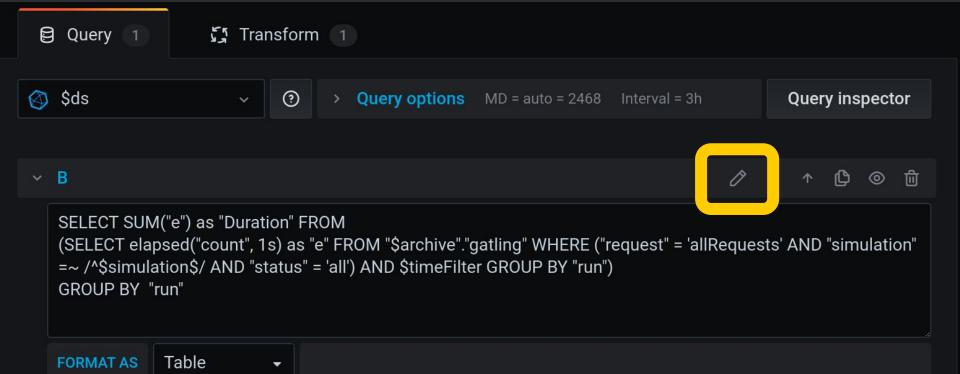
# Длительность теста и колонка Time

#### В отчете важно видеть:

- как долго длился тест?
- не прервался ли он?


#### В отчете важно видеть:

- как долго длился тест?
  - о чтобы посчитать RPS:
    - Total / Duration
- не прервался ли он?


#### Длительность: сумма дельт времени

```
SELECT SUM("e") as "Duration" FROM
  (SELECT elapsed("count", 1s) as "e"
   FROM "$archive"."gatling"
   WHERE ("request" = 'allRequests' AND
           "simulation" =~ /^$simulation$/ AND
           "status" = 'all'
          ) AND $timeFilter
   GROUP BY "run")
GROUP BY "run"
 docs.influxdata.com/influxdb/v1.8/query language/functions/
                     #elapsed
```

## Запрос не составить в конструкторе Нужна правка текста запроса



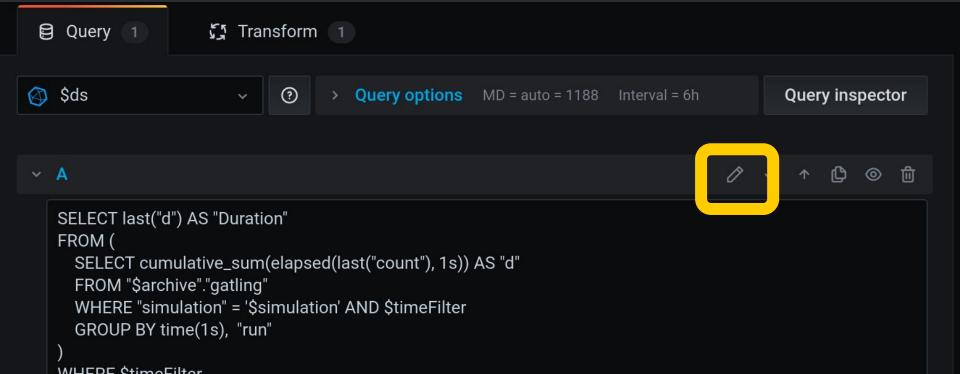
## Запрос не составить в конструкторе Нужна правка текста запроса



### Функция SUM возвращает результат в 1970-01-01 с поправкой на пояс

| run ~            | Duration | Time                |
|------------------|----------|---------------------|
| 2020-03-21_23:00 | 99       | 1970-01-01 03:00:00 |
| 2020-03-21_22:55 | 157      | 1970-01-01 03:00:00 |
| 2020-03-21_22:50 | 296      | 1970-01-01 03:00:00 |
| 2020-03-21_22:45 | 99       | 1970-01-01 03:00:00 |
| 2020-03-21_22:10 | 99       | 1970-01-01 03:00:00 |
| 2020-03-21_22:05 | 13       | 1970-01-01 03:00:00 |
| 2020-03-21_21:50 | 54       | 1970-01-01 03:00:00 |
| 2020-02-12_21:50 | 4        | 1970-01-01 03:00:00 |
| 2020-02-12_16:15 | 75       | 1970-01-01 03:00:00 |

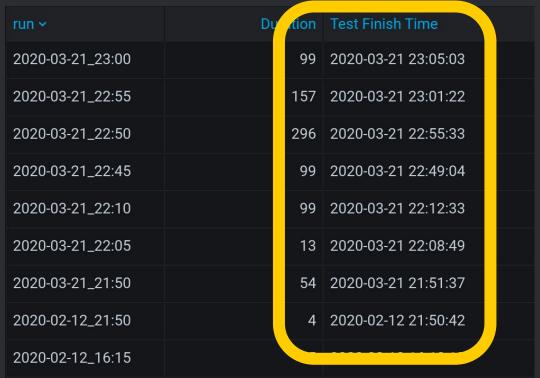
#### Функция SUM возвращает результат в 1970-01-01 с поправкой на пояс


| run ~            | Duration | Time                |
|------------------|----------|---------------------|
| 2020-03-21_23:00 | 99       | 1970-01-01 03:00:00 |
| 2020-03-21_22:55 | 157      | 1970-01-01 03:00:00 |
| 2020-03-21_22:50 | 296      | 1970-01-01 03:00:00 |
| 2020-03-21_22:45 | 99       | 1970-01-01 03:00:00 |
| 2020-03-21_22:10 | 99       | 1970-01-01 03:00:00 |
| 2020-03-21_22:05 | 13       | 1970-01-01 03:00:00 |
| 2020-03-21_21:50 | 52       | 1970-01-01 03:00:00 |
| 2020-02-12_21:50 |          | 1970-01-01 03:00:00 |
| 2020-02-12_16:15 | 75       | 1970-01-01 03:00:00 |

### Длительность в конце теста дает не sum, a cumulative\_sum

```
SELECT last("d") AS "Duration"
FROM (
    SELECT cumulative_sum(elapsed(last("count"), 1s)) AS "d"
    FROM "$archive"."gatling"
    WHERE "simulation" = '$simulation' AND $timeFilter
    GROUP BY time(1s), "run"
)
WHERE $timeFilter
GROUP BY "run"
```

docs.influxdata.com/influxdb/v1.8/query\_language/functions/ #cumulative-sum


## Запрос не составить в конструкторе Также нужна правка текста запроса



### cumulative\_sum вернёт результат уже на момент записи последней точки

| run ~            | Duration | Test Finish Time    |
|------------------|----------|---------------------|
| 2020-03-21_23:00 | 99       | 2020-03-21 23:05:03 |
| 2020-03-21_22:55 | 157      | 2020-03-21 23:01:22 |
| 2020-03-21_22:50 | 296      | 2020-03-21 22:55:33 |
| 2020-03-21_22:45 | 99       | 2020-03-21 22:49:04 |
| 2020-03-21_22:10 | 99       | 2020-03-21 22:12:33 |
| 2020-03-21_22:05 | 13       | 2020-03-21 22:08:49 |
| 2020-03-21_21:50 | 54       | 2020-03-21 21:51:37 |
| 2020-02-12_21:50 | 4        | 2020-02-12 21:50:42 |
| 2020-02-12_16:15 | 75       | 2020-02-12 16:18:15 |

#### cumulative\_sum вернёт результат уже на момент записи последней точки



## cumulative\_sum вернёт результат уже на момент записи последней точки

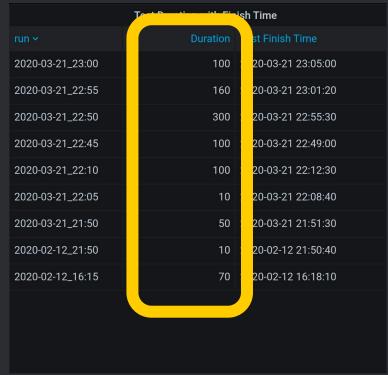
| run Y            | Duration | Test Finish Time    |
|------------------|----------|---------------------|
| 2020-03-21_23:00 | 99       | 2020-03-21 23:05:03 |
| 2020-03-21_22:55 | 157      | 2020-03-21 23:01:22 |
| 2020-03-21_22:50 | 296      | 2020-03-21 22:55:33 |
| 2020-03-21_22:45 | 99       | 2020-03-21 22:49:04 |
| 2020-03-21_22:10 | 99       | 2020-03-21 22:12:33 |
| 2020-03-21_22:05 | 13       | 2020-03-21 22:08:49 |
|                  |          |                     |
| 2020-02-12_21:50 | 4        | 2020-02-12 21:50:42 |
|                  |          |                     |

#### Группировать cumulative\_sum по каждой секунде накладно

```
SELECT last("d") AS "Duration"
FROM (
    SELECT cumulative_sum(elapsed(last("count"), 1s)) AS "d"
    FROM "$archive"."gatling"
    WHERE "simulation" = '$simulation' AND $timeFilter
    GROUP BY time(1s), "run"
)
WHERE $timeFilter
GROUP BY "run"
```

docs.influxdata.com/influxdb/v1.8/query\_language/functions/ #cumulative-sum

#### Можно считать cumulative\_sum с ускорением и потерей точности


```
SELECT last("d") AS "Duration"
FROM (
    SELECT cumulative_sum(elapsed(last("count"), 1s)) AS "d"
    FROM "$archive"."gatling"
    WHERE "simulation" = '$simulation' AND $timeFilter
    GROUP BY time(10s), "run"
)
WHERE $timeFilter
GROUP BY "run"
```

docs.influxdata.com/influxdb/v1.8/query\_language/functions/ #cumulative-sum

## Мы получим неточные результаты, но значительно быстрее

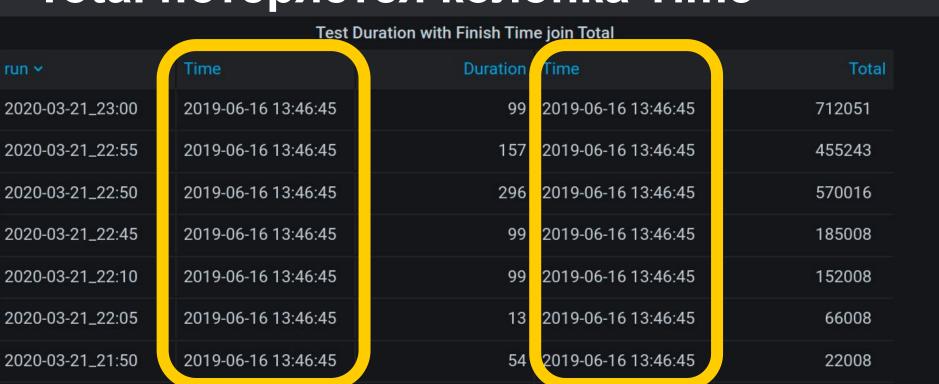
| Test Duration with Finish Time |          |                     |  |  |  |
|--------------------------------|----------|---------------------|--|--|--|
| run v                          | Duration | Test Finish Time    |  |  |  |
| 2020-03-21_23:00               | 100      | 2020-03-21 23:05:00 |  |  |  |
| 2020-03-21_22:55               | 160      | 2020-03-21 23:01:20 |  |  |  |
| 2020-03-21_22:50               | 300      | 2020-03-21 22:55:30 |  |  |  |
| 2020-03-21_22:45               | 100      | 2020-03-21 22:49:00 |  |  |  |
| 2020-03-21_22:10               | 100      | 2020-03-21 22:12:30 |  |  |  |
| 2020-03-21_22:05               | 10       | 2020-03-21 22:08:40 |  |  |  |
| 2020-03-21_21:50               | 50       | 2020-03-21 21:51:30 |  |  |  |
| 2020-02-12_21:50               | 10       | 2020-02-12 21:50:40 |  |  |  |
| 2020-02-12_16:15               | 70       | 2020-02-12 16:18:10 |  |  |  |
|                                |          |                     |  |  |  |
|                                |          |                     |  |  |  |
|                                |          |                     |  |  |  |

### Получим округленные результаты, округленные до размера группы

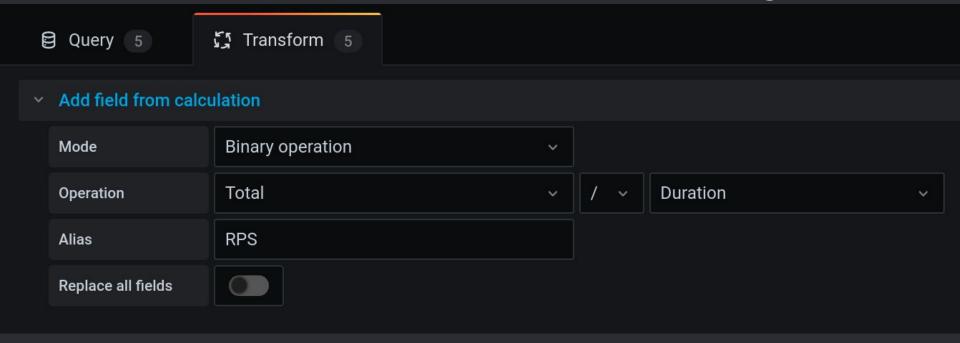


#### Получим результаты с потерей тестов короче, чем размер группы

| Test Duration with Finish Time (precise) |          |                     |  |  |  |
|------------------------------------------|----------|---------------------|--|--|--|
| run 🗸                                    | Duration | Test Finish Time    |  |  |  |
| 2020-03-21_23:00                         | 99       | 2020-03-21 23:05:03 |  |  |  |
| 2020-03-21_22:55                         | 157      | 2020-03-21 23:01:22 |  |  |  |
| 2020-03-21_22:50                         | 296      | 2020-03-21 22:55:33 |  |  |  |
| 2020-03-21_22:45                         | 99       | 2020-03-21 22:49:04 |  |  |  |
| 2020-03-21_22:10                         | 99       | 2020-03-21 22:12:33 |  |  |  |
| 2020-03-21_22:05                         | 13       | 2020-03-21 22:08:49 |  |  |  |
| 2020-03-21_21:50                         | 54       | 2020-03-21 21:51:37 |  |  |  |
| 2020-02-12_21:50                         | 4        | 2020-02-12 21:50:42 |  |  |  |
| 2020-02-12_16:15                         | 75       | 2020-02-12 16:18:15 |  |  |  |
| 2020-02-12_16:5                          | 4        | 2020-02-12 16:06:57 |  |  |  |
|                                          | 4        | 2020-02-12 16:01:16 |  |  |  |
|                                          |          |                     |  |  |  |


| :                |                        |                     |
|------------------|------------------------|---------------------|
|                  | Test Duration with Fir | nish Time           |
| run Y            | Duration               | Test Finish Time    |
| 2020-03-21_23:00 | 100                    | 2020-03-21 23:05:00 |
| 2020-03-21_22:55 | 160                    | 2020-03-21 23:01:20 |
| 2020-03-21_22:50 | 300                    | 2020-03-21 22:55:30 |
| 2020-03-21_22:45 | 100                    | 2020-03-21 22:49:00 |
| 2020-03-21_22:10 | 100                    | 2020-03-21 22:12:30 |
| 2020-03-21_22:05 | 10                     | 2020-03-21 22:08:40 |
| 2020-03-21_21:50 | 50                     | 2020-03-21 21:51:30 |
| 2020-02-12_21:50 | 10                     | 2020-02-12 21:50:40 |
| 2020-02-12_16:15 | 70                     | 2020-02-12 16:18:10 |
|                  |                        |                     |
|                  |                        |                     |

#### Но в момент завершения теста


| Test Duration with Finish Time (precise) |          |                     |  |  |  |
|------------------------------------------|----------|---------------------|--|--|--|
| run ~                                    | Duration | Test Finish Time    |  |  |  |
| 2020-03-21_23:00                         | 99       | 2020-03-21 23:05:03 |  |  |  |
| 2020-03-21_22:55                         | 157      | 2020-03-21 23:01:22 |  |  |  |
| 2020-03-21_22:50                         | 296      | 2020-03-21 22:55:33 |  |  |  |
| 2020-03-21_22:45                         | 99       | 2020-03-21 22:49:04 |  |  |  |
| 2020-03-21_22:10                         | 99       | 2020-03-21 22:12:33 |  |  |  |
| 2020-03-21_22:05                         | 13       | 2020-03-21 22:08:49 |  |  |  |
| 2020-03-21_21:50                         | 54       | 2020-03-21 21:51:37 |  |  |  |
| 2020-02-12_21:50                         | 4        | 2020-02-12 21:50:42 |  |  |  |
| 2020-02-12_16:15                         | 75       | 2020-02-12 16:18:15 |  |  |  |
| 2020-02-12_16:5                          | 4        | 2020-02-12 16:06:57 |  |  |  |
|                                          | 4        | 2020-02-12 16:01:16 |  |  |  |
|                                          |          |                     |  |  |  |

|                  | Test Duration with Fir | nish Time           |
|------------------|------------------------|---------------------|
| run ~            | Duration               | Test Finish Time    |
| 2020-03-21_23:00 | 100                    | 2020-03-21 23:05:00 |
| 2020-03-21_22:55 | 160                    | 2020-03-21 23:01:20 |
| 2020-03-21_22:50 | 300                    | 2020-03-21 22:55:30 |
| 2020-03-21_22:45 | 100                    | 2020-03-21 22:49:00 |
| 2020-03-21_22:10 | 100                    | 2020-03-21 22:12:30 |
| 2020-03-21_22:05 | 10                     | 2020-03-21 22:08:40 |
| 2020-03-21_21:50 | 50                     | 2020-03-21 21:51:30 |
| 2020-02-12_21:50 | 10                     | 2020-02-12 21:50:40 |
| 2020-02-12_16:15 | 70                     | 2020-02-12 16:18:10 |
|                  |                        |                     |
|                  |                        |                     |
|                  |                        |                     |

### При OUTER JOIN колонок Duration и Total потеряется колонка Time



#### Но можно будет легко посчитать среднее значение RPS по тесту



|                  |        |       |        |      |          | аолиц<br>тесто      | у для<br>в                  | выбо       | pa      |
|------------------|--------|-------|--------|------|----------|---------------------|-----------------------------|------------|---------|
|                  | ок     | КО    | Total  | Mean | Duration | Mean / median(Mean) | Duration / median(Duration) | OK / Total | KO / To |
| 2020-02-03_15:50 | 168024 | 72012 | 240036 | 66   | 229      | 3115%               | 297.4%                      | 70.00%     |         |
| 2020-01-31_21:15 | 7      | 3     | 10     | 25   | 1        | 1172%               |                             | 70.00%     | 111111  |
| 2020-01-31_16:20 | 84014  | 36006 | 120020 | 2.0  | 79       | 96.00%              | 102.6%                      | 70.00%     |         |

\*\*\*\*\*\*\*\*\*\*

....

2020-01-31\_15:30

2020-01-30\_23:16

2020-01-30\_16:16

2020-01-29\_20:32

2020-01-29\_20:09

2020-01-29\_20:05

2020-01-29\_20:02

2020-01-29\_19:58

2020-01-29\_18:19

2020-01-29\_18:16

2020-01-29\_18:08

2.3

2.6

2.3

2.1

2.6

#### В которой хотелось бы иметь ссылки для перехода к детальным отчетам



- 1. Подход к разработке мониторинга
- 2. Инструменты для нагрузки и InfluxDB
- 3. Подготовка окружения разработчика
- 4. Делаем много баз данных и выбор баз
- 5. Фильтрация списков тегов
- 6. Кеш InfluxQL в Variable и отклонения
- 7. Сложные таблицы в Grafana и % успехов
- 8. Длительность теста и колонка Time
- 9. Переход к отчёту по ссылке
- 10. Демонстрация



#### Переход к детальному отчёту по ссылке

#### В Grafana можно осуществлять переход на указанное время from / to

Controlling time range using URL

Time range of a dashboard can be controlled by providing following query parameters in dashboard URL:

- from defines lower limit of the time range, specified in ms epoch
- to defines upper limit of the time range, specified in ms epoch

#### В Grafana можно осуществлять переход на указанное время from / to

Controlling time range using URL

Time range of a dashboard can be controlled by providing following query parameters in dashb

- from defines lower limit of the time range, specified in ms epoch
- to defines upper limit of the time range, specified in ms epoch.

### В Grafana можно осуществлять переход на время time±time.window/2

Controlling time range using URL

Time range of a dashboard can be controlled by providing following query parameters in dashboard URL:

- from defines lower limit of the time range, specified in ms epoch
- to defines upper limit of the time range, specified in ms epoch

### В Grafana можно осуществлять переход на время time±time.window/2

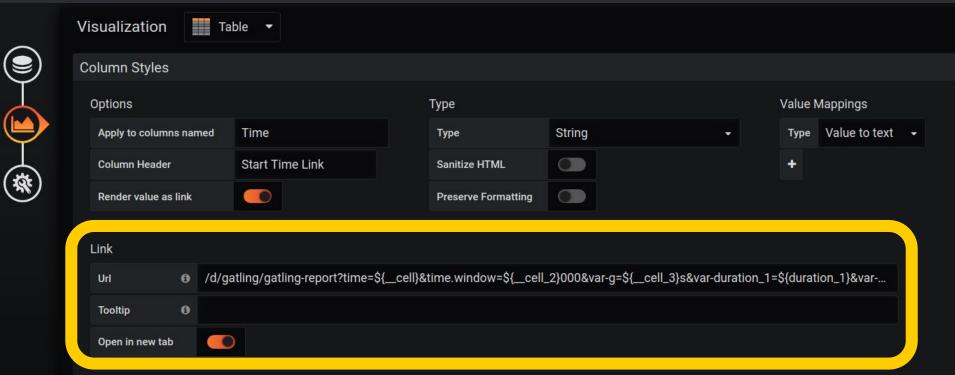
Controlling time range using URL

Time range of a dashboard can be controlled by providing following query parameters in the last local

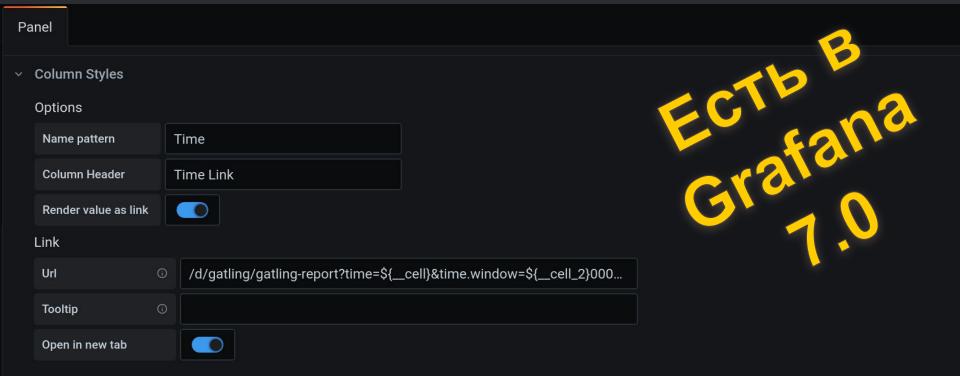
- from defines lower limit of the time range, specified in ms epoch
- to defines upper limit of the time range, specified in ms epoch
- time and time.window defines a time range from time-time.window/2 to pine.window/2

  Both params should be specified in ms. For example ?time=1500000000000000ktime indow=10000 vill result in 10s time range from 1499999995000 to 15000000005000

# Hужна Duration\*2 (для time.window/2) в конце теста (для time)


Controlling time range using URL

Time range of a dashboard can be controlled by providing following query parameters in dashboard URL:


• **from** - defines lower limit of the time range, specified in ms epoch

grafana.com/docs/grafana/latest/reference/timerange/#controlling-time-range-using-url

## И механизм превращения ячеек таблицы в гиперссылки на отчеты



# И механизм превращения ячеек таблицы в гиперссылки на отчеты



И механизм превращения ячеек таблицы в гиперссылки на отчеты

| Panel                |                                     | - AHP                            |
|----------------------|-------------------------------------|----------------------------------|
| ∨ Column Styles      |                                     | ana.                             |
| Options              |                                     |                                  |
| Name pattern         | Time                                | C, ata                           |
| Column Header        | Time Link                           | C.Y.O.                           |
| Render value as link |                                     |                                  |
| Link                 |                                     |                                  |
| Url                  | /d/gatling/gatling-report?time=\${_ | _cell}&time.window=\${cell_2}000 |
| Tooltip              | D                                   |                                  |
| Open in new tab      |                                     |                                  |

#### MERGE в Grafana 5.2+:

- сохраняет первый time
- 2, 3, ... time уже ключевые
  - о их удобно сбросить в 0

grafana.com/docs/grafana/v5.2/features/panels/table \_panel/#merge-multiple-queries-per-table

### Ho в старых версиях Grafana можно составить ссылку для ячейки

```
/d/gatling/gatling-report?

time=${__cell}&

time.window=${__cell_2}&

var-run=${__cell_1}&

var-simulation=${simulation}&

var-loadstation=All&
```

# А новой версии Grafana 7.0 можно открывать доски созданные ранее

```
#!/bin/sh -x
docker pull grafana/grafana:6.7.2
DIR="$(pwd)"
ID=\$(id -u)
docker run --name=grafana672 \
 --network=test --user $ID -p 3672:3000
 -v $DIR/grafana.ini:/etc/grafana/grafana.ini \
 -v $DIR/provisioning:/etc/grafana/provisioning \
 grafana/grafana:6.7.2
```

```
А новой версии Grafana 7.0 можно
открывать доски созданные ранесс
#!/bin/sh -x
docker pull grafana/grafana:6.7.2
DIR="$(pwd)"
ID=\$(id -u)
docker run --name=grafana672 \
 --network=test --user $ID -p 3672:3000
 -v $DIR/grafana.ini:/etc/grafana/grafana.ini
 -v $DIR/provisioning:/etc/grafana/provisioning \
 grafana/grafana:6.7.2
```

### Обход потери функциональности за счёт обратной совместимости

- 1. Запустим в Docker Grafana 6.7.2
- 2. Создадим таблицу в Grafana 6.7.2
- 3. Выгрузим доску в JSON
- 4. Запустим в Docker Grafana 7.0
- 5. Импортируем доску в Grafana 7.0
- 6. Доработаем доску не меняя старое

- 1. Подход к разработке мониторинга
- 2. Инструменты для нагрузки и InfluxDB
- 3. Подготовка окружения разработчика
- 4. Делаем много баз данных и выбор баз
- 5. Фильтрация списков тегов
- 6. Кеш InfluxQL в Variable и отклонения
- 7. Сложные таблицы в Grafana и % успехов
- 8. Длительность теста и колонка Time
- 9. Переход к отчёту по ссылке
- 10. Демонстрация



### Демонстрация

#### Демо-стенд проекта







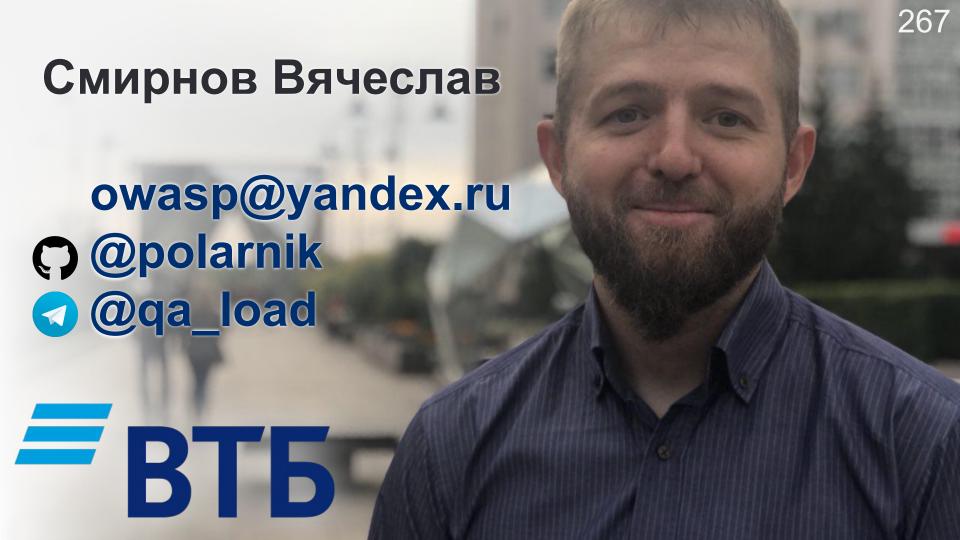
http://84.201.161.113:3000

#### Исходные коды проекта








github.com/polarnik/ gatling-grafana-dashboard

### Сообщество @qa\_load







