
Faster, Cheaper, Leaner:

Horizontally Scaling a CI Pipeline

Yorgos Saslis, Software Delivery Engineer

Michal Cichra, Principal Software Engineer

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.2

CI is a production workload

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.3

Customers?

Yes, you!

YOU!

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.4

Maintain Flow

CI should sustain flow. Not get in its way.

where are your manners?

yorgos
saslis

Community

OSS
Automation

Maintainability

Open Source  
API Management

a bit of history…

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.9

Important milestones
3scale Timeline

3scale founded

‘16
3scale acquired
by Red Hat

‘07

3scale fully open source!

‘18

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.

Open Source projects need CI
All projects need CI. OSS projects need it more!

10

Hmmm interesting
project…
But I just need this
extra feature!!

Maybe I can open a
pull request…
But how will I know I
didn’t break anything
with my PR ?

Aha!!
There are a
bunch of checks
on every PR that
will protect me!

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.11

Contributing can be daunting

•Daunting task
•especially for new contributors
•CI helps lower the barrier-to-entry

What does
CI

for a closed source project
look like?

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.

Single Jenkins Master
EC2 Cloud plugin for provisioning workers

13

Jenkins master provisioning
automated through Makefiles

+ terraform

Job DSL for jenkins jobs in
another github repository.

SCM Sync plugin used to
persist jenkins configuration “as
code”, in a github repository.

“HA” not so necessary…

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.14

Get the whole idea

(main component)

Other Important Figures

5 person team

Open PRs per day
2-3

builds per day
10-20

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.15

Auto-scaling (both up and down to reduce costs when not used)
Jenkins Worker Nodes

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.16

For “warm” build
Build Time

~15 minutes

~11 hours
CPU time 45 vCPUs

90GB RAM

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.17

How do we fit
11 hours

into…
15 minutes?

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.18

Bending Space-Time

NOT
(yet…)

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.19

Homegrown parallelization
Test suite Parallelization

EC2 machine
Jenkins executor Jenkins executor

Lint code

Run JS tests

Run Cucumber 
JavaScript only

Run Cucumber 
no JavaScript

Run API Spec

Run Ruby
unit tests

Run Ruby
integration tests

Run Cucumber
for billing only

executors6
for one build

tasks15
manually split

languages4
to understand  
(Groovy, Ruby, Shell, Make)

Test Parallelisation

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.21

Parallelising Test Execution

Separate test phases

 tests within phase
vs.

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.22

Separate Test Phases

Usually depending on:
how long tests take
what environment they run in
(how expensive)

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.23

Separate Test Phases

Commit-phase (5-10min)“Fast” (seconds) Nightlies (hours)

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.24

Parts of same test phase, in parallel
Multiple processes responsible for each running some part of the test suite,
aggregating results at the end

Group I

Group II

Group III

Group IV

…but how to group, such that they all end at the same time?

One of those rare
moments in life when…

WE CAN FIX SOME TECH DEBT!

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.26

Almost never empty.

Jenkins AWS Plugin did spin up new
nodes, but:

 new worker nodes took ~5 minutes just
to be provisioned (EC2 + user-data)
 max 7 EC2 instances (4xlarge)
 one build took up several EC2 instances
 Jenkins EC2 cloud plugin scaled up by
one at a time
 Typical for cold builds to take > 30 mins

Problem 1: Build Queues
(during working hours)

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.27

False positives
Problem 2: Random test failures

ONEAt least failure per day,
not related to actual changes made. Overcome by always rerunning

 pipeline on failure. FULL
2-3 runs necessary for
build to pass some times.

BAD for team
confidence in test suite. MORE delays…

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.28

Devs are expensive. Devs rely on CI. Therefore, CI is a prod system.

Hosting own CI is like hosting any
other production system.
You need to maintain it, test before
making changes to it and ensure it is
up and running.
Any degradation of the service can
block the whole team including
production deploys.
Preparing staging environment for
verifying any Jenkins core or plugin
updates can cost a lot of time.
It felt like security updates happen
almost weekly.

Problem 3: Jenkins maintenance

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.29

Growing concern, especially as team was expected to grow
Problem 4: AWS Costs

EUR / month (just for AWS)~2.5K
Total Costs =
 AWS Costs +
 Maintenance costs +
 Dev team slow-down

Choosing our CI

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.31

Our shopping list

external contributors should be able to see if their build failed and why!

Builds from forks should be possible
but not billed on Red Hat (abuse cases in the past)

Publicly accessible build information

Concerns

Builds from 3scale team as fast as possible
(willing to pay for that)

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.32

We need to give contributors an easy way to run the test suite
Upstream CI options

Hybrid

Public CI
OR

OR

It’s all about
Developer Experience…

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.34

No account needed to access build information.

Accessible right from the GitHub pull request, to dive into detail

Public Build Info - Smooth DX

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.35

Remember: it is a production system!
No more maintaining CI server!!

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.36

Pipeline only starts from segment that failed.
No waiting around, no billing for re-running same segments.

Rerun from failed stage

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.37

SSH to container that is running builds (allows us to get builds passing much
faster)

Bring up the environment to debug the failing build in just a couple of mins

Debug CI failures

…and price!

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.39

It is cheaper because of better resource usage.

Using a fleet of short lived containers is better than VMs

Price

2.5K
EUR vs 1.2K

EUR

Let’s get back to
parallelisation…

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.41

How do we parallelize our tests?

If we have to run
${numberOfTests = 1022}

tests,
how do we split them

into
${numberOfContainers = 40}

containers?

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.42

How do we parallelize our tests?

• Alphabetical
• Statically grouped

• maven phases
• JUnit Categories
• filesystem directories
• …

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.43

Wouldn’t it be great if we knew
how long each test takes?

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.44

Helps orchestrate your test workload, to run in parallel

extract from `.circleci/config.yml` showing how cucumber tests are split

Split by timings

https://circleci.com/docs/2.0/parallelism-faster-jobs/#using-the-circleci-cli-to-split-tests
http://docs.shippable.com/ci/running-parallel-tests/

https://circleci.com/docs/2.0/parallelism-faster-jobs/#using-the-circleci-cli-to-split-tests
http://docs.shippable.com/ci/running-parallel-tests/

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.45

Helps orchestrate your test workload, to run in parallel

extract from `.circleci/config.yml` showing how cucumber tests are split

Split by timings - but how?

-	run:	
				name:	Run	cucumber	tests	
				concurrency:	40	
				command:	|	
					bundle	exec	cucumber	$(circleci	tests	glob	“features/**/*.feature"	\	

					|	circleci	tests	split	—split-by=timings)	

2 levels of parallelism

Tradeoffs

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.

Nothing comes without sacrifice…

48

Costs

$$

Less configurable

than Jenkins

External

Dependency
Not fully Open

Source Software

Not

OSS

Enough about CI.
Let’s talk about tests!

flaky tests

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.51

If we rely on state for some tests, ensure it’s done properly.

Some tests that rely on bringing the
System-Under-Test (SUT) into some
“known” state - then running against
that - don’t clean up after themselves

properly.

BRINGING INTO KNOWN STATE 
ONLY COVERS SOME PARTS

E.g. if we rely on database for state,
we didn’t restore a full database
backup before every test (slow),

rather we just modified some records
in DB — but this does not ensure

known state is what we expect it to
be.

LEFT-OVER STATE
FROM PREVIOUS TESTS

Dirty State

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.

Reliance on other tests
Symptom: tests only pass if other tests have ran before them.

52

SomeFirstTest SomeSecondTest SomeThirdTest

Example: `SomeThirdTest` passes only when it happens to run after
`SomeFirstTest` and `SomeSecondTest`

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.53

Discover randomly failing tests early

Execute your tests in
random order.

Verify you can rerun
with the same seed.

Excercise

Run them 10 or 100
times a day if possible.
Not only on merge or

pull requests.

Measure

Record test failures
and times in machine

readable format (JUnit,
TAP, ...)

Randomize

Tips how ensure test reliability

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.54

The process we followed to identify problematic tests whenever a “random”
failure occurred.

Run the batch of failing
tests and reproduce

the failure.

Bisect

Split the test batch in two.
Run only half of the tests.

Repeat

Go back to reproducing with
just half of the tests.

Repeat until there are just
two.

Reproduce

Steps to debug test order dependencies

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.55

Not enough focus on test codebase:

* parallelizable
* reliable
* independent of each other

“The 13th factor: Tests”

dependencies caching

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.57

Shave minutes off the build by avoiding to download from the internet

Use transitive dependency locking (Gemfile.lock, package-lock.json,
Gopkg.lock, …)

* can be the same across builds
* no point running in “next” build if hasn’t changed from “previous” build
* use some cache

Try to use all CPU cores when installing dependencies.

External dependencies

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.58

Avoid reinstalling if they didn’t change since the last build

External dependencies

Commit

Commit

Commit

Commit

Commit

Commit

Commit

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.59

Don’t reinstall for each group. (don’t run `mvn clean verify` in each group…)

External dependencies

Group I

Group II

Group III

Group IV

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.60

Artifacts used inside the build

For example transpiled assets, bundling, optimizing images, etc.

Internal dependencies

The Future of CI/CD

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.62

CI != CD
• CI has very different needs than CD

• Most deployments are usually simple
• …compared to orchestrating the optimal, parallel execution

of a test suite

• CI should only care about executing the tests, as fast as
possible

• CI is a production workload with very predictable patterns
• …unlike other production workloads

• CI should focus on Test, not on Pipeline

Next-gen CI
(+ Tests) =

Results

Yorgos Saslis / @gsaslis, Michal Cichra / @mikz — 3scale API Management — Red Hat.

Dynamic test allocation
Optimising test suite parallelisation

64

Nodes pull more tests to run, when idle
Nodes get pushed a
pre-allocated set of tests
at start of test run

Versus

<3

your

tests!

Thanks for
your attention!

Yorgos Saslis - @gsaslis

Michal Cichra - @mikz

github.com/3scale/porta

http://github.com/3scale/porta

