
How Domain-Specific Languages
Improve Software Quality

voelter.de
voelter@acm.org
@markusvoelter

2021

Dr. Markus Völter



Subject Matter Experts are 2nd class
The Problem



Subject matter experts, or SMEs, own the 
knowledge and expertise that is the backbone 
of software.

But too often this rich expertise is not captured 
in a structured way and gets lost when 
translating it for software developers who then 
analyze, interpret and understand it before 
writing code.

With the rate of change increasing, time-to-
market shortening and product variability 
blooming, this approach is increasingly 
untenable. It causes delays, quality problems 
and frustration for everybody involved. 

We advocate for adopting a mindset that puts 
subject SMEs directly in control of "their" part of 
the software and lets developers focus on their 
core skill, software engineering. 

Here is how we achieve it:

DSLs for SMEs

Automate DSL to 
code transformation

Let devs build DSLs,
IDEs, trafos and 
robust platforms



Here is how we achieve it:

DSLs for SMEs

Automate DSL to 
code transformation

Let devs build DSLs,
IDEs, trafos and 
robust platforms

SUBJECT
MATTER
FIRST!



Here is how we achieve it:

DSLs for SMEs

Automate DSL to 
code transformation

What does this mean for Let devs build DSLs,
IDEs, trafos and 
robust platforms

SOFTWARE QUALITY



Tax, Healthcare, Systems Engineering
Examples 



Tax Calculation

https://youtu.be/q56wzLQkEho
Video von der OOP 2021

Iterate over lists, count, sum
Monthly and yearly data structures
Time series and operations on them (Kf TT)
Queries in order to construct derived data
Data tables for parameter sets

+

10,000 fields and formulas
1,000 validation rules
100 SMEs
10 years back
significant yearly changesStructure oriented 

along the legal text



Salary Calculation
http://voelter.de/data/pub/PayrollDSL.pdf

Buchkapitel Case Study

Percent Types

Currenty Types

Decision Tables



Digital Therapeutics
http://voelter.de/data/pub/M

PS-in-Safety-1.0.pdf
Paper im

 SoSym
 Journal

dozens of treatmets
apps per year



Social Insurance
Mix between form style and
„real“ language.

Yellow parts are scaffolding
and cannot be removed.





(Software)
Product

End Users
Tax Advisors

Patients
Regular Folks

End User LevelSoftware Dev Level
Subject 
Matter 
Experts

Doctors
Tax Experts

Meteorologists

Code 
GenerationPlatformSoftware 

Engineers

Subject Matter

SME Tool

Big Picture: How does knowledge get into software

Software
(Language)
Engineers

Tool Development

Subject 
Matter

Gurus :-)
Domain

Expertise

Meta meta 
Level

Language
Workkbench

Builders

Domain Level





Big Picture: How does knowledge get into software





Useful for the following Domains



Useful for the following Domains

Large and 
complicated 

subject matter

Experts that 
understand the 
subject matter

High rate of change 
within the domain

Long-lived domain 
or large variety 
within domain

Insurance  [Product Definition]

Healthcare [Treatment algorithms]

Public Administration [Tax, Public Benefits]

Law and Legal [Contract Modeling]

A CAD program for the knowledge worker
A compiler for requirements





Tachographs

Testing



Direct Execution
in the MPS IDE

Intuitive capture of relevant 
data constellations and test expectations

Automatic derivation
of test structure 

from calculation schema

Automated coverage measurement 
for models and languages

+
Testing



Tracing in the IDE
Overlay of values

over the calcualtion
schema

Testing



Workflows 
Teams, Generation and DevOps



Subject Matter Workflow
Specification and test
of calculation rules

Technical Workflow

De
sc

rib
e

Te
st

Re
vi

ew

Un
te

rs
ta

nd

Efficient and high-quality 
implementations for data center
and on-premise apps

Models IDE
Languages

Generators
Interpreters

Tests



Subject Matter Workflow
Specification and test
of calculation rules

Technical Workflow

Collaboration
based on well-defined
and executable artifacts

De
sc

rib
e

Te
st

Re
vi

ew

Un
te

rs
ta

nd

Efficient and high-quality 
implementations for data center
and on-premise apps

Models IDE
Languages

Generators
Interpreters

Tests



02.04.21Seite 25DevOps Perspective



Quality 
Why DSLs help with software quality



Direct “programming“ by SMEs avoids misunderstandings



Higher Level of Abstraction avoids low-level errors
x x

 x x
 x x

 x 
x x

 x x
 x x

 x 
x x

 x x
 x x

 x 



Abstraction and Notation helps with Reviews



Simulators allow SMEs to “play“ with stuff



SM-level analyses are much easier to build

Pre- and postconditions of function-like things are always met.

For all possible program executions, a dangerous state never occurs.

There’s a resource contention betw. resources X and Y in scenario Z.

Not all security risks have been discharged through a mitigation.

There are tax values declared as public, but they are never used.

The fault X is propagated from A to B but B does not handle it.

In your decision tree, the following alternative is not handled.

The attack scenario X is classified HIGH RISK, but there‘s no mitigation.

You cannot add a temporal value and a scalar value.



Devs freed from SM details can focus on platforms
Automatic translations capture idioms and patterns



Devs freed from SM details can focus on platforms
Automatic translations capture idioms and patterns



Devs freed from SM details can focus on platforms
Automatic translations capture idioms and patterns



Separation of SM and technology avoids legacy problem

Subject 
Matter

Technical
Stuff

Software

informal

„programming“

formal
the only thing that survives

and is maintained and evolved

Subject 
Matter

Technical
Stuff

Software

so what do you do when you want to 
run that subject with new technology?

unscram
ble?



Separation of SM and technology avoids legacy problem

Subject 
Matter

Technical
Stuff

Software

informal

„programming“

formal
the only thing that survives

and is maintained and evolved

Subject 
Matter

Technical
Stuff

Software

so what do you do when you want to 
run that subject with new technology?

Subject 
Matter

Technical
Stuff

Software

formal

formal +
automated

disposable

these now survive and are
maintained and evolved



Safety 
How to build reliable generators



Models IDE

Languages
Generators

Interpreters
C DLLsJava Services

...

Semantic Redundancy for Assurance

Technical Workflow
Efficient and high-quality 
implementations for data center
and on-premise apps



Models IDE

Languages
Generators

Interpreters

Expressivity Experimentation

Testing Static Semantics
Testing Execution Semantics

(Grammar/Parser Testing)

How do you test languages?

http://voelter.de/data/pub/MPS-in-Safety-1.0.pdf
Paper in SoSym Journal



Digital Therapeutics

Healthcare Domain
Safety Critical



What good is all the abstraction if we cannot 
trust the translation to the implementation?
System Architecture

What good is all the abstraction if we cannot 
trust the translation to the implementation?



What good is all the abstraction if we cannot 
trust the translation to the implementation?
System Architecture & Safety Standards

Tools may introduce additional systematic errors if faulty. 
Safety standards require reliable mitigation of such errors.

DO-178C           EN50129           IEC62304           ISO26262



What good is all the abstraction if we cannot 
trust the translation to the implementation?
System Architecture & Safety Standards

Tools may introduce additional systematic errors if faulty. 
Safety standards require reliable mitigation of such errors.

DO-178C           EN50129           IEC62304           ISO26262

Good Abstractions 
Good Notations      
Simulation
Testing

=> Checking
=> Review
=> Experimentation
=> Trust



Unqualified Tools!
What good is all the abstraction if we cannot 
trust the translation to the implementation?



Redundancy
catch errors in redundant path
while reducing manual effort.

Automated

+ specific risk mitigations

End-to-end testing required.
How to do this without exploding effort?

Unqualified Tools!





+ Risk Analysis   + Mitigations

Model the Algo/System with the DSL and also 
model the tests/verification. Then translate both
and execute on the level of the implementation.

Modeling Architecture



Risk Analysis



Mitigations – Safe Modeling Architecture



Mitigations – Safe Modeling Architecture

use redundant execution on two execution engines
use different developers for the two trafos
review a subset of the generated code
clearly define and QA the DSL
to use fuzzing on the tests
ensure high coverage for the tests
run the tests on the final device
perform static analysis on the generated code
perform penetration testing on the final system
and use architectural safety mechanisms.



Mitigations – Safe Modeling Architecture

use redundant execution on two execution engines
use different developers for the two trafos
review a subset of the generated code
clearly define and QA the DSL

to use fuzzing on the tests
ensure high coverage for the tests
run the tests on the final device
perform static analysis on the generated code
perform penetration testing on the final system
and use architectural safety mechanisms.

only these specific to DSL use





use redundant execution on two execution engines

Lots of overhead? Not really.

C++ interpreter on device
In-IDE Java Interpreter

Validation: the in-IDE interpreter is used for interactive
testing, exploration, understanding, simulation. HCP‘s 
single-most appreciated use of the models!
Verification: addresses unrelated but compensating, as well 
as related errors in the transformations. Does not rely on 
trafo engine, so finds error in it. It‘s also simple (!fast), so acts
as a specification.

Mitigations – Safe Modeling Architecture



100% line coverage regarding language structure, Java 
interpreter and C++ interpreter 

Validation Effort Reduction from 50 PD to 15 PD

Test Setup Effort reduced by a factor of 20

Shortened Turnaround for req -> impl -> write tests -> 
execute tests b/c of much better tool integration

„Tremendous Speedup“ for changes to algo after it has
been validated – automatic reexecution of everything.

Two reference Algos, 305 test cases for Bluejay, 297 for 
Greenjay, plus lower-level tests for decision tables and trees

Test Stats and other Numbers



http://voelter.de/data/pub/MPS-in-Safety-1.0.pdf



Meta 
How to build the languages, IDE and generators



(Software)
Product

End Users
Tax Advisors

Patients
Regular Folks

End User LevelSoftware Dev Level
Subject 
Matter 
Experts

Doctors
Tax Experts

Meteorologists

Code 
GenerationPlatformSoftware 

Engineers

Subject Matter

SME Tool

Big Picture: How does knowledge get into software

Software
(Language)
Engineers

Subject 
Matter

Gurus :-)
Domain

Expertise

Meta meta 
Level

Language
Workkbench

Builders

Domain Level

Tool Development



Language Workbenches

Tools for building 
languages

and their IDEs



Language Workbench

Open Source Language Workbench
from

Projectional Editor that supports
a wide variety of notations

Robust support for language
modularity and composition

Support for all relevant language aspects:
Structure • Editor • Type System • Constraints • Intentions 
Refactorings • Interpretation • Code Generation
Code Completion • Find References •  Goto Definition
Version Control • Diff/Merge ...

Really not your Daddy‘s Parser Generator!



Language Workbench



Growing a DSL on top of KernelF

n Robust existing language and interpreter
n Initial "Demoware" very quick
n Good foundation for wow-features (Tables, Visualization)
n „Trap door“ for complex exceptions
n Step-wise DSL-ification

Functional
KernelF

Primitive Types and Literals • Basic Operators • Conditionals • Decision Tables and Trees • 
Lists • Records • Dates • Temporale Types • Functions • Constants • Test Cases • 
Interpreter • Coverage Analyzer • etc.

https://github.com/IETS3/iets3.opensource
https://build.mbeddr.com/overview.html



Functional
KernelF

Domain-specific Abstractions
Declarative

KernelF concepts 
you don‘t need

Additions
Replacements
(Declarative)

Growing a DSL on top of KernelF



Functional
KernelF

Growing a DSL on top of KernelF



Language Architecture and Sizes



Wrap Up



MPS
http://jetbrains.com/mps

KernelF
https://github.com/IETS3/iets3.opensource

Artikel: Why DSLs? A collection of anecdotes
https://www.infoq.com/articles/why-dsl-collection-anecdotes

Paper: Fusing Modeling and Programming into Language-Oriented Programming
http://voelter.de/data/pub/markusvoelter-ISOLA2018-final.pdf

Paper: The Design, Evolution and Use of KernelF
http://voelter.de/data/pub/kernelf-icmt.pdf

Video/Presentation: Build your own Language: Why & How? 
https://www.youtube.com/watch?v=9BvpBLzzprA

Video/Presentation: Language-oriented Business Applications
https://voelter.de/data/presentations/voelter-splash-i-LOBA.pdf

Things to read and watch



Dr. Markus Völter

2021

Use DSLs to allow SMEs to contribute directly.

Direct SME input and easier validation will improve SM quality.

Software engineers build languages, IDEs, platforms and trafos.

Translate DSL models to code on top of platforms.

Platforms + Transformations will reduce/avoid low-level errors.

Maintain these artifacts instead of the final software product.

Use language workbenches like MPS or Xtext for meta tooling.

Enjoy work (more) :-)

Things to remember


