
How to Mock it?

Open Source Examples of Unit Tests for

a Jenkins Shared Library

Lisa Ranjbar, Emilio Reyes,

Ernesto Ojeda

Introduction

© 2020 All Rights Reserved. 3

• An open source, vendor neutral
project (and ecosystem)

• A microservice, loosely coupled
software framework for IoT edge
computing

• Hardware and OS agnostic
• Started in 2017

https://www.edgexfoundry.org/

About EdgeX Foundry

https://www.edgexfoundry.org/

© 2020 All Rights Reserved. 4

• Opinionated Jenkins Shared Library for EdgeXFoundry
• Backbone of the Jenkins pipelines for EdgeXFoundry
• Open Source
• Active Development

https://github.com/edgexfoundry/edgex-global-pipelines

About edgex-global-pipelines

https://github.com/edgexfoundry/edgex-global-pipelines

© 2020 All Rights Reserved. 5

• Jenkins Shared Libraries can have global scope
• Functions should be reused in a large number of Jenkins jobs
• Without automated tests you still have to regression test!
• Having automated tests will help you find regressions faster.
• Enables faster development of features for your Jenkins Shared Library

Why Unit Test Your Jenkins Shared Library?

© 2020 All Rights Reserved. 6

• Initial code base had limited test automation
• Continuously building new features
• Delivering a simple interface for developers

to use in Jenkinsfiles
• Required extensive regression testing to

facilitate future iterations
• We needed something to help us build

Continuous Confidence

Starting point for edgex-global-pipelines

Example Jenkinsfile:

© 2020 All Rights Reserved. 7

• Extension of the Spock Framework for Jenkins Pipelines
• Supports common testing flow: setup, expect, when, then, etc
• Facilitates automatic mocking of core Jenkins steps and Jenkins Plugins steps
• Supports Jenkins Shared Libraries
• Groovy based

https://github.com/ExpediaGroup/jenkins-spock

Jenkins-Spock Framework

https://github.com/ExpediaGroup/jenkins-spock

© 2020 All Rights Reserved. 8

Jenkins-Spock Framework cont.

• loadPipelineScriptForTest()
• getPipelineMock()

– Stub out interactions between functions

• getBinding()
– We use this to set environment variables

• explicitlyMockPipelineVariable()
– Mock another custom pipeline function in your

library

• explicitlyMockPipelineStep()
– Mock Pipeline step from a Jenkins plugin

• First level bullet, Arial 24pt
• Line spacing 0.95, before paragraph

12pt
• Left justified
• Sentence case
• First level bullet color is accent 1

– Second level Arial 18pt
– Line spacing 0.95,

before paragraph 6pt

Mocking Best Practices

© 2020 All Rights Reserved. 10

• Allow Jenkins-Spock to automatically mock Pipeline Steps
– sshagent(credentials: [...])

• Error: java.lang.IllegalStateException: There is no pipeline step mock for [sshagent]
– Always add Jenkins Plugins as dependencies to Maven/Gradle project

• Get Plugin ID for Step in Pipeline Steps: https://www.jenkins.io/doc/pipeline/steps/

• Search for Plugin ID in Maven Repository: https://mvnrepository.com/

• Add Plugin’s JAR as a project dependency
– org.jenkins-ci.plugins:ssh-agent:1.17@jar

– Eliminate the need of having to call explicitlyMockPipelineStep()

Mock Pipeline Plugins

https://github.com/edgexfoundry/edgex-global-pipelines/blob/master/build.gradle

https://www.jenkins.io/doc/pipeline/steps/
https://mvnrepository.com/
https://github.com/edgexfoundry/edgex-global-pipelines/blob/master/build.gradle

© 2020 All Rights Reserved. 11

• Enforce consistent pattern for getting and setting environment variables
– Use env.VARIABLE to get value
– Use env.VARIABLE = VALUE to set value - avoid using env.setProperty()
– Always fully qualify using env.
– Facilitate mocking by eliminating unnecessary mocks

• Environment variables are script variables
– Must be set using getBinding().setVariable()
– Env variables should be specified as a Groovy map

Mock Environment Variables

https://github.com/edgexfoundry/edgex-global-pipelines/blob/master/vars/edgeXSemver.groovy

https://github.com/edgexfoundry/edgex-global-pipelines/blob/master/vars/edgeXSemver.groovy

© 2020 All Rights Reserved. 12

Mock Environment Variables - Example
Source

Unit Test

© 2020 All Rights Reserved. 13

• Nested objects require explicit mocking
– docker.image(‘...’).inside()

• Error: java.lang.NullPointerException: Cannot invoke method inside() on null object

– Mock using explicitlyMockPipelineVariable()

– Expect and stub interactions using getPipelineMock()

Mock Nested Objects

https://github.com/edgexfoundry/edgex-global-pipelines/blob/master/src/test/groovy/edgeXNexusPublishSpec.groovy

https://github.com/edgexfoundry/edgex-global-pipelines/blob/master/src/test/groovy/edgeXNexusPublishSpec.groovy

© 2020 All Rights Reserved. 14

Mock Nested Objects - Example

Unit Test

Source

© 2020 All Rights Reserved. 15

• Method in one script calls method in another
– Shared Library may consist of multiple scripts
– Helper methods can be centrally located in a utils groovy script for DRY reasons

• Error: java.lang.IllegalStateException: There is no pipeline variable mock for [utils].
– Pipeline libraries and scripts are also variables
– Mock using explicitlyMockPipelineVariable()
– Expect and stub interactions using getPipelineMock()

Mock External Method Calls

https://github.com/edgexfoundry/edgex-global-pipelines/blob/master/src/test/groovy/edgeXSwaggerPublishSpec.groovy

https://github.com/edgexfoundry/edgex-global-pipelines/blob/master/src/test/groovy/edgeXSwaggerPublishSpec.groovy

© 2020 All Rights Reserved. 16

Mock External Methods - Example

Unit Test

Source

© 2020 All Rights Reserved. 17

• Method in script calls another method in same script
– Deliberate effort to develop small functionally cohesive methods

– Isolate method under test
– Mocking method call is complicated and doesn’t scale

– Unable to mock method in same script

• Workaround
– Create call graph for all methods in scriptA
– Create another script: scriptAU
– Methods in odd-numbered layers stay in scriptA, even-numbered layers move to scriptAU
– Use external method call mocking techniques

Mock Internal Method Calls

https://github.com/edgexfoundry/edgex-global-pipelines/blob/master/src/test/groovy/edgeXReleaseGitTagSpec.groovy

https://github.com/ExpediaGroup/jenkins-spock/issues/78
https://github.com/edgexfoundry/edgex-global-pipelines/blob/master/src/test/groovy/edgeXReleaseGitTagSpec.groovy

Unit Testing Setup

Jenkins-Spock, Gradle, etc...

© 2020 All Rights Reserved. 19

• Initial implementation was based off the jenkins-spock shared-library example
• Tests originally run with Maven
• pom.xml...so much xml
• Issues with dockerized builds
• Lacking features for fast local development

Running the tests… Getting Started

https://github.com/ExpediaGroup/jenkins-spock/tree/master/examples/shared-library

© 2020 All Rights Reserved. 20

• Overall speed improvements
• Better developer experience
• Gradle offers a lot of flexibility / extensibility
• Plugin support to get code coverage (potentially build our own)
• Unit test summary report

Running the tests… Migrating to Gradle

A good Maven vs Gradle comparison can be found here: https://gradle.org/maven-vs-gradle/

https://gradle.org/maven-vs-gradle/

© 2020 All Rights Reserved. 21

• Before and After Migration
– Maven: mvn clean test.

• 103 tests, 5 minutes on average to run

– Gradle: gradle clean test.
• 103 tests, 2 minutes on average to run

• Today
– 188 total tests, 3 minutes on average to run
– Use Gradle's --parallel. option with forking on Test tasks

Running the tests… Speed improvements

CI/CD for the Pipeline Library

Best practices for running on Jenkins

© 2020 All Rights Reserved. 23

Use of Docker for running unit tests

• Docker is used for running Gradle
tasks

• Optimizations
– Vanilla Gradle docker images can be used i.e.
.gradle:6.5.

– Recommended approach: Bundle dependencies
in custom base docker image

• Can save 1.5 - 2m downloading individual
dependencies

• docker pull takes about 16-20s for 602MB
image

...

stage('Test') {
agent {
docker {
image "edgex-devops/egp-unit-test:gradle"
args ...

}
}
steps {

sh 'gradle clean test --parallel'
...

}
}

see Jenkinsfile...

https://github.com/edgexfoundry/edgex-global-pipelines/blob/master/Jenkinsfile

Developer Experience

IDE Integration

© 2020 All Rights Reserved. 25

• Nice integrations for IDE, Eclipse/IntelliJ, etc.
• Run specific tests
• Run only failed tests
• Debug tests and step through code

https://www.jetbrains.com/idea/

IDE Integration

https://www.jetbrains.com/idea/

© 2020 All Rights Reserved. 26

IntelliJ IDEA Integration

© 2020 All Rights Reserved. 27

IntelliJ IDEA Integration

© 2020 All Rights Reserved. 28

IntelliJ IDEA Integration

© 2020 All Rights Reserved. 29

IntelliJ IDEA Integration

Conclusion

© 2020 All Rights Reserved. 31

• Jenkins-spock makes it easy to mock your pipeline steps
• Build continuous confidence in your shared pipeline libraries
• Ease of use and increased build velocity with Gradle
• IDE integration makes for a great development experience

https://github.com/edgexfoundry/edgex-global-pipelines

Conclusion

https://github.com/edgexfoundry/edgex-global-pipelines

