
Managing DevSecOps Pipelines at Scale

With the Jenkins Templating Engine

Steven Terrana

CDF Ambassador

Senior Lead Technologist at Booz Allen

SESSION NUMBER ARIAL

So You Want to Build a Pipeline

Let’s Talk About the Realities of Large-Scale Pipeline Development

© 2020 All Rights Reserved. 3

”Just draw the rest of the owl!”

Building a pipeline
for one application

Building a pipeline
for multiple applications

Building a pipeline
for multiple teams with
multiple applications

© 2020 All Rights Reserved. 4

Our First Pipeline: Getting Started

© 2020 All Rights Reserved. 5

Pipeline Orchestration Using Git Flow

DEVELOP

MAIN

FEATURE 1

FEATURE 2

Sprint 1 Sprint 2 Sprint 3
Future
Sprints

Main Branch
Known stable, fully integrated
product available for external
consumption including quality
control reviews

Development Branch
• 508 Compliance Scan
• Integration Tests

Code Review led by Team
Lead before merging into
Development branch

Feature Branches
• Definition of Done
• Unit Tests and Code Coverage
• Static Code Analysis
• OWASP Dependency Check

Each feature is developed as its
own feature branch and then
integrated into the Development
branch when it meets the Definition
of Done

Changes to these branches
trigger deployments to their
respective application
environments

© 2020 All Rights Reserved. 6

Test All The Things: Integrating .* Testing

Security Profile
Compliance

ENVIRONMENT PROMOTION
Production Readiness / Maturity

Select Story for
Development

Pull source
code from SCM

repo

Unit Test

Code Coverage

Build Container
Image

CVEs

Tag Image
with Git SHA

Publish Image

Static Code
Analysis

Functional
Testing

Regression
Testing

Integration
Testing

Download Build
Dependencies

Generate BOM Sign
Image

Development Test / QA Staging Production

Load
Testing

Soak
Testing

Validate Image
Signature

Validate
Runtime
Configs

Validate Image
Signature

Validate
Runtime
Configs

Validate Image
Signature

Validate
Runtime
Configs

Log
Aggregation

Resource
Utilization

Continuous
Runtime
Security

Scan Build
Dependencies

Accessibility
Compliance

Scan

Penetration
Testing

ACAS & HBSS
Scan

Fuzzing

DEPLOY TO
PRODUCTION

MONITORSYSTEM TESTINGDEPLOY TO STAGINGSYSTEM TESTINGDEPLOY TO TESTPUBLISH ARTIFACTSCAN ARTIFACTBUILD ARTIFACTTESTPLAN & DEVELOP

Scan Image

Challenges at Scale

Spoiler: Copying and Pasting Is Usually Bad

© 2020 All Rights Reserved. 8

Linear Scale, Exponential Pain

© 2020 All Rights Reserved. 9

What Causes This Pain?

Time

Creating a mature
DevSecOps pipeline
for an application can

take months.
Onboarding new

applications requires
manual intervention.

Complexity

Different types of
applications will utilize

different tools and
different teams may
leverage different

testing frameworks.

Standardization

Each application’s
source code repository
requires a Jenkinsfile,

making it difficult to
ensure common

processes are adhered
to.

Continuous
Improvement

Making a change to the
pipeline requires

changing Jenkinsfiles
distributed across

every branch in every
source code repository.

When writing pipelines, we often fail to separate the
business logic from the technical implementation

We have to duplicate our pipeline
definitions on a per-application basis

The Jenkins Templating Engine

Tool-Agnostic, Reusable Workflows. Modularized Libraries.

© 2020 All Rights Reserved. 11

Define Tool-Agnostic, Templated Workflows

© 2020 All Rights Reserved. 12

Define Tool-Agnostic, Templated Workflows

stage("Maven: Build"){
docker.image("maven").inside{

sh "mvn clean package"
}

}

stage('SonarQube: Static Code Analysis') {
node {

def scannerHome = tool 'SonarScanner 4.0’;
withSonarQubeEnv('My SonarQube Server') {

sh "${scannerHome}/bin/sonar-scanner"
}

}
}

Example Jenkinsfile for an application using Maven

stage(”Gradle: Build"){
docker.image(”gradle").inside{

sh ”gradle clean build"
}

}

stage('SonarQube: Static Code Analysis') {
node {

def scannerHome = tool 'SonarScanner 4.0’;
withSonarQubeEnv('My SonarQube Server') {

sh "${scannerHome}/bin/sonar-scanner"
}

}
}

Example Jenkinsfile for an application using Gradle

build()

static_code_analysis()

Pipeline Template

Regardless of what tools are being used, the flow remains the same.

© 2020 All Rights Reserved. 13

Reorganize

.
├── libraries
│ ├── maven
│ │ └── build.groovy
│ ├── gradle
│ │ └── build.groovy
│ └── sonarqube
│ └── static_code_analysis.groovy
└── pipeline-configuration

└── Jenkinsfile

Pipeline Configuration Repository

libraries{
maven
sonarqube

}

maven application

pipeline_config.groovy

libraries{
gradle
sonarqube

}

gradle application

pipeline_config.groovy

build()
static_code_analysis()

Pipeline Template

Jenkinsfile

void call(){
stage("Maven: Build"){

docker.image("maven").inside{
sh "mvn clean package"

}
}

}

void call(){
stage(”Gradle: Build"){

docker.image(”gradle").inside{
sh ”gradle clean build"

}
}

}

void call(){
stage('SonarQube: Static Code Analysis') {

node {
def scannerHome = tool 'SonarScanner 4.0’;
withSonarQubeEnv('My SonarQube Server') {

sh "${scannerHome}/bin/sonar-scanner"
}

}
}

}

Library Steps

© 2020 All Rights Reserved. 14

Library Parameterization

void call(){
stage('SonarQube: Static Code Analysis') {

// parse configuration
String scannerVersion = config.scanner_version ?: "SonarScanner 4.0"
String serverName = config.server_name ?: "My SonarQube Server"
Boolean enforceQualityGate = config.containsKey("enforce_quality_gate") ?

config.enforce_quality_gate : true

node {
def scannerHome = tool(scannerVersion)
withSonarQubeEnv(serverName) {
sh "${scannerHome}/bin/sonar-scanner"

}
}

timeout(time: 1, unit: 'HOURS') {
def qg = waitForQualityGate()
if (qg.status != 'OK') {
if(enforceQualityGate){
error "Pipeline aborted due to quality gate failure: ${qg.status}"

} else {
warning "Quality gate failure: ${qg.status}"

}
}

}
}

}

libraries{
maven
sonarqube{

scanner_version = “SonarScanner 3.0”
enforce_quality_gate = false

}
}

Library steps autowired with a config variable populated with
values from the pipeline configuration.

Libraries become reusable building blocks used
configure pipelines.

Libraries can parameterized to optimize reusability.

© 2020 All Rights Reserved. 15

Hierarchical Pipeline Configurations

libraries{
maven
sonarqube

}

maven application

libraries{
gradle
sonarqube

}

gradle application

libraries{
maven

}

libraries{
gradle

}

libraries{
merge = true
sonarqube

}

+

+

=

=

Inherited Pipeline
Configuration

Application-Specific
Pipeline Configuration

Aggregated Pipeline
Configuration

Real-World Example

Booz Allen’s Solutions Delivery Platform

© 2020 All Rights Reserved. 17

Advanced Template Walkthrough

on_pull_request to: develop, {

build()

application_dependency_scan()

static_code_analysis()

}

on_merge to: develop, {

deploy_to dev

penetration_testing()

}

on_merge to: main, {

deploy_to prod

}

common pipeline template
libraries{

github

docker

owasp_dependency_check

sonarqube

helm

owasp_zap

}

application_environments{

dev

prod

}

keywords{

main = ~/^[Mm]ain(line|)$/

develop = ~/^[Dd]evelop(ment|)$/

}

pipeline configuration

© 2020 All Rights Reserved. 18

on_pull_request to: develop, {

build()

application_dependency_scan()

static_code_analysis()

}

on_merge to: develop, {

deploy_to dev

penetration_testing()

}

on_merge to: main, {

deploy_to prod

}

common pipeline template
libraries{

github

docker

owasp_dependency_check

sonarqube

helm

owasp_zap

}

application_environments{

dev

prod

}

keywords{

main = ~/^[Mm]ain(line|)$/

develop = ~/^[Dd]evelop(ment|)$/

}

pipeline configuration

The github library
provides functionality

to map branching
strategies to different

pipeline activities

Advanced Template Walkthrough

© 2020 All Rights Reserved. 19

Advanced Template Walkthrough

on_pull_request to: develop, {

build()

application_dependency_scan()

static_code_analysis()

}

on_merge to: develop, {

deploy_to dev

penetration_testing()

}

on_merge to: main, {

deploy_to prod

}

common pipeline template
libraries{

github

docker

owasp_dependency_check

sonarqube

helm

owasp_zap

}

application_environments{

dev

prod

}

keywords{

main = ~/^[Mm]ain(line|)$/

develop = ~/^[Dd]evelop(ment|)$/

}

pipeline configuration

The functions take
regular expressions

as input variables that
we can abstract using

JTE’s keywords
functionality

© 2020 All Rights Reserved. 20

Advanced Template Walkthrough

on_pull_request to: develop, {

build()

application_dependency_scan()

static_code_analysis()

}

on_merge to: develop, {

deploy_to dev

penetration_testing()

}

on_merge to: main, {

deploy_to prod

}

common pipeline template
libraries{

github

docker

owasp_dependency_check

sonarqube

helm

owasp_zap

}

application_environments{

dev

prod

}

keywords{

main = ~/^[Mm]ain(line|)$/

develop = ~/^[Dd]evelop(ment|)$/

}

pipeline configuration

The docker library has
a build.groovy step.

There could also be
an npm, maven,

gradle, etc library that
implements a build

step for
interchangeability

© 2020 All Rights Reserved. 21

Advanced Template Walkthrough

on_pull_request to: develop, {

build()

application_dependency_scan()

static_code_analysis()

}

on_merge to: develop, {

deploy_to dev

penetration_testing()

}

on_merge to: main, {

deploy_to prod

}

common pipeline template
libraries{

github

docker

owasp_dependency_check

sonarqube

helm

owasp_zap

}

application_environments{

dev

prod

}

keywords{

main = ~/^[Mm]ain(line|)$/

develop = ~/^[Dd]evelop(ment|)$/

}

pipeline configuration

The OWASP
Dependency Checker
library implements a
step for application

dependency scanning

© 2020 All Rights Reserved. 22

Advanced Template Walkthrough

on_pull_request to: develop, {

build()

application_dependency_scan()

static_code_analysis()

}

on_merge to: develop, {

deploy_to dev

penetration_testing()

}

on_merge to: main, {

deploy_to prod

}

common pipeline template
libraries{

github

docker

owasp_dependency_check

sonarqube

helm

owasp_zap

}

application_environments{

dev

prod

}

keywords{

main = ~/^[Mm]ain(line|)$/

develop = ~/^[Dd]evelop(ment|)$/

}

pipeline configuration

The SonarQube
library implements a
step for static code

analysis

© 2020 All Rights Reserved. 23

Advanced Template Walkthrough

on_pull_request to: develop, {

build()

application_dependency_scan()

static_code_analysis()

}

on_merge to: develop, {

deploy_to dev

penetration_testing()

}

on_merge to: main, {

deploy_to prod

}

common pipeline template
libraries{

github

docker

owasp_dependency_check

sonarqube

helm

owasp_zap

}

application_environments{

dev

prod

}

keywords{

main = ~/^[Mm]ain(line|)$/

develop = ~/^[Dd]evelop(ment|)$/

}

pipeline configuration

The Helm library would
take configurations for

the location of the target
kubernetes cluster to
perform deployments

© 2020 All Rights Reserved. 24

Advanced Template Walkthrough

on_pull_request to: develop, {

build()

application_dependency_scan()

static_code_analysis()

}

on_merge to: develop, {

deploy_to dev

penetration_testing()

}

on_merge to: main, {

deploy_to prod

}

common pipeline template
libraries{

github

docker

owasp_dependency_check

sonarqube

helm

owasp_zap

}

application_environments{

dev

prod

}

keywords{

main = ~/^[Mm]ain(line|)$/

develop = ~/^[Dd]evelop(ment|)$/

}

pipeline configuration

The deploy_to step from
the Helm library takes

an application
environment from JTE
as an input parameter

© 2020 All Rights Reserved. 25

Advanced Template Walkthrough

on_pull_request to: develop, {

build()

application_dependency_scan()

static_code_analysis()

}

on_merge to: develop, {

deploy_to dev

penetration_testing()

}

on_merge to: main, {

deploy_to prod

}

common pipeline template
libraries{

github

docker

owasp_dependency_check

sonarqube

helm

owasp_zap

}

application_environments{

dev

prod

}

keywords{

main = ~/^[Mm]ain(line|)$/

develop = ~/^[Dd]evelop(ment|)$/

}

pipeline configuration

The OWASP ZAP
library performs

penetration testing

© 2020 All Rights Reserved. 26

Key Takeaways

• The Jenkins Templating Engine is a framework for developing tool-agnostic, templated workflows that can be
reused by multiple teams simultaneously – regardless of the tools they are using.

• This approach separates the business logic (pipeline template) from the technical implementation (pipeline libraries)
allowing teams to configure their pipelines instead of build them from scratch

Apply Organizational
Governance

By centralizing your pipeline
definition to a common place

you can standardize your
software delivery processes

across teams

Optimize Pipeline
Code Reuse

Create modularized tool-
integrations called pipeline
libraries that can be reused
and collectively maintained

Simplify Pipeline
Maintainability

Each application’s source
code repository requires a

Jenkinsfile, making it
difficult to ensure common
processes are adhered to.

What’s Next For JTE?

Great Things in the Pipeline J

© 2020 All Rights Reserved. 28

JTE v2.0

Get Involved!

Learn More and Get Involved!

© 2020 All Rights Reserved. 30

Get Started, Get Involved, Stay in Touch

@steven_terrana

steven-terrana

Read the Docs! Get Started With
Learning Labs!

Join the Gitter Channel

Questions?

