

y @weekstweets

Everyone has a software supply chain.

o

e Tonann® 7
s . Nyfactus®
Uppliet &o% «e’é‘(\%
™ o 9re Developmeﬂ‘ U
®N Source ProY® h/a S
: 9

rehous® | A
' “ o
Shed G°

. 09O
e
Ponent Repos™©

S oo
*Mware Applica™®”

y @weekstweets

faster is better
for the enterprise

ELITE PERFORMERS

Comparing the elite group against the low
performers, we find that elite performers have...

208

TIMES MORE

frequent code deployments

106

TIMES FASTER

lead time from
commit to deploy

2,604

TIMES FASTER

time to recover from incidents

B Throughput] stability

TIMES LOWER

change failure rate

(changes are */; as likely to fail)

Source: Accelerate: State of DevOps 2019

there would be
no need for security

faster Is better
for adversaries

Adversarial Tactic: Wait and Prey

March 7
Apache Struts releases ’
updated version to n March 13 MarCh 18
thwart vulnerability Okinawa Power India’s AADHAAR
CVE-2017-5638 Japan Post
| March 9 : _

Cisco observes "a high number —m April 13

of exploitation events." g India Post

March 8 March 10 December 17 Today

£ NSA reveals Pentagon

= Equifa
igg:f;;?gsn?; by W—_— quitax Monero Crypto Mining 65% of the Fortune 100
vulnerable Struts E3 canada Revenue Agency Hoilfeze vu\l/ré?;?cl)arlg

instances
u Canada Statistics

Struts exploit published
O sonatype to Exploit-DB. n GMO Payment Gateway 3 @weekstweets

2/ open source breaches in May

MARCH 12 APRIL 15 APRIL 29

Vulnerability found in F-secure informs SaltStack of 6,000 SaltStack publishes version
SaltStack open source publicly exposed Salt Masters at risk 3000.2 and 2019.2.4 to fix issue
configuration framework, of compromise. and shares identifiers:

available CVE-2020-11651 and CVE-2020-

as a PyPI package. 11652.

F-Secure: “We expect that any

competent hacker will be able to
create 100% reliable exploits for
these issues in under 24 hours.”

According to Flexera, Salt
is used by around 17
percent of organizations
with cloud deployments.

Coordinated Disclosure

APRIL
MARCH 24 30

SaltStack confirms receipt of
vulnerability report.

information.

APRIL 23

SaltStack publishes advance notice to their
users urging them not to expose Salt Masters
to the internet and prepare to apply patch on
April 29th.

, @weekstweets

Update Before Exploits Begin

Sonatype ingests the CVE

MAY 2 MAY 7

LineageOS, a maker of an
open source operating system
based on Android, said it

Cisco discovered the
compromise of six of their Salt
master servers, which are part
detected the intrusion on May of the Cisco VIRL-PE (Internet
2nd at around 8 pm Pacific Routing Lab Personal Edition)
Time. service infrastructure.

Exploits Begin
Within 3 Days

18 breaches noted on GitHub accounts

+ xiaopanggege: an unknown program suddenly ran
today

+ atuchak: I have the same

+ nepetadosmil: gents, this is an attack. We've had
all firewalls disabled

+ aidanstevens29: a backdoor was also installed via
the exploit

+ ndmgrphc: entire system is being taken down

« nebev: been affected :(

+ venugopalnaidu: we got the same issue

+ gorgeous]: same thing in my servers

- atastycookie: we are investigating

» avasz: It also stopped and disabled docker services

« aldenar: looking through my affected machines, a
dropper scriptfile was found

- foobartender: it also adds a key to
/root/.ssh/authorized_keys

+ bruxy: same issue here

« mcpcholkin: I found it only on one server

+ wavded: we had one job that was executed that did
the following on each server

+ justinimn: I got hit a few hours ago

+ curu: Firewall rules stopped and disabled

MAY 12

Censys reports the number
stands at 2,928 Salt servers
still exposed — a 21%
reduction from last week, and
a 50% reduction

overall since the CVE was
announced.

Exploits Continue and Sites Remain Vulnerable

DigiCert reported that one of its Certificate
Transparency logs was affected after attackers
used the Salt exploits.

Ghost, a node.js blogging platform, reports an
attacker used a CVE in our SaltStack master to
gain access to our infrastructure and install a
cryptocurrency miner.

Xen-Orchestra reports coin mining script ran
on some of their VMs tied to SaltStack
vulnerability.

Algolia reports hackers installed a backdoor
and a cryptocurrency miner on a small number
of its servers.

3 breaches noted on GitHub

« jblac: it's the same issue I was plagued
with

« heruan: minor jobs are still spawning on
minions

* leeyo: we have the same problem

“Yes, we've had an OSS related breach.”

2017 survey 2018 survey 2019 survey 2020 survey

Source: DevSecOps Community Survey 2017 — 2020 , @weekstweets
Have you had an open source related breach in the past 12 months?

Time to Remediate Known OSS Vulnerabilities After Detection

35%
| 51%
26% remediate
between 1 week
and never.
17%
12%
2%
EE=—
Less than Less than Between Between Between More than It is never
1 hour 1day 1day and 1week and 1monthand 6 months fixed

1week 1 month 6 months

adversaries seek the
most efficient path

Reached Packages

SOURCE: MARKUS ZIMMERMANN AND CRISTIAN-
ALEXANDRU STAICU, TU DARMSTADT; CAM TENNY,
R2C; MICHAEL PRADEL, TU DARMSTADT

52%

45%

37%

30%

22%

15%

7%

Combined Reach of 100

Influential Maintainers

0 20 40 60 80

Number of Maintainers Ordered by Reach

Package Reach PRt

Evolution of Package Reach for

the Top 5 npm Packages

inherits

150K 1 safe-buffer
lodash

125K 4
core-util-is

100K - ms

75K

50K -

25K

0 - —_—

2012 2013 2014 2015 2016 2017 2018

Time

1200 —
Next Generation Software Supply Chain Attacks (2015 — 2020)
Typosquatting, Malicious Code Injection, and Tool Tampering
1000 —
800 |—
600 |
216
400
200 —
o
L B & B 2 @ @ @ @ @ @ @ @ o 2 o0 & @ @ & @ o o O
T £ & & 2 $» 3 ® % % $ & 3 B > & 3 @& 3z 3 % o3 %I O%
= & o © & = ° & 0 2z &4 8 =z « 2 3 5 3§ o z o ¢ & &

1,14
°|
1200 —
Next Generation Software Supply Chain Attacks (2015 — 2020)

Typosquatting, Malicious Code Injection, and Tool Tampering
800
600

400

200

Jul-18

e & & B o2 @
5 o Q. ‘G >
= I & o & =

Aug-18
QOct-18
Nov-18
Dec-18
Jan-19
Mar-19
Apr-19
May-19
Jun-19
Jul-19
Aug-19
Oct-19
Nov-?
Dec-\.
Feb-20
Apr-20
May-20

steal credentials

npm credentials
intentionally
compromised.

A malicious version of a

steal passwords

23 RubyGems packages
pulled from the public
repository.

Packages including chrome_tax

L 1acKer 109 1 I 13
get-tex 10Y_nmap, get-text
colourize, colourful, TacoBell, unix-

crypt, colour-lib, celour_lio

olour, unixCrypt, auto-cron,
~COIOWUN :-‘. p. colour_cat,
olour-generator, phantom-proxy,

our_adjuster, colour_parser
btc-ruby were pulled from the

public repository because they
ontained code for Crypto min

cokie/password stealing

o]

steal money

Code for cryptocurrency theft
Identified in npm package.

electron-native-notif

ther login instrut
cific to cryptocurre
off by npm researches, makers of
the Agama cryptocurrency wallets
shifted $12 millian worth of curren

cy betore adversaries could stea

backdoored

Libpeshnx Researchers at
Reversinglabs identified a PyPI
package with back-door
vulnerability.

While the package had been reporte
as containing a known vulnerability
had not been removed from ¢
Python package repos
often the case vath Intentionally mall

clous packages.

tool tampering

Octopus Scanner

< Ot i P rage
e found 10 e compro
edth N | Tl)
necluo ! 1alvware w
I a 0 enumerat nd
kdoor NetBeans g
thro 1@ NetBea J

developers are getting faster

22.5B

20B

JavaScript Package
Downloads

Weekly Rolling Average
2013 - 2020 158

17.5B

12.5B

10B

7.5B

5B

2.5B

2013 2014 2015 2016 2017 2018 2019 2020
(to date)

SOURCE: Microsoft, npm inc.

1.14T

JavaScript Package
Downloads
Annualized

2013 - 2020

0.5T

2013 2014 2015 2016 2017 2018 2019 2020
(to date)

SOURCE: Microsoft, npm inc.

OSS download
volumes are a
proxy for build
automation.

QO sonatype

2019

2018

2017

2016

2015

2014

2013

2012

25B

50B 758

2020 (projected)

100B 1258 150B 1758 200B 225B 2508 275B 3008
| |

FIGURE 2B
Number of Download Requests for Java Component Releases 2012 — 2020

325B

350B

375B

90%

of your code is
sourced from
external suppliers

’ @weekstweets

Is faster iIs better
for open source?

What does High Performance mean?

Enterprise Open Source

Deployment Frequency Release Frequency
Organizational Performance Popularity
Mean Time to Restore Time to Remediate Vulnerabilities

, @weekstweets

Our “Interview Process” for 24,000 OSS Projects

Attributes Measure

Popularity Avg. daily Central Repository downloads
Size of Team Avg. unique monthly contributors
Development Speed Avg. commits per month

Release Speed Avg. period between releases

Presence of CI Presence of popular cloud CI systems
Foundation Support Associated with an open source foundation
Security More complicated

Update Speed More complicated

y @weekstweets

HYPOTHESIS 1

Projects that release frequently have better

outcomes.

are 2.5x more popular.
1.4x larger development teams

have 12% greater foundation support rates

(VALIDATED)

HYPOTHESIS 2
Projects that update dependencies more
frequently

are generally more secure.

1.5x more frequent releases
530x faster median time to update

173x less likely to have out of data dependencies

(VALIDATED)

Time to Remediate (TRR) vs. Time to Update (TTU)

TTU mean:
199 days
c
9
= TTU median:
g 130 days
o
S
Q
()}
[¢]
<
(]
[S)
o .
o TTR median:
180 days

TTU Cumulative

o T

TTR mean:
326 days

TTR Cumulative

Days to Update

Most projects stay secure
by staying up to date.

’ @weekstweets

HYPOTHESIS 3

Projects with fewer dependencies will stay more up
to date.

(REJECTED)

Components with more dependencies actually have
better MTTU.

HYPOTHESIS 4

More popular projects will be better about staying up to
date.

(REJECTED)

There are plenty of popular components with poor MTTU.
Popularity does not correlate with MTTU.

More dependencies
correlate with larger
development
teams.

Larger
development
teams have 50%
faster MTTU and
release 2.6x more
frequently.

Average Size of Development Team

Number of Dependencies

y @weekstweets

More dependencies
correlate with larger
development
teams.

Larger
development
teams have 50%
faster MTTU and
release 2.6x more
frequently.

Average Size of Development Team

10 20 30 40 50

Number of Dependencies

60

y @weekstweets

107 Popularity

L trend
< rolonse ‘s‘s:esd . Large Exemplars
= increases.
- % Ex;a;nt?elar:‘sotreend . Small Exemplars
10°1 7
g popular. A few popular i
F w turos Fircy Laggarde. but . Features First
) on the whole
= tend to be fairly they are less ‘ Laggards
- popular, d:srite popular.
~ e o
-@ 10 : p‘::;'rg‘l‘:n:. Cautious
S i None of the Above
: -
S .
o 107 L
o
f_U N
© C
€ I
[}
Exemplars S
c o
release fast and s |
2 [
tend to be more = 0
>
L

popular.

T T V: |||||||U

o o H
@ 1o
° . L]
10°| <
Pick suppliers e S N
5 ° ® L4 ¢
from here. [2 A . o
wn
101 F @ o
B RELEASES FREQUENTLY RELEASES SELDOMLY
= | | |] | | |
0 100 200 300 400 500 600

Average Days Between Releases

107 Popularity
- S ré'fe';‘ii e @ Large Exemplars
B ncreases.
. i g Exg"tﬂar:‘sotrind . Small Exemplars
Y E R popular. Af I .
X Features First Lagg‘i"a?é’s'?‘éﬁt' . Features First
C the whol
[2 Conoe i they are less @ Laggards
popular, despite eaniaT
10 poor update popuiar. .
o 7 F hygiene. Cautious
o -
3 i None of the Above
: -
g 0L & ° ¢
o 3 ° x * o
© - % °
E B []
Not all popular S o 4 o R .
- c - E L]
projects are g : To o Xe. ol 9% .
° : e o % 1 L4 o ® ° ¢
exemplary and = oo %y 0 e .
L] 3 b L]
release fast R I R .
5 ® (] °
g' 3 $° $ e o g
e o} ° o o ®
s Be— . L]
2 50 o % ° . DY
P e ° ® g ° ¢
: - 10°] < cote P e TN, o . . .
Avoid suppliers E 3 e e el LR A T PR
B & @ L4 (] o [] ° ° ..) °
from here. 9 N B Lohe I T b LSt g «" .
107 E g * ® ¢ ° !
UV iy [J
F ~ RELEASES FREQUENTLY RELEASES SELDOMLY
L | | | | | |
0 100 200 300 400 500 600

Average Days Between Releases

Guidance for
OSS Projects

when adding a new
dependency look for a
metric to guide that
choice

focus on accelerating and
maintaining rapid MTTU
(for users too)

aim for a minimum of
four releases annually

projects commit
resources to dependency
management

aim to upgrade at least
80% of dependencies
with every release

Guidance for
Enterprise
Development

MTTU should be an
important metric

choosing OSS projects
should be a strategic
decision

formalize a procurement
process that works at
the speed of dev

implement selection
Criteria

minimize variability by
relying on the fewest and
best suppliers

...faster is better
In the enterprise

1.75x more likely to make extensive use of 0SS
components
1.5x more likely to be expanding use of 0SS
components

373,000

java component
downloads annually

3,552

Component suppliers

11,294

Component release

30,362

8.3% with known
vulnerabilities

...are faster and more secure
achievable In the enterprise?

Enterprise Devs Manage Dependencies

We schedule
updating
dependencies as part
of our daily work

We strive to use
the latest version
(or latest-N) of all our
dependencies

We use some
process to add a
new dependency
(e.g., evaluate,
approve, standardize,
etc.)

We have a process
to proactively
remove problematic
or unused

dependencies

We have automated
tools to track, manage,

and/or ensure policy
compliance of our
dependencies

’ @weekstweets

6/9
enterprises

Practices Factors

Development

Development philosophy

Deployment automation and frequency

Build, Test, Release

Confidence in automated testing

Scheduled dependency updates

Scheduled patching

Static analysis tools

Artifact repository centralization

OSS Suppliers

OSS selection criteria

OSS Philosophy

Process to add OSS components

Process to remove OSS components

0SS enlightenment

Organization and Policy

Centralization of asset management

Centralized OSS governance

0SS enforcement via automated CI

0SS governance enforcement

y @weekstweets

Security and development are

Security is working, but slowing

down development efficient and productive

m Security First ° . High Performers
s 2 e SecOps . ® o, ot DevSecOps
8 * ° c ° .o - L .: ¢ o o*®
= L] . (X]

IS 1 b ¢ 0'...“.:..Qo.‘:.o.
o | e " o e ¢
= 0 « ¢ * o0 %o (>4 O‘ °o o ¢
5 o ¢ ° 0 o4 0 #e e 2 Jee & .: °*
s ° ° 2 o. - 0. ® o 4 o 1 o S Y S o
L =1 ° ¥ L] 4 &. ‘oS ®e (ol Q ° P ® 9
O ° ° [) K, L ° Ve o ® o
D ° P N cﬂ.o * o o . N
> > o o g o: .~. .0 ® : oo i ® 0. ° o
g ° - .. ° ® ... ° o ° ' P

L] ° [] o o °
v . o , o 0 - ° ~
2] Low Performers o ® . o . Productivity First
(a4 Waterfall ® DevOps

[] L] o
[J
5 o .
More likely to buy ° -1 - “ Afraid security will
“security first” transformations slow them down
powered by SCA -2 -1 0 1 2

PRODUCTIVITY OF DEVELOPMENT TEAMS

RISK MANAGEMENT OUTCOMES

Security First
.SecOps

High Performers

Productivity First
DevOps

PRODUCTIVITY OF DEVELOPMENT TEAMS

Comparing high
performers
against low
performers

26X

faster REMEDIATION of
vulnerable OSS components

15x

more frequent
deployments

5.7X

less time required for
developers to be productive
when SWITCHING teams

26X

faster DETECTION
of vulnerable OSS
components

26X

less time to
APPROVE a new OSS
dependency for use

RISK MANAGEMENT OUTCOMES

[]
Security First * ° . High Performers
® SecOps ° °e o® > DevSecOps
e o < e o o %, .: 0 o®
o L4 «ae
TR 1Y PN SR O3
DT SRS YT
. 4 0% ® Yo g =™ °
L4 e © .‘ ‘e ® el .. $
= 3 ° o oy e ' ‘. o ~ o] : .. [
® F .. o .. ® o -'; L) o ¢ ° ® o o °
AP N A U SULT SR O S ST
°f‘ﬂ.o‘ :... ‘: 5 o S
o s °et .~° * . s’ . e * o
¢ °° : ¢ e % o 'o e o
o * % ,
o0 o ® o]
Low Performers o ° . ¢ ° ¥ Productivity First
Waterfall . o . DevOps
°, ° ~
[] [J ie)
[e] o L] o
-3 -2 -1 0 1 2 3

PRODUCTIVITY OF DEVELOPMENT TEAMS

Comparing high
performers
against security
first

28%0

more likely to enforce
governance policies in
CI

59%

more likely to be using
software composition
analysis (SCA)

519%

more likely to
maintain SBOMs

77%0

more likely to
automate approval,
management, and
analysis of

more likely to centrally
scan all deployed
artifacts for security
and license compliance

RISK MANAGEMENT OUTCOMES

Security First . s . High Performers
® SecOps e ® o, of > DevSecOps
e o y o ® .o o %.: .: S. e
BRI PEL LR S SE 0 O
00 %4 oo ’. o .‘.) o
°*° o . % o0 0 2 o.o e
’ ®
o ® .:: ° .’ ..o.o‘ ". R Vole
o c ° .: .~0 - :
o ®e °% o @ & .
Sl L4 * % ,
o
Low Performers o ° ° ¢ . Productivity First
Waterfall | DevOps
[J [J
o ° []
[[J o
[e] o]
-3 -2 -1 0 1 2 3

PRODUCTIVITY OF DEVELOPMENT TEAMS

RISK MANAGEMENT OUTCOMES

w

N

PRODUCTIVITY OF DEVELOPMENT TEAMS

HIGH PERFORMERS

PRODUCTIVITY FIRST

Better risk
management
outcomes

Higher
developer
productivity

Improved job
satisfaction

Guidance for
Enterprise
Development

aim for quick wins

prioritize
software supply chain
and 0SS management

pursue speed and
security
improvements

identify your gaps and
constraints

happier employees

faster is better

faster I1Is more secure

happier too

W

2020

States.
Software
Supply Chain

The 6th Annual Report on Global Open Source Software Development

EEEEEEEEEEEEEEEEEEEEEEEEEEEE

weeks@sonatype.com

