
Data-driven DevOps

The Key to Improving

Speed & Scale

Kohsuke Ka
waguchi

Co-CEO Launchable, Inc.

Creator of Jenkins

kkawaguchi@launchableinc.com

SESSION NUMBER ARIAL

Who is Kohsuke?Who is Kohsuke?

2

Jenkins!
• Open-source project
• 200,000+ installations

• Helping teams everywhere

CloudBees!
• Helping enterprises

everywhere doing DevOps

& Digital Transformation

4

Launchable!
• Smarter Testing, Faster

DevOps

• More about this later

5

Automation Today

Actual Automation Today

9

http://bit.ly/2DLhFHg

Cost/time trade-off

● Situation

○ 100s of engineers

○ 10s of projects

○ 1 shared Jenkins infrastructure

○ $100,000s of AWS cost

● Question

○ CFO: why do we spend so much on AWS?

12

What should have happened

● Visibility into cost at project level

● Make developers aware of the trade-off they are making

13

Small Medium Large

Build Time 15 mins 10 mins 8 mins

Annual Cost $1000 $2000 $3000

Whose problem is it?

● Situation

○ 1000s of engineers

○ 1 DevOps team that runs the infrastructure

● Question

○ A build failed. Who should be notified first?

14

What they have done

● Regular expression pattern matching

● Bayesian filter

15

Perhaps more importantly, at Organizational Level

I want to improve our software delivery process

but it doesn’t get prioritized

16

As a leader, this is your job!

Data (& story) helps your boss

see the problem you see

17

As a leader, this is your job!

Data helps you apply effort

to the right place

18

As a leader, this is your job!

Data helps you show

the impact of your work

19

Continuous Learning & Improvement

Smarter testing

● Situation

○ You are the DevOps team of a BigCo

○ Massive modularized codebase with web of

dependencies

○ Big, time consuming tests around them

● Questions

○ I want to cut cost & time of the software delivery

process

Step 1: Dependency Analysis

Step 2: Predictive Test Selection

● ML model predicts useful subset to run

○ Based on information about changes

○ Of 105 changes/mo, 1% is used to train the model

● Impact

○ Only a third of tests are selected

○ Misses just 0.1% of broken changes

○ AWS cost is cut by half

24

This is Useful Beyond BigCo

● Predicting the probability of a test failure have many

uses

● Situation

○ You wait for 1hr for CI to clear your pull request

○ Your integration tests only run nightly

25

Likelihood of failure

26

Low

Medium

High

What if you could run failing
tests first?

Test that are in a random order are
not optimized for a low Time to First

Failure.

T1 T2 T3 T4 T5 T6 T7 T8

Reordering tests

27

Low

Medium

High

T8 T4 T3 T6 T2 T5 T7 T1

Reducing Time to First
Failure (TTFF)

By running tests that are likely to fail
first we can reduce the time to first

failure by a significant margin.

Creating an Adaptive Run

28

Low

Medium

High

T8 T4 T3 T6 T2 T5 T7 T1

What if you could run a
subset of your tests?

Reduce the time to get feedback by
running a subset on a more frequent

interval.

At Launchable I am looking
more into this.
If this interests you:

https://launchableinc.com/

29

Deployment Risk Prediction

● Situation

○ You are the SRE team in a BigCo

○ You oversee 100s of apps

○ ~1 deployment/app/day

● Questions

○ Can we flag risky deployments beforehand?

30

What they have done

● Train model

○ With 40,000 deployments of which 100 are failures

○ Attributes: app names, commit messages, …

● Impact

○ Predict 99% of failures

○ 5% false alarm rate

31

What they have done

● Learning

○ Most outages are estimated as “low risk” by developers

○ Most outages had short time span till approval

○ Long-maintained code is more risky

● Imagine what you can do with this!

○ Require somebody be on call

○ Restrict window of deployment

32

Donkeys

● Different teams are doing things differently

● DevOps team ends up being glorified IT, or internal PS

● App teams feel like bullshit is imposed on them

Unicorns

● Everyone does things one way

● DevOps team is autonomous

● App teams feel like bullshit is taken care of

● Positive feedback loop makes the one way the best way

36

Discussion

● Well-funded DevOps team helps. How does that

happen?

● Getting culture right earlier & succeeding helps

● Forget brown field and focus on green field?

● Latch on to cloud migration or microservice transition

39

Conclusions

● Automation is table stake

● Using data from automation to drive progress isn’t

○ Lots of low hanging fruits there

● Unicorns are using “big data” effectively

○ How can the rest of us get there?

