

A checklist
for AI-powered
DevSecOps
Could your codebases use a security
boost from AI?

Use this checklist to help accelerate your
remediation times from months to minutes
with AI and automation integration.

WR IT TEN BY GITHUB WITH

W R I T T EN B Y G I T HU B WI T H PAG E — 2

Software security is more important than
ever. Yet vulnerabilities continue to find
their way into production as the amount of
code continues to increase. From patching
known issues in dependencies to fixing
vulnerabilities to removing accidentally
leaked credentials from codebases,
security is often just too much for humans
to keep up with—especially given the
shortage of security professionals.

This has led many organizations to adopt
DevSecOps, a framework that seeks to
integrate security into every stage of the
software development lifecycle (SDLC). This
often puts developers on the front lines of
security, leaving them with the responsibility
of fixing vulnerabilities and writing more
secure code from the start.

In theory, DevSecOps helps organizations
ship more secure software faster. In
practice it varies as developers can
often face friction in writing secure code
and addressing issues. This starts with
commonly used security tools that
aren’t always designed with developers in
mind and may provide little context for
remediating issues and a large number of
false positives, which can cause developers
to lose trust in security tools. Meanwhile,
developers are often under constant
pressure to ship new features before they’ve
had time to deal with existing security
issues. Known issues can linger for months
or years. With so many competing priorities,
security debt can accumulate and leave
organizations exposed to threats.

To help manage the onslaught of fixes
needed, new generative AI-powered
security tools are increasingly being used
to help developers identify and remediate
risks faster. These tools don’t require
already overburdened developers to engage
with additional manual processes. Instead
of “opt-in” processes, AI security tools can
automatically run tests and even help with
remediation while developers are writing
and reviewing code, sharply reducing the
amount of time it takes to address issues.

In the following guide, we’ll offer
you a checklist to help evaluate your
organizational DevSecOps and security
posture alongside guidance for
incorporating AI-powered security tools in
your engineering workflows. Let’s jump in.
1: ISC2 Cybersecurity Workforce, “How the economy, skills gap, and artificial
intelligence are challenging the global cybersecurity workforce.” 2023.

W R I T T EN B Y G I T HU B WI T H PAGE — 3

Step 1: Review and
implement platform
security fundamentals

Secure accounts, and evaluate the security
features of your tools and platforms.
Basic security hygiene often begins with simple security best practices
such as multi-factor authentication to harden your development platform.
A secret exposed for even seconds can be exploited by bad actors to launch
broader attacks—much like the SolarWinds attack where its CI/CD systems
were targeted. You need persistent vigilance to ensure passwords and other
credentials stay out of your codebases.

Many existing security tools detect machine-generated credentials, such
as API keys, but they can often fail to detect human-generated secrets,
such as passwords, which can leave systems exposed. New generative

introduced into code in the first place.

AI-powered security tools, however, are proving adept at better detecting
human-generated secrets to help keep them out of codebases. And they
can do it on an ongoing basis, decreasing the likelihood that secrets are

W R I T T EN B Y G I T HU B WI T H PAGE — 4

Common platform security risks
and mitigation measures

Risk: Developers accidentally commit secrets to code that ships to
production, exposing systems to exploitation.

Prevent secrets from entering code by scanning all code commits for any
tokens or passwords that leave your systems exposed.

By integrating both traditional security tools and new AI-powered solutions,
organizations can proactively guard against this risk. AI-powered tools can detect
and alert teams to sensitive data in real time, analyzing code before it even enters
production. These tools help enforce a culture of security-first coding and reduce
the potential for accidental exposure of critical information across development
workflows.

Detect existing secrets by scanning your entire Git repository as well as any
other areas where secrets may reside, including issues, descriptions, and
comments.

Detecting and remediating secrets requires a proactive and comprehensive
approach. By scanning all areas where secrets may be stored, including code
repositories, issues, and comments, organizations ensure no stone is left unturned.
This thorough scanning process provides a safeguard against both new and
previously undetected secrets.

Remediate leaked secrets by empowering developers with security expertise
with the assistance of AI.

Empowering developers with robust security knowledge, supported by AI-driven
tools, helps to enable quick and effective responses when secrets are detected. AI
coding tools can suggest fixes, flag high-risk exposure points, and even automate
certain remediation steps, allowing security teams and developers to work in
tandem to mitigate risks. This collaborative approach reinforces security across the
development lifecycle, reducing the chance of exposure and fostering a stronger
security culture within the organization.

W R I T T EN B Y G I T HU B WI T H PAGE — 5

Risk: Unsecured AI tools leak sensitive data to third parties or even
the public.

When adopting an AI tool, ensure it meets security best practices, compliance
requirements, and has enterprise-grade security features like encryption and
data masking.

Unsecured AI tools can inadvertently expose sensitive data, creating risks for
organizations and users alike. To mitigate these risks, it’s essential to vet AI tools
rigorously before adoption. Ensuring that these tools meet robust security best
practices and compliance requirements helps protect data integrity. Additionally,
regular audits and strict data governance policies can support secure AI usage,
reducing the likelihood of sensitive information being inadvertently shared with third
parties or publicly exposed.

Risk: Your organization fails to meet regulatory and compliance
requirements for your industry, or you can’t prove that you meet them.

Ensure your platform can compile audit logs and provide easy access to them,
so that your organization can better meet compliance standards.

It’s crucial that your platform supports comprehensive audit logging and provides
straightforward access to these logs. Audit logs should capture all relevant events,
from user access to system changes, creating a transparent record that can be
easily reviewed during audits. Ensuring that these logs are secure, searchable, and
readily available enables your organization to demonstrate compliance more quickly
and confidently.

2: GitHub, “The enterprise guide to end-to-end CI/CD governance.” 2023.

W R I T T EN B Y G I T HU B WI T H PAG E — 6

Step 2: Protect your
codebase

Isolate the most critical vulnerabilities and use
AI to remediate them at scale.
Vulnerabilities can take many forms. Sometimes they’re accidentally
introduced by developers, and sometimes they come from outside your
organization, in your third-party dependencies—both open source and
proprietary. The good news is that there are often already fixes for these
vulnerabilities. But keeping dependencies up to date can be a challenge, and
fixing vulnerabilities in your own code can often get pushed to the bottom of
your developers’ priority list.

New agentic AI security tools have the potential to transform how we handle
remediation, enabling developers with tools to help avoid introducing
vulnerabilities in the first place and providing suggestions to fix existing
vulnerabilities both in the supply chain and in original code faster than ever.
These advanced AI tools act as proactive security partners, scanning for
vulnerabilities in real time and offering immediate feedback to developers. By
embedding AI-driven security checks throughout the development lifecycle,
organizations can shift security left, identifying and addressing potential
issues at earlier stages in the workflow.

For example, the AI-powered security tool GitHub Copilot Autofix can help
developers fix vulnerabilities an average of three times faster compared to
developers who fix vulnerabilities manually.

W R I T T EN B Y G I T HU B WI T H PAG E — 7

Common codebase security risks
and mitigation measures

Risk: Your applications contain unmonitored software dependencies,
exposing you to vulnerabilities and liabilities that you are unaware of.

Create a software bill of materials (SBOM) that includes all software
components (libraries, dependencies, etc.) of your product.

Unmonitored software dependencies can introduce hidden risks, as vulnerabilities
in third-party libraries or components may go undetected until it’s too late. By
creating a comprehensive Software Bill of Materials (SBOM), your organization
gains a clear and detailed inventory of all software components used within
applications. An SBOM not only provides visibility but also helps security and
development teams quickly assess which dependencies need updates or
replacements when new vulnerabilities are disclosed.

Risk: Your application’s code includes reported vulnerabilities, potentially
with known fixes.

Enable code scanning in your repository to automate monitoring
of your codebase.

Code vulnerabilities can leave applications exposed to exploitation, especially when
known fixes are available but not applied. By enabling automated code scanning
within your repository, your organization can continuously monitor the codebase for
these vulnerabilities. Automated scanning tools can identify, flag, and even suggest
fixes for issues as they arise, giving developers the ability to address vulnerabilities
before they reach production. This proactive approach to monitoring makes it
possible to bring newly introduced or previously undetected vulnerabilities to
attention, significantly strengthening your application’s security posture over time
and reducing reliance on manual checks.

https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/exporting-a-software-bill-of-materials-for-your-repository

W R I T T EN B Y G I T HU B WI T H PAG E — 8

Risk: You have security scanning tools in place, but have little insight into
your security posture.

Use tools like security overview to triage issues and gain a high-level view into
how application security efforts are performing over time.

Having security scanning tools is a good start, but without comprehensive visibility,
it’s difficult to assess the effectiveness of these tools or your security strategy
overall. By implementing tools like a security overview dashboard, teams gain
valuable insights into key metrics and trends over time. This macro-level visibility
allows developers, team leaders, and security professionals to understand their
current security posture, track progress on remediation efforts, and identify
areas for improvement. These tools can filter out lower-severity vulnerabilities,
reducing noise and enabling developers to address the most pressing risks without
distraction making it easier to allocate resources effectively and address the most
critical security issues first.

Risk: Your code has detected vulnerabilities that your team has yet to fix.

Automate remediation with code scanning autofix and provide developers, in a
pull request, an AI-generated code fix suggestion with every vulnerability alert.

Automating remediation further strengthens your security posture by providing
real-time, AI-generated code fix suggestions for every vulnerability alert. These fixes,
delivered directly in pull requests, empower developers to apply fixes with minimal
disruption to their workflow. This not only accelerates the patching process but can
also help reduce human error, allowing vulnerabilities to be remediated swiftly and
more accurately. With automated triage and remediation, your team can maintain
a continuous, agile approach to security, proactively managing vulnerabilities and
working to prevent potential exploits before they escalate.

W R I T T EN B Y G I T HU B WI T H PAG E — 9

Create security campaigns to prioritize remediation initiatives
and track progress.

Even with security scanning tools, it can be challenging to fully understand and
manage your security posture without organized, targeted efforts. By creating
security campaigns, you can systematically prioritize and address specific
remediation initiatives, bringing greater focus and accountability to your security
strategy. For instance, a campaign targeting the log4shell vulnerability in log4j
allows teams to assess the scope of exposure and allocate resources efficiently
to eliminate this high-risk issue. Similarly, campaigns focused on high-severity
vulnerabilities within key repositories help keep critical codebases secured.
Campaigns provide clear objectives and measurable progress, making it easier to
rally teams around remediation efforts, track improvement over time, and maintain
a continuously evolving defense against threats.

https://docs.github.com/en/enterprise-cloud@latest/code-security/securing-your-organization/fixing-security-alerts-at-scale/creating-tracking-security-campaigns

W R I T T EN B Y G I T HU B WI T H PAGE — 1 0

utilizing AI-driven solutions, you can help ensure that critical gaps are not left
in your system, providing a strong foundation for the rest of your DevSecOps
efforts. This step safeguards your application from the very start, helping to
prevent vulnerabilities, whether introduced accidentally or maliciously,

Step 3: Safeguard your
build system

Protect the systems used to build
and distribute artifacts.
Your build system, though often overlooked, is one of the most critical
components in the software development lifecycle. It may not be directly
exposed to external threats, but if compromised, it becomes a gateway
for attackers to inject malicious code or backdoors without needing to
breach personal accounts or source code directly. A secure build process
is essential for maintaining the integrity of your application, helps protect
artifacts from vulnerabilities or tampering.

Given its importance, it’s crucial that the build system is protected with the
same level of diligence as other components in your development pipeline.
AI-powered tools can help automate security checks and enforce policies
across the build process, reducing the risk of human error that could
otherwise introduce vulnerabilities.

By implementing best practices for securing the build environment and

do not make it into production.

https://docs.github.com/en/enterprise-cloud@latest/code-security/supply-chain-security/end-to-end-supply-chain/securing-builds

W R I T T EN B Y G I T HU B WI T H PAG E — 11

Common build system security risks
and mitigation measures

Risk: Bad actors modify your build process to insert backdoors or other
malicious code.

Only allow authorized personnel to access build environments. Use secure
authentication and authorization measures.

Unauthorized modifications to your build process can introduce critical
vulnerabilities that compromise the integrity of your software. To mitigate this risk,
it’s crucial to restrict access to build environments to only authorized personnel,
safeguarding that sensitive build operations are not exposed to malicious actors.
Implementing strong, multi-factor authentication and role-based access controls
further enhances security, limiting access to individuals with the appropriate
permissions.

Isolate the environment where builds happen to prevent any outside
interference or contamination of the build process.

Isolating your build environment is another key measure that protects against
external interference. By creating a secure, segmented environment for builds,
you can prevent unauthorized access and contamination from outside sources,
shielding the integrity of your code and dependencies remains intact. This isolation
limits the potential attack surface and adds an additional layer of defense against
potential threats. Together, these strategies help safeguard your build process
from tampering, helping you create software that is more secure and free from
malicious alterations.

W R I T T EN B Y G I T HU B WI T H PAG E — 12

Risk: You’re unsure whether your build processes pull only from the
correct sources and the results match the expected outcome.

Use checksums or hash functions to conduct source code integrity checks to
see whether the code is coming from a trusted source.

Untrustworthy code in your build process can lead to potential security
vulnerabilities, as malicious code could be inadvertently introduced. To build
trustworthy code, use checksums or hash functions to help verify the integrity of the
source code as an essential step. By comparing the checksum of the source code
to a known trusted value, you can confirm that the code has not been altered and is
coming from a secure and verified source.

Make the build process reproducible.

This means that doing the build process in the same environment with the
same source code should produce identical results every time. This helps detect
inconsistencies that might arise due to unexpected changes in the code or the
environment and offers an additional layer of confidence in the integrity of the build.

Sign the builds.

Implement a system to sign the builds produced. This will certify that the build
has not been tampered with since it was last signed. Implementing a robust
signing process ensures that any changes to the build after it has been signed
are immediately detectable, offering an added layer of trust and accountability in
the build pipeline. Together, these practices create a more secure and auditable
process, giving you confidence that your build results are authentic and free from
malicious modifications.

W R I T T EN B Y G I T HU B WI T H PAG E — 13

Risk: Human-error leads to important tests being skipped, allowing bugs
and vulnerabilities into your final product.

Ensure developers use trusted workflows in their build environments by
securing automated workflows in the SDLC.

Human error is an inevitable part of the development process, but it can lead to
significant vulnerabilities and bugs if critical tests are skipped. Automating testing
throughout the SDLC reduces the chance of skipping essential tests or using
outdated processes. This added layer of security in the SDLC ensures that all code
changes go through a rigorous testing process, preventing bugs and vulnerabilities
from being introduced into the final product.

Use an AI pair programmer to generate tailored workflows that you can
automate with a CI/CD tool.

Automating workflows takes time that busy developers and DevSecOps teams
often lack. AI pair programming tools can accelerate the process of writing
automation scripts and help tighten the security of these processes. Together,
AI-assisted workflow generation and automation can create a more reliable
and efficient development cycle, improving the overall security and quality of
your software.

W R I T T EN B Y G I T HU B WI T H PAGE — 14

Take this with you

Application security remains an enormous challenge for organizations of
all sizes—but AI is poised to help change that amid a new category of AI-
powered security tools that are quickly evolving. These AI-powered solutions
offer the potential to streamline and enhance the security process, providing
faster, more accurate threat detection, and automated remediation that can
shift security practices from reactive to proactive.

For DevSecOps to truly thrive, a strong collaboration between development
and security teams is essential. Developers need to be empowered with the
security expertise to tackle vulnerabilities directly, without overwhelming
security teams with every issue that arises. This is where AI shines. By
equipping developers with real-time, automated solutions, AI allows for
faster fixes and immediate responses to vulnerabilities. It’s this seamless
integration of development and security that unlocks the true promise of
DevSecOps—enabling teams to code securely while maintaining speed
and innovation.

As AI continues to evolve, its integration into your security workflows will
not only help improve your ability to safeguard your systems today but also
prepare you for the increasingly sophisticated threats of tomorrow. Don’t wait
for the next breach—leverage AI to enhance your security posture and build
a more resilient, agile development process that anticipates and addresses
risks with greater efficiency.

W R I T T EN B Y G I T HU B WI T H PAG E — 15

Learn more

Learn more about how powerful generative AI-powered features in GitHub
Advanced Security can help you better secure your software supply chain
more efficiently and faster.

GitHub Copilot Autofix, for instance, has shown dramatic reductions in the amount of
time between detection and successful remediation:

• Organizations that used Copilot Autofix fixed code vulnerabilities more than three
times faster than those who did so manually, reducing time to fix for a pull request-
time alert from 1.5 hours to 28 minutes.

• They were able to fix cross-site scripting vulnerabilities seven times faster,
reducing time to fix to 22 minutes, compared to almost three hours.

• They fixed SQL injection vulnerabilities twelve times faster, cutting time to fix to
just 18 minutes, compared to 3.7 hours.

“Copilot Autofix takes care of cumbersome security tasks, ensuring
our existing and new code is always as secure as possible. Vulnerabilities
are flagged immediately and code changes are recommended
automatically. It helps our teams to free up time so they can focus on
more strategic initiatives.

Mario Landgraf, Community Manager, Security
// Otto (GmbH & Co KG)

https://github.blog/news-insights/product-news/secure-code-more-than-three-times-faster-with-copilot-autofix/
https://github.com/enterprise/advanced-security
https://github.com/enterprise/advanced-security

 WR IT TEN BY GITHUB WITH

Accessibility Report

		Filename:

		GitHub-A checklist for AI-powered DevSecOps-eBook-November_2024-NT-V004.pdf

		Report created by:

		Nathaniel Tambakis

		Organization:

		

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 0

		Failed manually: 0

		Skipped: 3

		Passed: 29

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Skipped		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Skipped		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

