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Background

The Marine (Scotland) Act 2010 makes provision for the designation of Nature Conservation
Marine Protected Areas (hereafter MPAs). In response to this Marine Scotland established
the Scottish MPA Project to develop the Scottish MPA network. Here we consider relevant
habitat modelling methods and available survey data to help inform identification of MPAs for
four charismatic megafaunal species: Risso’s dolphin (Grampus griseus), white-beaked
dolphin (Lagenorhynchus albirostris), minke whale (Balaenoptera acutorostrata) and basking
shark (Cetorhinus maximus). Our aims were to:

1. review the appropriate habitat modelling techniques for the identification of marine
protected areas,

2. evaluate the quality, quantity and relevance of both the available dependent and
explanatory data in evaluating Scottish MPAs (at different spatio-temporal scales),

3. recommend appropriate modelling techniques for each species given the available
data, and

4. consider methods for delineating MPAs given the potential results.

Recommendations

1. Preparing sightings data and explanatory covariate data for habitat modelling will
take considerable time, even building upon efforts stemming from the Joint Cetacean
Protocol (JCP) project. The cost in time and effort to organise these data should be
considered along with benefits that might be derived from additional data.

2. The following currently available dependent data should be considered:

a. Risso’s dolphin: available data collated to inform the JCP project from
Scottish territorial waters possibly augmented with JCP data from the Isle of



Man. If only the west coast is of interest for this species then data should be
restricted to this spatial extent.

b. White-beaked dolphin: available data collated to inform the JCP project from
Scottish territorial waters initially. If the influence of sandeel presence is
negligible (i.e. sandeel presence is not chosen as a predictor), then Scottish
shelf waters (i.e. to 200 m depth) should be considered. Sandeel data are not
available for the entire shelf.

c. Minke whale: available data collated to inform the JCP project from Scottish
territorial waters but omitting winter data.

d. Basking shark: available data provided for the JCP project (where basking
shark were recorded) from Scottish territorial waters, augmented with the
Speedie data, possibly additionally augmented with data from the Isle of Man
but omitting winter data.

In all cases a small buffer zone may be applied to the area from which input data are
collated, to avoid edge effects in the predictions.

Additional data from Cetacean Research and Rescue Unit (CRRU), Whale and
Dolphin Conservation (WDC) and Hebridean Wildlife and Dolphin Trust (HWDT) may
prove useful although some work will be required to integrate these data sets into the
existing JCP data resource framework.

GAMs should be used to create predicted relative density surfaces. It is likely that
mixed model GAMs or GEE-GAMs will be used to manage the presumed spatial
correlation in the data. It is possible for the data-sparse species (i.e. Risso’s dolphin)
that a model cannot be fitted, in which case an empirical approach to the
identification of regions of relatively higher density could be undertaken.

Delineation of MPA proposals could be performed by drawing polygons using
predicted relative animal densities for individual species. The resulting areas can
then be considered by SNH alongside other contextual information (e.g. on
behaviour) to inform their advice on areas to be considered for designation as Nature
Conservation MPAs.

For further information on this project contact:
Morven Carruthers, Scottish Natural Heritage, Great Glen House, Inverness, V3 8NW.
Tel: 01463 725018 or morven.carruthers@snh.gov.uk
For further information on the SNH Research & Technical Support Programme contact:
Knowledge & Information Unit, Scottish Natural Heritage, Great Glen House, Inverness, IV3 8NW.
Tel: 01463 725000 or research@snh.gov.uk
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1. INTRODUCTION

The Marine (Scotland) Act 2010 makes provision for the designation of Nature Conservation
Marine Protected Areas (hereafter MPAs). In response to this Marine Scotland established
the Scottish MPA Project to select MPAs and develop the Scottish MPA network. The MPA
Selection Guidelines (Marine Scotland, 2011b) set out the process for identifying MPAs in
Scottish waters and include a list of MPA search features (species and habitats of
conservation importance for which spatial protection is considered appropriate) that are
being used to help drive the selection of MPAs. Three species of cetaceans (Risso’s dolphin
Grampus griseus, minke whale Balaenoptera acutorostrata and white-beaked dolphin
Lagenorhynchus albirostris) as well as basking shark, Cetorhinus maximus, are included on
the list of MPA search features (Marine Scotland, 2011b).

Evaluation of cetacean and elasmobranch distribution and habitat assessment of these
species has been suggested in the designation of MPAs both in Scotland (e.g. Bailey &
Thompson, 2009; Embling et al., 2010) and elsewhere (e.g. Cafadas et al., 2005).

Considerable research has been undertaken to identify the habitat preferences of large
marine megafauna in Scottish local waters (e.g. Hastie et al., 2003; Canning et al., 2008;
Bailey and Thompson, 2009; Marubini et al., 2009; Anderwald et al., 2012) and elsewhere
(e.g. Pierce et al., 2010; Azzellino et al., 2012; Becker et al., 2012; Thorne et al., 2012) from
visual surveys and other methods. Surveys can lead to relative estimates of distribution and
abundance. The exact form of these estimates depends on the data collected and the
analytical methods undertaken. Modelling of (relative) abundance by habitat characteristics
and density allows predictions to be made into regions of low effort and even into the future
(Becker et al., 2012).

Here we review habitat modelling methods available to identify regions of high density for
these four species with the intention of providing evidence to support SNH’s advice on MPAs
for these species. The modelling methods are considered in light of the data available on
animal locations as well as potential habitat data with which to predict their abundance.

There are four aims of this report:

1. to review the appropriate habitat modelling techniques to support identification of
marine protected areas,

2. to evaluate the quality, quantity and relevance of both the available dependent and
explanatory data in evaluating Scottish MPAs (at different spatio-temporal scales),

3. to recommend appropriate modelling techniques for each species given the available
data, and

4. to consider methods for delineating MPAs given the potential results.



2. POTENTIAL MODELLING METHODS

A habitat model of an animal population may possess three functions:

1. to describe the distribution of animals seen i.e. how the animals vary in distribution in
time and space;

2. to predict the distribution of animals (normally by interpolation into regions of low or
zero effort); and

3. to explain the observed distribution of animals.

The three functions are not mutually exclusive and any model that could explain the
observed distribution of animals would presumably also make excellent predictions. It is
possible to have models with good predictive properties but little explanatory power. For
example a species’ distribution could perhaps be modelled accurately by position and time if
it appears persistently in a particular location without any knowledge of what drives it to that
location. However, the interpolative and especially extrapolative properties of such models
may be limited. In the case of MPA delineation, the primary aims of the models are ultimately
description and prediction, specifically the aim is identification of regions of persistent
(relative) high density using available predictor data (see Section 4). Explanation is also of
potential importance in delineating MPAs, but has been considered as a secondary aim for
the purposes of assessing appropriate modelling approaches. A predictive model with both
environmental covariates and position predictors (e.g. Long. and Lat.) will allow precise
prediction of where the animals occur, and in addition, plots of the response of density to the
environmental predictors will also be available as an output. However the response to, for
example, depth given that position is in the model may be very different to the response to
depth in the absence of position in the model, i.e. position probably explains much of the
variation in the observed densities due to depth, so if depth is in the model as well it explains
only what was not explained by position.

Adjust sightings for detectability and availability

d
Index sightings by effort

Wodel sichtings/ density/ abundance

(SEnemte response CUnve s o input
Plotrelevant prediction surface{s)

variablesif posable

Identify regions of conservation interest

Figure 1. Outline of the process to determine an area of conservation interest from survey
data. Note that at the stage where the process splits either method can be employed but the
right hand path is the most efficient use of the data and models.



Figure 1 illustrates the process of using habitat data to delineate regions of conservation
interest where survey data are available. The sightings are adjusted for detectability and
availability (especially if absolute estimate of abundance is desired). Sightings are spatially
referenced and effort standardised (unless presence-only models are used, see below). The
resultant numbers can then be predicted using other (habitat) data. The habitat model
provides outputs that explain the distribution of animals both mathematically (e.g. how
Risso’s dolphin density fluctuates with depth, day of year, etc.) and with maps of density by
location. Locations of conservation interest could be selected on the basis of the formula
produced by the model (e.g. by determining most frequent depth, etc.) or by mapping the
predictions of the model. The latter is a more economical way of the using the model as it
allows all the characteristics of the model to be considered simultaneously.

Visual survey data come in a variety of forms: raw sightings, sightings per unit effort and
adjusted sightings per unit effort. Sightings can be adjusted for detection (see Buckland et
al., 2001) and availability at the surface. Sightings with effort are essential as the amount of
effort undertaken to observe animals almost certainly influences the number seen. Non-
spatially referenced sightings data from formal surveys with effort (where the broad area of
sighting is known) can be used to estimate abundance in a given area empirically (a “design-
based” approach). This means that a density can only be estimated as uniform over a broad
area. However, if the sightings are more finely spatially referenced, a finer empirical
approach can be undertaken or a spatial model may be fitted. Spatial models allow
fluctuations in animal density within survey blocks to be identified. For a given locality, such
spatial models should provide a more accurate and more precise estimate than an empirical
approach, if the relevant predictors are used in the model, but with the risk of bias if the
model is misspecified (Hedley and Buckland, 2004). Spatially referenced data are frequently
spatially (or temporally) correlated; i.e. a datum from one point in space/ time is correlated
with datums from adjoining points in space/ time. The data points cannot necessarily be
considered as wholly independent of each other and to treat them as independent leads to
an underestimation of the uncertainty in the predictions. Large marine animals are not evenly
distributed in the ocean: animals are not found over most of a given region and often found
concentrated within widely dispersed areas. This can also contribute to the spatial
correlation. Modelling techniques should consider these features of the data. The models
suitable for study do not need to be mechanistic/ explanatory, although relevant input
variables may help with model interpolation.

We provide a non-technical review of a variety of spatial modelling techniques that could be
used to determine relative and absolute densities of large aquatic fauna, after an initial
consideration of an empirical approach to the problem. Note that Booth and Hammond
(2011), and Macleod et al. (2008) also review habitat modelling approaches by comparing
analyses of the same data sets and Redfern et al. (2006) offer an overarching review without
analysis of a dataset.

2.1 Empirical approach

One way of determining regions of conservation interest is simply by empirical assessment
of regions of higher density. If a location is visited four times and three of those four times
the species of interest is sighted, then this region is of greater interest than another location
where the species is not seen in four or five visits. Any comparable spatially referenced
index of abundance could be used to identify regions of interest by simply delineating around
areas (see Section 5) where the (relative) density was above a particular threshold. Such a
procedure could be valuable if predictor variables are lacking or the region of interest is
disjunct and dissimilar in properties from the rest of a surveyed area (e.g. Rockall or St
Kilda). Such scores could be estimated for specific time periods to take into account
seasonality of animal movements.



If the resultant density surface is very rough it can be smoothed by application of a kernel
density estimator or similar to produce a smoothed map of densities. Obviously if all the data
are used, the method assumes the population is static but using temporal subsets of the
data could allow for dynamic responses.

2.2 Presence-only modelling

Presence-only models have been used to predict the distribution of species including
cetaceans (e.g. Thorne et al., 2012). The raw data of such analyses are sightings without a
measure of survey effort. These methods assume knowledge of the potential environmental
predictors over the region of interest. In a sense “presence-only” is a misnomer as such
models:

1. make an implicit assumption about the effort associated with the sightings namely
that it is uniform (e.g. BIOCLIM, Busby, 1991; DOMAIN, Carpenter et al., 1993; some
versions of Ecological Niche Factor Analysis, Hirzel et al., 2002; Maxent, Philips et
al.,, 2006) even though no actual search effort is considered. Such models are
sometimes referred to as “profile techniques” (Robertson et al., 2003); or

2. require a sample of presence-absence data (some further versions of Ecological
Niche factor analysis, GARP) to calibrate the data/ model (e.g. Elith et al., 2006); or

3. generate assumed absences (Ferrier & Watson, 1997; Ferrier et al., 2002) either
from outwith or within the range of the presence-only data (the former sometimes
referred to as “real absences” and the latter “pseudo-absences” although in neither
situation is truth known).

The latter two methods are sometimes referred to as “group discrimination” techniques
(Robertson et al., 2001). If effort is not uniform over the region, or the sampled presence/
absence survey range is biased relative to the presence-only data spatial range or the
presumed absences are unrepresentative of actual absences, then inaccuracies in
prediction will occur. Collecting sightings by boat from a particular area and inferring there
are no animals where there has been no survey effort is unlikely to be defensible. There is
no merit in the use of presence-only models if effort data are available, as inferences made
from effort standardised data will always be more accurate than inferences made from
sightings alone (e.g. Macleod et al., 2008). This also means that effort should always be
recorded by observers.

If only sightings data are available, then the use of presence-only models is still problematic
because the resultant biases associated with the assumptions and subsequent fitting of such
models are unknown. Presence-only models explain reported presences better than a
random model when considered using a cross-validation technique (where a subset of data
is used to create a model that is then tested against the remainder of the data) (e.g. Macleod
et al., 2008) but this is unsurprising if the same effort biases occur in the training set as the
testing set. The only time such results would be trustworthy is the unusual situation where
effort was unknown yet known to be uniform.

2.3 Geostatistical approaches

Geostatistical approaches to modelling data were primarily developed for use in geological
situations where the initial aim was to predict density of interest with no explanatory power
(Haining, 1990). The approaches have the advantage of dealing with the spatial correlations
in the data. Kriging is the approach used where there is interpolation between known points
to unknown locations between the points. However, universal kriging allows the use of
indicator variables to aid the interpolation process (Upton & Cook, 2002; Cressie & Wikle,
2011). As kriging and regression techniques have improved (with the addition of explanatory



variables of greater functional complexity to kriging, and spatial autocorrelation to regression
methods) they have become more similar (e.g. Stein & Corsten, 1991). Current regression
methods allow more model flexibility. A method of kriging to allow for zero-inflated (see
below) count data has been used to describe the distributions of fin whales (Balaenoptera
physalus) in the Mediterranean (Monestiez et al., 2006; Bellier et al., 2010). One problem
with these methods is that they are extremely computationally expensive (Paxton, pers. obs)
and only small data sets can be analysed on a desktop machine.

2.4 Regression based approaches

Regression based approaches to the modelling of survey data offer a different approach to
geostatistical modelling in that explanatory factors as well as pure spatial referencing can be
used to predict densities. Sightings/ sightings per unit effort/ densities are considered as a
function of input variables. Models can be considered linear in the parameters, which
includes single linear terms or simple curves of the form x + x? etc. and combinations thereof.
Even some responses that are non-linear, in the narrow statistical sense, e.g. functions like
the logistic curve e/1+e* (see Augustin et al., 1996) can be considered in this framework.
Some methods can even deal with spatial/ temporal correlation between adjoining data
points.

2.4.1 Linear models

(General) linear models consider the responses to multiple input variables (predictors) when
these input variables can be both factors and continuous variables. Responses to
continuous predictors can be a simple linear function or a polynomial function. In the
simplest case:

Y =p6p+ X1 +pXo + ¢

where Y is the response (say sightings per unit effort) and X; and X; are the input variables
(say depth and sea surface temperature). B,, 81, and B, are parameters estimated by the
fitting process. The error structure, € is assumed normal with mean 0 and variance o°
(Faraway, 2005).

2.4.2 Generalized Linear Models (GLMs)

Generalized linear models (McCullagh & Nelder, 1989) are similar to linear models except
that the error structure does not have to be normal but can take a variety of functional forms
(McCullagh & Nelder, 1989; Faraway, 2006). This means, for example, that data with a
presence-absence structure (zeros and ones) can be modelled. Non-linear functional forms
that can be linearised by transformation (e.g. logistic curve) can be incorporated. Data that
are overdispersed can be modelled assuming a quasi-Poisson or negative binomial error
distribution. Further extensions of the generalized linear modelling methods allow modelling
of spatial correlation in the data (e.g. see Pinheiro & Bates, 2000; Zuur et al., 2009).

2.4.3 Generalized Additive Models (GAMs)

Generalized additive models (Hastie & Tibshirani, 1990) are similar to GLMs except that the
response to the predictors can be a smooth curve composed of linked polynomial segments
(Wood, 2006). Therefore curved responses to predictor variables can be fitted allowing more
flexibility than when using GLMs. Spatial correlations in the data can also be incorporated. A
variety of smooth functions can be fitted of parametric or non-parametric form (i.e. the
component parts can be described by a formula or not).



2.4.4 Generalized Estimating Equations (GEEs)

A different way of considering the problem of spatial/ temporal correlation in a regression
context is made using Generalized Estimating Equations (GEEs) (Hardin & Hilbe, 2003).
Data can appear overdispersed when in fact it is only apparently overdispersed, the relevant
predictors are missing (Hardin & Hilbe, 2003). For example there could be clumping in the
data caused by intrinsic overdispersion or by the presence of multiple sources of food on
which the animals are feeding. GEEs offer a different approach to conventional GLMs in that
they are population averaged as opposed to cluster specific, that is the fit is derived from the
data rather than the model (Hardin & Hilbe, 2003; Ghisletta & Spini, 2004; Zuur et al., 2009).
Such techniques have been used to model cetacean distributions (e.g. Panigada et al.,
2008; Pirotta et al., 2011; Paxton et al., 2013).

2.4.5 Zero-inflated and hurdle models

These constitute a class of regression type model where the fitted values can be thought of
as a function of two different processes that generate the observed density of animals in a
location (Lambert, 1992). For example there could be two reasons why a minke whale is not
recorded on a survey in the River Ness (assuming perfect detectability/availability). It might
not have been there because the River Ness is not a suitable habitat for a minke whale. No
healthy minke whale would ever find itself in the River Ness. Alternatively minke whale could
be found there, but did not happen to be present when the survey was made. There are
potentially two processes to be modelled differently. Zero-inflated and hurdle models seek to
model density/abundance with a presence-absence component which models absolute
absence versus presence, and an additional component which models the abundance if
present/possible. In practice, a probability of presence is calculated as well as an estimate of
density.

Hurdle models (also known as zero-altered models) model the probability of presence of the
animals given a set of variables and then model the non-zero presences in a separate
modelling process. No zeros can be generated by this second stage as the data are
modelled assuming a zero-truncated distribution (e.g. Goetz et al., 2012; Read et al.,
submitted). In contrast zero-inflated models evaluate whether the zeros are true permanent
zeros (the animal will never be in the location) or simply transient zeros (the animal will be in
the location some of the time) by modelling the presence/absence and numbers if present at
the same time and estimating the allocation of zeros to one type or another (Lambert, 1992).

Given the distribution of large marine animals is undoubtedly a function of avoiding wholly
unacceptable regions and random, albeit infrequent appearance in favourable regions then
zero-inflated/hurdle type of modelling closely matches the decisions animals may ultimately
take. While hurdle models can be readily fitted in a two stage process, the zero-inflated
models, as currently implemented, do not have the robustness of some of the other
modelling methods and there appear to be fitting and prediction problems (Paxton pers.
obs.). However, Choudhary et al. (2012) modelled river dolphins in the Ganges using this
method.

2.4.6 Advanced adaptations to GAMs

This section covers both spatially adaptive and spatially complex modelling. Global
smoothing methods (i.e. methods that smooth equally over the range of the data, such as
GAMs) are sub-optimal, particularly when the underlying spatial surface is smooth in some
areas and highly structured in others. Thus, local features in the data will be over-smoothed
(estimated to be too flat) and far reaching trends under-smoothed (estimated to be too
wiggly). Spatially adaptive methods allow the smoothness of the response to vary depending
on where in the predictor range you are. There are several methods for one-dimensional
smooths (e.g. Ruppert, 2000; Pintore et al., 2006; Crainiceanu et al., 2007; Walker et al.,



2010) but fewer tested methods for two-dimensional smooths (Krivobokova et al., 2007; Yue
et al., 2010; Walker et al., in prep). Some methods are not general or well automated, whilst
others require many estimated parameters and are computationally expensive.

The second advancement of GAMs is spatially complex modelling. Spatially complex refers
to the topography of the area of interest. For example, a study region containing a
topographically complex coastline including, perhaps, some islands. The issue is that many
modelling methods allow the spatial estimate to change smoothly with Euclidean (straight-
line) distance. This is not always realistic, as a straight path between points may cross a
boundary (e.g. coastline), so the nearest distance does not reflect “how the whale swims”,
resulting in ‘leakage’ in model predictions: high or low densities in one body of water can
influence across boundaries into another area where in fact connectivity would be low e.g.
around a peninsula. There are several methods available for dealing with this situation:
Complex Region Spatial Smoother (CReSS; Scott-Hayward et al., in press); Soap film
smoothing (SOAP; Wood et al., 2008); Geodesic Low Rank Thin Plate Splines (GLTPS;
Wang & Ranalli, 2007) and Finite ELement splines (FEL-splines; Ramsay, 2002). Of these
methods, GLTPS cannot be used in areas with islands, FEL-splines have a strong boundary
condition which causes problems and SOAP is difficult to parameterise.

The spatially adaptive method of Walker et al. (SALSA, in prep); and spatially complex
CReSS method have both been recently applied to the Joint Cetacean Protocol data
resource (Paxton et al., 2013).

2.4.7 Classification and regression trees

An alternative regression-like method is the use of classification and regression trees
(CARTS). Classification trees are a hierarchical decision making process for classifying data
(Breiman et al., 1984; Upton and Cook, 2002). Regression trees integrate regression models
in the decision making process. As the position of megafauna is a function of avoiding wholly
unsuitable regions and random appearance in favourable regions then it is conceivable such
areas could be distinguished by different constants (or indeed regression lines) for different
combinations of the explanatory variables. For example if the relationship between basking
shark surface density is different on the east coast of Britain compared to the west coast of
Britain then this could be described by two constants or, if there is an additional predictor,
two distinct regression lines describing the relationship between for example density and
depth. The rules split the data hierarchically like a tree. The disadvantage in such methods is
that no uncertainty can be generated for the decision process, unlike the use of an
interaction in conventional regression. The end result is a tree-like descriptive breakdown of
the habitat preference. Examples of regression trees in estimating cetacean responses to
environmental parameters include Panigada et al. (2008), Goetz et al. (2007) and Macleod
et al. (2007). Regression trees can perform very well in prediction but can suffer from bias
(e.g. Oppel et al., 2012).

2.5 Further comments on modelling methods for survey data with effort

All of the regression models up to Section 2.4.3 can be thought of as elaborations of earlier
forms. For example Generalized Additive Models can do all the operations of Generalized
Linear Models and Generalized Linear Models can do all the things that linear models can
do. GEE are regression models, but have a slightly different approach to modelling noise.
The methods from Section 2.4.5 onwards are effectively mutually exclusive. However, there
is no reason in the future that they cannot be combined, as they all refine different aspects of
the model fitting process with the exception of regression trees, which is different modelling
philosophy. Geostatistical approaches are robust, but computationally expensive and
typically lack the flexibility of regression methods. CARTs can be useful in understanding the
data, but the lack of uncertainty in the predictions is unhelpful. Regression models are



computationally cheap (with the exception of some of the more complex smoothers) and
produce predictions with uncertainty but there can be model-sensitivity issues (Paxton, pers.
obs.).



3. DATA EVALUATION

The relevant data are either dependent data: the actual sightings and associated effort or
predictor data: the various potential predictors of the density variation. Section 3.1 describes
the dependent data. Section 3.2 describes the predictor data and Section 3.3 considers the
realized data availability given both predictor and dependent data ranges.

3.1 Dependent or response data

Most dependent data under consideration here were submitted to the Joint Cetacean
Protocol (JCP) data resource, a collection of platform of opportunity and formal survey data
collated by the Joint Nature Conservation Committee (JNCC) and analysed in Paxton et al.
(2013). This consists of shipboard and aerial visual survey data (sightings and effort).
Acoustic data are not included, nor are land based data, as the integration of these types of
data with vessel-based visual survey data requires a number of often unmet assumptions or
additional information (e.g. the distribution of the animals away from the shore in the case of
static land-based survey data). The JCP data resource is useful in that the data have already
been checked and segmented and in the case of the three cetacean species under
consideration a corrected sightings per unit effort index is already available. Dependent data
not included in the JCP data resource are basking shark survey data collected by Colin
Speedie in the Inner Hebrides from 2003 to 2008, hereafter the “Speedie data”. Here we will
review the available dependent data (i.e. available survey data) for their:

applicability for modelling;

2. availability for modelling (i.e. the spatial/temporal relevance of the data to Scottish
territorial waters);

3. quantity (e.g. number of 10 km segments).

Other survey data may be available in the future such as that from the Cetacean Research
and Rescue Unit (CRRU, Robinson, pers. comm.) from 2009 — 2012; Whale and Dolphin
Conservation (WDC) data from north-east Lewis from 2010 — 2012; and additional
Hebridean Whale and Dolphin Trust (HWDT) data from 2011 — 2012. These data will need to
be formally segmented and the sightings will need to be allocated to those segments prior to
modelling. The data will then have to be augmented with the existing JCP data. After that it
will be necessary to estimate detection functions and hence detection probabilities prior to
spatial modelling.

Data were considered from a variety of potential areas:

1. solely from the 12 nm Scottish territorial limit (green polygon in Figure 2);

2. the Scottish MPA project area (northern red polygon in Figure 2) also the same as
the Scottish part of the UK continental shelf;

3. the UK continental shelf (the larger all inclusive red polygon in Figure 2);

OSPAR (The Convention for the protection of the marine environment of the North-
East Atlantic) regions Il and Il (the blue polygon in Figure 2);

5. Scottish shelf waters (Scottish waters to 300 m depth, not shown).

Any model predictions would be for Scottish territorial waters as this is the area where MPAs
need to be identified for cetaceans and basking shark (SNH, 2012), nevertheless it may be
useful to include data from outwith this region to construct models as these might illuminate
the potential role of environmental predictors.



Many surveys were submitted to the JCP data resource. All of these data consist of sightings
with associated segmented effort. The data submitted to the JCP were only used in the
current project where specific permission was given. For some of the JCP surveys, either
basking shark sightings were not always recorded or permission has not been granted to
use the basking shark material from the surveys. Therefore the quantity of data varies
greatly dependent on species (Table 1). Data were segmented into lengths of approximately
8 km (mean 8.1 km). The data could be analysed at a finer resolution but if this were to
happen the proportion of non-zero to zero segments would decrease. This is undesirable as
models of data with a large proportion of zeros can be difficult to fit (see Section 4.1).
Consequently modelling would become more difficult. The Speedie data also consist of
segmented effort with associated sightings (mean segment length 11.3 km).

25°0'0"W 20700 15700 10°0'0" 500y oot S00E 10°0'0"E 15°0'0"E
L L L L L L 1 L 1

FE0 0
55700~

F55°0'0"

50700+

o000

© Crown copyright and database rights
2014 Ordnance Survey 100017908.

45700

15200 10°00'W 500 00" 500E 10°00°E

Figure 2. Potential spatial ranges of dependent data considered in this analysis. Red: UK
Continental Shelf (northern: Scottish (also Scottish MPA Project area), southern: English,
Welsh, Northern Irish and Manx combined), Green: Scottish territorial waters limit. Blue:
Boundaries of OSPAR regions Il (east) and OSPAR Il (west). Not shown: Scottish shelf
waters from the blue OSPAR Ill western boundary then the southern, eastern and northern
boundaries of the Scottish MPA project areas within 300 m depth contour. N.B. Rockall
shelf area not included in the relevant ranges of the Scottish territorial waters and Scottish
geographic shelf waters for the purposes of this project.

Sightings associated with effort can be readily modelled as raw sightings per unit effort
(SPUE) or be adjusted for detection in a variety of ways (see Buckland et al., 2001, 2004).
The data can then be considered as spatially referenced points corresponding to small
segments of effort as per Hedley & Buckland (2004) and Hedley et al. (2004). Another way
in which this sort of data has been considered in the past (e.g. Macleod and Zuur, 2005;
Monestiez et al., 2006) is by binning the relevant effort into a regular grid and then modelling
the SPUEs or equivalent spatially referenced points according to the grid. However, the
choice of grid resolution is essentially arbitrary and spatial information can be lost by this

10



method. Because survey data are dynamic the data have to be further binned by time. Given
these constraints direct modelling of segments seems the most appropriate response where
environmental variables are allocated to segments directly.

Table 1 gives the maximum amount of effort available for each species in each area under
consideration, for all seasons and Tables 2 and 3 show the contrasting amount of effort
available in winter and summer.

Table 1. Maximum available data for each species. The temporal ranges for the data sets
are JCP cetaceans (1982 — 2011), JCP basking shark (1982 — 2010) and Speedie data
(2003 - 2006)

Species Data source Data range (spatial) Amount of Number of Percent of
effort (km) segments* non-zero
segments
Risso’s JCP (where OSPAR2 & OSPAR3 1,339,382 164,174 0.1
dolphin ?rgrnfedrgtea”t Scottish MPA Project Area 339,824 48,208 0.2
providers) Scottish Territorial Limit 203,832 31,441 0.3
Scottish Waters <300m 300,262 43,675 0.2
UK Continental Shelf 96,7814 118,657 0.1
White JCP (where  OSPAR2 & OSPAR3 1,341,947 164,446 0.5
gﬁﬁ:‘rﬁgs ﬁg[ﬁ%’gfam Scottish MPA Project Area 339,824 48,208 1.1
providers) Scottish Territorial Limit 203,832 31,441 0.9
Scottish Waters <300m 300,262 43,675 1.2
UK Continental Shelf 969,883 118,880 0.6
Minke JCP (where  OSPAR2 & OSPAR3 1,341,947 164,446 0.8
whale ?rgrme%";fa”t Scottish MPA Project Area 339,824 48,208 1.7
providers) Scottish Territorial Limit 203,832 31,441 1.8
Scottish Waters <300m 300,262 43,675 1.8
UK Continental Shelf 969,883 118,880 0.9
Basking JCP (where ~ OSPAR2 & OSPAR3 1,303,754 159,063 0.2
shark frgﬁ%rgfa”t Scottish MPA Project Area 304,838 43,234 07
providers Scottish Territorial Limit 177,472 27,666 1.1
and basking .
shark were Scottish Waters <300m 266,221 38,833 1.0
recorded) UK Continental Shelf 931,690 113,497 0.3
Basking  Colin OSPAR2 & OSPAR3 7,930 700 2238
shark ggtzedie Scottish MPA Project Area 7,930 700 228
Scottish Territorial Limit 7,930 700 22.8
Scottish Waters <300m 7,930 700 22.8
UK Continental Shelf 7,930 700 22.8

*Mean of c. 8.1 km for JCP data and 11.3 km for Speedie basking shark survey data.
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Table 2. Maximum available data for each species in winter (January, February and
March).The temporal ranges for the data sets are JCP cetaceans (1982 — 2011), JCP
basking shark (1982 -2010) and Speedie data (2003 — 2006)

Species Data source Data range (spatial) Amount of Number of Percent of
effort (km) segments* non-zero
segments
Risso’s JCP (where  OSPAR2 & OSPAR3 232,978 25,600 0.02
dolphin ?rgrnﬁ%”;fa”t Scottish MPA Project Area 32107 3,891 0.05
providers) Scottish Territorial Limit 18,901 2,308 0.04
Scottish Waters <300m 28,182 3,455 0.01
UK Continental Shelf 184,366 19,715 0.01
White JCP (where  OSPAR2 & OSPAR3 235,543 25,872 0.2
beaked agreement . .
dolphins  from data Scottish MPA Project Area 32,107 3,891 0.8
providers) Scottish Territorial Limit 18,901 2,308 0.6
Scottish Waters <300m 28,182 3,455 0.9
UK Continental Shelf 186,434 19,938 0.2
Minke JCP (where  OSPAR2 & OSPAR3 235,543 25,872 <0.001
whale fa‘rg;‘:’%”;fa”t Scottish MPA Project Area 32,107 3,891 0
providers) Scottish Territorial Limit 18,901 2,308 0
Scottish Waters <300m 28,182 3,455 0
UK Continental Shelf 186,434 19,938 <0.001
Basking JCP (where = OSPAR2 & OSPAR3 232,608 25,554 0
shark ﬁg:ﬁﬂgg‘t Scottish MPA Project Area 32,106 3,891 0
providers Scottish Territorial Limit 18,901 2,308 0
and basking .
shark were Scottish Waters <300m 28,248 3,463 0
recorded) UK Continental Shelf 183,996 19,669 0
Basking  Colin OSPAR2 & OSPAR3 0 0 -
shark csjgtzed'e Scottish MPA Project Area 0 0 -
Scottish Territorial Limit 0 0 -
Scottish Waters <300m 0 0 -
UK Continental Shelf 0 0 -

*Mean of c. 8.1 km for JCP and 11.3 km for Speedie basking shark survey data.
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Table 3. Maximum available data for each species in summer (July, August and
September). The temporal ranges for the data sets are JCP cetaceans (1982 — 2011), JCP
basking shark (1982 — 2010) and Speedie data (2003 — 2006).

Species Data source Datarange (spatial) Amount of Number of Percent of
effort (km) segments* non-zero
segments
Risso’s JCP (where OSPAR2 & OSPAR3 537,899 69,802 0.2
dolphin frg:ﬁ%mafa”t Scottish MPA Project Area 171,636 25,190 03
providers) Scottish Territorial Limit 99,368 16,052 0.4
Scottish Waters <300m
UK Continental Shelf 378,998 50,070 0.2
White JCP (where  OSPAR2 & OSPAR3 537,899 69,802 0.7
3§ﬁ)kheigs ﬁ%ﬁzzfa”t Scottish MPA Project Area 171,636 25,190 1.4
providers) Scottish Territorial Limit 99,368 16,052 1.2
Scottish Waters <300m 153,535 22,989 1.5
UK Continental Shelf 378,998 50,070 0.9
Minke JCP (where OSPAR2 & OSPAR3 537,899 69,802 1.2
whale ﬁ%‘:ﬁ%’gfa”t Scottish MPA Project Area 170,636 25,190 22
providers) Scottish Territorial Limit 99,368 16,052 25
Scottish Waters <300m 153,535 22,989 23
UK Continental Shelf 378,998 50,700 1.4
Basking  JCP (where OSPAR2 & OSPAR3 520,542 67,359 0.4
shark ﬁgﬁ%’gfa”t Scottish MPA Project Area 155,614 22,922 1.0
providers Scottish Territorial Limit 86,735 14,247 1.6
and basking .
shark were Scottish Waters <300m 137,512 20,721 c.12
recorded) UK Continental Shelf 361,641 47,627 0.5
Basking  Colin OSPAR2 & OSPAR3 5,286 469 15.6
shark j;’tzedie Scottish MPA Project Area 5,286 469 15.6
Scottish Territorial Limit 5,286 469 15.6
Scottish Waters <300m 5,286 469 15.6
UK Continental Shelf 5,286 469 15.6

*Mean of c. 8.1 km for JCP and 11.3 km for Speedie basking shark survey data.
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3.1.1 Risso’s dolphin

Risso’s dolphin are seldom recorded (less than 200 sightings in the whole JCP database),
especially in winter (Table 1 vs. Table 2) making them by far the most sparsely recorded of
all the species of interest. Therefore the proportion of non-zero to zero segments is
extremely low. Modelling this species in the JCP proved difficult (authors pers. obs., see
Paxton et al., 2013) and only simple models of distribution could be fitted. The proportion of
non-zero to zero density segments is higher in the Scottish territorial limit waters compared
to other areas, although more non-zero data outwith Scottish waters are available by using
data from around the Isle of Man.

3.1.2 White-beaked dolphin

Of all the available areas for consideration, Scottish shelf waters (to 300 m depth) has the
most favourable ratio of non-zero to zero segments (Table 1).

3.1.3 Minke whale

Minke whales occur at slightly higher density in Scottish territorial waters compared to other
regions (Table 1). Minke whale are seldom seen in winter surveys (Table 2). From Paxton et
al. (2013) it appears this is not a detectability issue and the species is genuinely elsewhere
in the winter.

3.1.4 Basking shark

The data for this species from the JCP are much reduced compared to the effort available
for the cetacean species. Nevertheless basking sharks are recorded at greatest frequency
within the Scottish territorial limit compared to other British waters. Basking sharks also
occur at high frequency around the Isle of Man.

The Speedie data are associated with a much higher reported density of basking shark,
suggesting that a dedicated basking shark survey has a far higher detection rate for basking
sharks than cetacean surveys (although the same areas have not been directly compared).
This suggests that any subsequent modelling of these data should take survey type as an
explanatory variable.

Basking shark are not recorded in the available data for winter which is consistent with a
long held observation that basking sharks are not at the surface around the British Isles in
the winter (Parker & Boeseman, 1954; Witt et al., 2012). One way to make the data more
tractable for modelling is to exclude winter survey data for basking shark thus increasing the
ratio of non-zero to zero segments.

3.2 Predictor data

Potential explanatory data are given in Table 4 along with their spatial and temporal range,
resolution and source. Some are dynamic (e.g. sea surface temperature) whilst others are
static (e.g. depth). All have been considered as potential or actual predictors of megafaunal
distribution in the past or advocated as such (Table 5). The table suggests that compared to
cetaceans, we know little of the habitat preferences of basking shark.

Predictors vary in their temporal and spatial extent with static variables having the best
spatial coverage. It is possible that, for variables with small spatial gaps (e.g. chlorophyll a),
interpolative techniques such as kriging could be used to fill in missing values at the risk of
adding additional uncertainty to the modelling process.
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Some variables are really measuring the same thing so both should not be placed in the
same final model i.e. distance to coast and depth (Figure 3). It may be that the presence of
oceanographic fronts will be correlated with tide/current related variables.

Resolution varies considerably for the explanatory variables, however, with the exception of
sea surface temperature, the available resolution of the explanatory variables are higher
than the segment resolution associated with sighting data, hence data can be readily
supplied to each. The lower resolution of the sea surface temperature data means that the
response to temperature might not be quite as clear as it otherwise might be.

200
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Figure 3. Relationship of depth and distance to coast in the JCP data resource.
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Table 5. Examples of predictors considered in megafaunal habitat modelling

Species Predictor Considered as a potential predictor

Risso’s dolphin Depth Azzellino et al. (2012), Canadas et al. (2005)
Slope Azzellino et al. (2012), Paxton et al. (2013)
Temperature Paxton et al. (2013)

Curled octopus abundance

MacLeod et al. (2014)

Chlorophyll a de Segura et al. (2008)
White- beaked Depth Paxton et al. (2013)
dolphins Slope Paxton et al. (2013)
Temperature Paxton et al. (2013)
Minke whale Depth Paxton et al. (2013)
Slope Paxton et al. (2013)
Temperature Anderwald et al. ( 2012)
Chlorophyll a Anderwald et al. (2012)

Sandeel presence

Anderwald et al. (2012)

Other cetaceans

Distance to coast
Time in tidal cycle

Tidal range

Sediment

Oceanographic fronts

Marubini et al. (2009)
Booth and Hammond (2011)

Isojunno et al. (2012), Embling et al. (2010),
Marubini et al. (2009)

Embling et al. (2010), Booth & Hammond (2011)
De Boer (2010)

Basking shark

Temperature

Oceanographic fronts

Cotton et al. (2005), Skomal et al. (2004)
Sims (2008), Sims et al. (2000)
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4. RECOMMENDATIONS FOR DATA SETS AND MODELLING
4.1 General recommendations

As the sightings considered in this report are all associated with effort, presence-only
methods can be immediately set aside. The methods must account for any spatial
correlation in the data as a failure to do so would result in an underestimate of the
uncertainty associated with any predictions. Geostatistical techniques do not allow the
opportunity to explore the interactions of potential predictors and are computationally
expensive, so this leaves regression type modelling. Smooths allow more flexible responses
than polynomials suggesting that some GAM based approach should be used over a GLM.
The sightings data will likely be overdispersed (e.g. Figure 4), i.e. the animals, where found,
are clustered in areas of preferred habitat and spatially correlated, so the modelling method
should be able to account for these features.
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Figure 4. Fits residual plot from a simple Poisson GLM of density of Risso’s dolphins in
response to location and day of year. Residuals are more spread out at higher fitted values
indicating the presence of overdispersion. If there was no overdispersion a roughly
symmetrical cloud would be seen. The solid line along the bottom of the graph is caused by
the presence of numerous zeros in the data.

Therefore we recommend that the default modelling approach should be either GAMs
assuming a spatially corrected error structure, a GAM hurdle model, or GEE-GAMs. As the
immediate aim here is prediction rather than biological explanation, position is considered as
an explanatory variable.

The spatial and temporal range to consider for the available data requires several
considerations:

1. Spatial relevance: locations closer to the Scottish territorial waters are more relevant
for modelling Scottish territorial waters than locations further afield.

2. Temporal relevance: the most recently collected data are more relevant than more
historical records, although past records can allow estimation of potential future
fluctuations and cycling on a decadal scale etc.

3. Best signal: by excluding data from regions and times where no animals were seen
modelling becomes more tractable.
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Based on these principles, Table 6 provides a breakdown of potential data sets based on the
most favourable ratio of non-zero to zero data in Tables 1-3 and the ranges of potential
predictor data seen in Table 4. There is a case for including a small buffer around the
selected region to avoid strange predictions near the edge of the region.

One further consideration is the spatial scale of any habitat modelling. No formal method for
evaluating the appropriate scale of segmentation for such spatial analyses has been
developed. However, several practical considerations are apparent:

1. increased resolution is desirable to produce more detailed understanding of the
process under consideration;

2. increasing resolution means smaller segments which increases the ratio of zero to
non-zero segments and increases the correlation between segments;

segment resolution should not be less than the available explanatory variables;
ideally habitat should not vary significantly within a segment;

prediction cells should not be smaller than the effective area of segments;

o a kW

ideally (but doubtfully in practice) segments should be independent.

Previous modelling experience suggests that a target segment length of 10 km is a useful
compromise between these six criteria over a large region like the Scottish territorial waters.
If conclusions were being made from data where there is a high density over a very local
area then perhaps segments could be shortened.

We now discuss variables to be considered in each specific species model (Table 6). It is
assumed all models should initially consider position (as the primary aim is prediction), year,
day of year (or season), depth (as opposed to distance to coast), sea surface temperature at
the highest resolution possible (noting that it will be correlated with day of year), chlorophyll
a (but availability of these data is restricted to some years), sediment type (discrete rather
than continuous measurement) and the oceanographic front index (as indicator of general
marine productivity).

Species specific recommendations for the starting models are given below.
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4.1.1 Risso’s dolphin

The default modelling method should be as outlined in Section 4.1. Even with the data
restricted to Scottish territorial waters the ratio of non-zero to zero segments is very low with
only 82 non-zero (out of 31,441) segments in the period 1982 — 2011 and only 37 non-zero
(out of 21,198) segments in the period 1998 — 2011. If there is not enough signal in the
distribution of this species to successfully model the density, a more empirical approach
should be considered with a density surface generated from adjusting sightings per unit
effort rather than mediated through a model (e.g. see Figure 9). Addition of further data from
the Isle of Man may aid modelling by increasing the proportion of non-zero segments. Data
from the east coast could also be omitted, in order to improve the model fit by increasing the
ratio of non-zero to zero segments. The suggested available data are plotted in Figure 5.
Additional data may be available from Cetacean Research and Rescue Unit (CRRU),
Hebridean Whale and Dolphin Trust (HWDT), and Whale and Dolphin Conservation (WDC).
Whilst the data coverage is considerable overall, for particular seasons and years coverage
can be very sparse (this is the case for all species).
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Figure 5. Proposed Risso’s dolphin data for analysis. Each point represents a midpoint of a
JCP segment within the Scottish territorial limit. Black indicates an empty segment and red
indicates a segment where one or more Risso’s dolphins were seen (1982 - 2011). Note the
paucity of segments with sightings.
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Probability of presence or abundance of the curled octopus Eledone cirrhosa predictions
(from Macleod et al., 2014) were considered, but all inputs into the habitat models for this
species can be included in the Risso’s dolphin models directly, making the process simpler.
Furthermore, Macleod et al. (2014) did not find a relationship between Risso’s dolphin space
use and the predicted highest densities of Eledone. Sandeel presence/ absence was not
considered as this species is not known to consume sandeels (Baird, 2009).

4.1.2 White-beaked dolphin

The default modelling method should be as outlined in Section 4.1 using data from Scottish
shelf waters, possibly with additional datasets from CRRU, HWDT and WDC, as this
combination has the best ratio of zero to non-zero segments (Table 1, Table 6). Sandeel
presence/ absence should also be included, as sandeels are a noted feature of their diet and
have been implicated in affecting their distribution (Canning et al., 2008; Okka et al., 2010).
However, sandeel data are only available for inshore regions. Therefore it might be better to
consider Scottish territorial waters initially, evaluate the potential influence of sandeel
presence/ absence, and then consider using the larger data set if sandeels turn out to be
unimportant.
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Figure 6. Proposed white-beaked dolphin data for analysis. Each point represents a midpoint
of a JCP segment within the Scottish territorial limit. Black indicates an empty segment and
red indicates a segment where one or more white-beaked dolphins were seen (1982 —
2011).
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4.1.3 Minke whale

The default modelling method should be as outlined in Section 4.1, using data from Scottish
territorial waters alone, possibly augmented with additional datasets from CRRU, HWDT and
WDC. If the ratio of zero to non-zero segments makes data fitting problematic, winter survey
data could be removed, unless the response to sea surface temperature was of specific
biological interest. Sandeels should also be included in the modelling of these data and, as
minke whale may switch diets through the year (e.g. Anderwald et al., 2012), then the
interaction of sandeel presence/ absence and day of year should also be considered.
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Figure 7. Proposed minke whale data for analysis. Each point represents a midpoint of a
JCP segment within the Scottish territorial limit. Black indicates an empty segment and red
indicates a segment where one or more minke whales were seen (1982 — 2011).

4.1.4 Basking shark

Basking sharks occur in few segments in the JCP data set, especially compared to the
similarly segmented data from Speedie. There are two obvious reasons for this:

1. The combination of covariate values associated with the Speedie survey locations is
conducive to surface sightings of basking shark. (i.e. the area of the Speedie survey
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contains a greater concentration of basking shark than the overall JCP data
resource, presumably because of the environmental characteristics of this area).

2. Dedicated basking shark surveys are rather better at detecting sharks than dedicated
cetacean surveys and platforms of opportunity.

The two data sets can be integrated. If they were modelled as the default above, an
additional variable indicating whether the data came from a dedicated shark survey should
be included in the analysis. The basking shark data are not shown, as the sightings per
segment have not yet been calculated, but the spatial coverage of effort is given (Figure 8).
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Figure 8. Proposed basking shark data for analysis (1982 — 2010). Each point represents a
segment in the Scottish territorial limit. Black indicates a JCP segment and green a segment
from the Speedie data set. N.B. Sightings are not shown.

The basking shark data are likely to be overdispersed and/ or spatially correlated as in the
case of the cetacean data (see Paxton et al., 2013). The best ratio of zero to non-zero
segments is from Scottish territorial waters. We recommend just this region should be
considered, as most explanatory variables are available for these localities. If necessary,
sightings from around the Isle of Man might be brought into the analysis, which would
improve the ratio of zero to non-zero sightings. Like minke whale there is little to be gained
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by including winter effort in the model unless responses to sea surface temperatures were of
specific interest.

Using surface observations of basking shark to evaluate potential MPAs is different from
considering cetacean observations. Cetaceans have to surface to breathe, basking shark do
not. Inferences from habitat models of basking shark based on visual surveys indicate where
they choose to surface not necessarily where they congregate in the greatest numbers.

4.2 Modelling outputs

The statistical modelling process involves taking the (adjusted) sightings per unit effort and
modelling these data in terms of the predictors given above. Once the model is fitted there
are four types of output:

1. Predictions for particular regions over Scottish territorial waters on a cellular grid for
particular points in time (if dynamic predictors are used). The exact resolution of the
cells would depend on the initial segmentation used in the modelling (see above).
Here, by way of example, we have depicted the map using the same scale as the
JCP data analysis, each cell is 25km? (Figure 10). Given a segmentation of c. 10 km,
a much finer resolution would not be possible. The problem of objectively choosing a
conservation region becomes a problem of recognising cells of interest. These
prediction surfaces will have uncertainty associated within them, typically in the form
of lower and upper confidence surfaces (e.g. Paxton et al., 2013).

2. In addition, for particular regions, time series of (relative) abundances can be
produced over seasons or years.

3. Some indication of the responses of density to the predictors (component plots or
partial plots) so the habitat preferences of the animals can be visualised.

4. In the case of Risso’s dolphin, if a model cannot be fitted, an adjusted sightings per
unit effort surface could be produced to allow identification of regions of high density
(e.g. Figure 9).

It might be thought that (3) alone is the most important output from the point of view of MPA
designation. However, this would not use the full power of the models. Essentially, as the
models produce a formula for describing the distribution of the megafauna, that formula can
be used to make predictions not only from locations where data were collected but also
interpolations into other areas/ times. Therefore for a given point in time, the density plot
incorporates all the information from (3) plus purely locational information (i.e. from
predicting from spatial variables like latitude and longitude), and so can capture variations in
density that cannot currently be coupled with any particular environmental predictor (such as
the seasonal appearance of animals off a particular island). If the model contains dynamic
variables, this density surface can be generated for different seasons/ years, etc. The
identification of optimum locations for Marine Protected Areas then becomes a delineation
problem (see below) for a given density surface or surfaces (if dynamic variables are
considered).

The role a given location plays in the life history of a particular species of marine mega-
fauna (e.g. calving areas, courtship areas, etc.) is not elucidated by habitat modelling, unless
the density of calves is explicitly modelled or the proportion of mother/ calf pairs is identified
(see Cafiadas & Hammond (2006) for an example with bottlenose dolphins), or a critical time
period is identified so the distribution during those periods could be predicted. Where the
information exists these types of consideration may be more usefully taken into account
qualitatively, alongside the quantitative outputs from habitat modelling.
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Figure 9. Risso’s dolphin adjusted sightings per unit effort (km?) for the territorial waters of
Scotland based on survey effort 1994 — 2010. Effort is binned into cells 5 by 5 km therefore
empty cells indicate zero effort or extraterritorial waters.

4.3 Reliabililty of model outputs

Uncertainty in the predictions is supplied by confidence intervals on the prediction surfaces
typically in the form of lower and upper confidence surfaces (e.g. Paxton et al., 2013) i.e. the
lower surface represents a surface of cells each of which is the 2.5" percentile of the range
of predictions made for that cell based on the uncertainty in the models. Likewise the upper
surface consists of a surface of cells each of which is the 97.5" percentile of the range of
predictions made for that position.
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5. POTENTIAL METHODS TO DELINEATE MPAS
5.1 MPA selection guidelines

The MPA selection guidelines (Marine Scotland, 2011b) outline the way in which Nature
Conservation MPAs might contribute to the protection of biodiversity and geodiversity in
Scotland’s seas. For mobile species MPAs may be appropriate for protecting:

a) significant aggregations or communities of important marine species in Scottish
waters;

b) essential areas for key life cycle stages of important mobile species that persist in
time, including habitats known to be important for reproduction and nursery stages;
and/or

c) areas contributing to the maintenance of ecosystem functioning in Scottish waters.

It should be stressed that habitat modelling does not directly address all of the above three
points. Density modelling can identify regions of high density for each species of interest,
which when considered together does address point (a). As mentioned in Section 4.2 unless
mothers/ calves are modelled (and the data for this are really lacking), spatial modelling
does not identify essential areas for key life history stages, just regions of highest density of
the species at particular times (which may not be the same thing). However, the modelling
could provide plots of the response of density to the various environmental predictors tested.
Alongside other ecological information and more qualitative data it may be possible to
interpret the outputs of these plots in terms of points (b) and (c).

Other criteria are important as well: identification of areas that are meaningful to the
conservation of the species concerned and defining a boundary in such a way that a
physical feature can be identified for potential “users” (e.g. a submarine feature that can be
detected on sonar i.e. depth or substrate) is desirable (SNH, pers. comm).

We approach this topic presuming the major focus is to identify, delineate and protect
predicted regions of high megafaunal abundance or persistence from the models. It is not
necessarily the case that the identification of predicted cells of interest and the subsequent
joining of them to form a larger area should be seen as distinct processes, as some methods
for identifying cells of conservation interest will be coupled with boundary considerations.
The results of the model will be considered by SNH alongside other contextual information.

5.2 Identifying cells

The most obvious and simplest action would be to have some threshold, defining the cells of
interest. For example in Figure 10, one could choose all cells that are associated with a
density of greater than 0.1 animals/km? or include 90% of the local population (based on the
above surface), or relative density (e.g. Embling et al., 2010) or a set population size. Only if
all the assumptions of the analysis are met could the estimates be considered an estimate of
absolute density. Furthermore, density for a designated time period would presumably reflect
usage over that time period as well. Also there are potential issues with specifying threshold
densities before the data have been analysed, in that the definition of ‘high density’ may vary
significantly between species. Similarly setting percent population targets may not be
straightforward for cetaceans and basking shark as our knowledge of local population
abundance is often insufficient to assess targets confidently. Therefore, of these methods,
choosing cells based on relative density or abundance (i.e. the estimated abundance in a
cell or area as the quotient of the abundance in a wider area e.g. Scottish territorial waters)
is likely to be the most appropriate.
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The example in Figure 10 is for a single point in time. If persistence or some measure of
temporal use is to be incorporated, then seasonal/ yearly densities would need to be
combined. If the aim is protection of many species then weighted standardised densities
could be combined from different species. This approach may be appropriate, for example,
in the area of the Skye to Mull MPA search location, which is proposed for both basking
shark and minke whale, or in the area of the Southern Trench MPA search location,
proposed for minke whale and white-beaked dolphin (SNH & JNCC, 2012). Any designation
of an MPA should take into account uncertainty (e.g. Gerrodette & Eguchi, 2011).
Uncertainty could be incorporated by considering a prediction surface that is based on some
confidence boundary. For example having an inclusion threshold for cells based on whether
they had a density >0.1 on the upper 97.5% confidence prediction surface.
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Figure 10. Hypothetical density (animals per km?) predictions on a 25 km? resolution grid of
minke whale in summer in Scottish territorial waters. Note that such results would most
probably come from a model with a variety of temporal/ spatial predictors. N.B. This has
been drawn for illustrative purposes and is not a formal proposal for an MPA.
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5.3 Joining cells

The next action is simply to have a rule for joining those cells together. There are a variety of
methods for doing this. Within the UK there are several guidelines on marine boundary
delineation good practice (Marine Scotland, 2011b; Natural England/ JNCC, 2010).

The simplest method is the generation of a convex hull that simply draws a line around the
outer boundary cells of interest (e.g. the black line around the 0.1 animals/km? in Figure 10)
to create a convex polygon thus ensuring all relevant sites are contained with a single
boundary (as suggested by Natural England/ JNCC, 2010). There are a variety of methods
of drawing convex hulls around data (see Avis et al., 1997 for a review). Alpha hulls, a form
of convex hull, have been recommended for use in IUCN Red List conservation
assessments (IUCN, 2013) and may be appropriate in the current analysis. Algorithms are
also available to build concave hulls (e.g. Edelsbrunner et al., 1983; Park & Oh, 2012). This
may be more desirable if, as per Marine Scotland (2011b) (Section 11.9), the aim is to “Draw
boundaries as closely as possible around the feature(s) to support the MPA acting as a
functional whole for the conservation of the features concerned.” Whilst this may be useful
for defining an area based on predicted densities, to be consistent with the Scottish MPA
Selection Guidelines, other contextual information will also need to be reviewed to determine
whether the area is considered to be essential to key life cycle stages (SNH, pers. comm).

This may be complicated by the fact that some cells may be too disjunct from the core area
to be included in the area of interest. So for example the cells to the north of Jura could be
omitted, as well as the cells around St Kilda, to produce the convex hull seen in red in Figure
10. N.B. This discussion of connectivity is on a different scale from a conventional discussion
about connectivity between MPAs (e.g. Marine Scotland, 2012). Here we are discussing
cells within a proposed MPA. Of course there is no reason if there is a disjunct area that it
could not be considered for designation as a separate MPA.

Other approaches to this problem are also possible. Gerrodette & Eguchi (2011) estimated
the detection and density of long-beaked common dolphin Delphinus capensis at a set of
gridded localities off the coast of Baja California. Simultaneously as part of a Bayesian
model they estimated the number of dolphins within a depth contour increasing from the
coast. There is no reason why the processes (as above) cannot be split up with the initial
estimate of density followed by estimating the number of animals enclosed by some
environmental feature. For example, a zone of interest could be designated around Lewis
on the basis that 10 animals would be on average within a depth of 100 m of Lewis whereas
25 animals would be within 200m depth from Lewis etc. Uncertainty in such estimates is
incorporated by considering the uncertainty in the predictions of abundance within the
contour or less desirably by extending the region of interest. The seaward boundary does
not have to be a depth contour but could instead be a given distance from the coast chosen
to enclose a given percentage of the local population. For example in the ornithological
literature a 1% population threshold is used to designate wetlands of interest i.e. 1% of an
identified population regularly utilises the site (Jackson et al., 2004). Although in the case of
marine megafauna identifying distinct populations can be problematic.

Other similar methods to enclose a proportion of the population could include the use of
maximum curvature (e.g. O’Brien et al., 2012a,b for sea birds), a method that considers the
gradient in density to identify the boundary at which the biggest change in the population
occurs.

5.4 Consideration of additional data

The consideration of regions of conservation interest does not necessarily consider purely
population/ biological criteria. There can be species diversity, sociological and economic
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considerations as well. In a Scottish context socio-economic factors are considered after
biological considerations (Marine Scotland, 2011a) and so will not be taken into account
through habitat modelling or by SNH at the stage of providing advice on MPAs for cetaceans
and basking shark. Marine Scotland will consider socio-economic information when deciding
whether to designate an area as an MPA (SNH, pers.comm).

The methods outlined at Sections 5.2 and 5.3 could be adapted to take additional data into
account by weighting any predictions for a particular cell with other features. There are a
variety of “off the shelf’ packages that act similarly but based on rather more formal theory.
Alternatively this problem may not be seen as one that can be adequately dealt with by the
application of an algorithm and must be considered as an iterative qualitative process with
government agencies and stakeholders and the quantitative input is limited to the
identification of areas of high density as given above. However, for completeness here, we
briefly outline some of the leading quantitative approaches to this problem.

Marxan (Ball et al., 2009) is a package that uses ecological and other criteria to designate
whether units are in a reserve. Potential reserve units are added until a target is met (e.g. a
population of 10,000) or units can be designated and a score calculated.

Zonation (Moilanen et al., 2009) is another similar tool, in this case candidate cells are
removed from a set of cells in such a way as to maintain conservation value (especially in a
biodiversity context) whilst accounting for connectivity and other values. Like Marxan,
Zonation has scholarly support (Moilanen et al., 2005, 2009; Moilanen, 2007; Leathwick et
al., 2010). The consideration of connectivity may be different in the construction of marine
reserves than terrestrial reserves, as large mobile marine animals may be able to move
more readily between unsuitable areas than terrestrial animals. Other packages such as C-
Plan (Pressey et al., 2009) and ConsNet (Ciarlegio et al., 2009) undertake similar analyses
but the emphasis is on the preservation of biodiversity across networks rather than
delineating regions of high density.

The methods have been formally compared (Delavenne et al., 2012). Marxan and Zonation
produce similar results, with Zonation more sensitive to connectivity (Delavenne et al.,
2012). Similarly C-Plan and Marxan have been compared with similar results (Carwardine et
al., 2007).

5.5 Summary on MPA delineation

Considerable thought needs to be given to MPA delineation. In the context of considering
modelling approaches, an important decision is whether MPA delineation should be a
qualitative process with quantitative inputs or a wholly algorithm driven process.

As expertise in spatial modelling is distinct from expertise in MPA delineation, it may be
better to take the prediction surfaces and/ or response curves from the spatial models and
apply a simple delineation criteria as detailed above based on density alone and leave the
inclusion of other criteria to a later stage in the process, to be considered qualitatively or
quantitatively as appropriate. This approach would allow SNH to consider quantitative
information from habitat modelling alongside other ecological knowledge for each species in
context of applying the MPA Selection Guidelines and providing advice on MPAs.

However, even using something as simple as relative density as a criterion will require
expert judgement to inform the appropriate relative density threshold and provide guidance
as to how uncertainty should be incorporated in the calculation. This in turn means it is
difficult to indicate the potential scales involved before viewing the outputs of the models for
the different species.
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6.

RECOMMENDATIONS

1. Preparing sightings data and explanatory covariate data for habitat modelling will

take considerable time, even building upon efforts stemming from the JCP project.
The cost in time and effort to organise these data should be considered along with
benefits that might be derived from added data.

2. The following currently available dependent data should be considered:

a. Risso’s dolphin: available data collated to inform the JCP project from
Scottish territorial waters possibly augmented with JCP data from the Isle of
Man. If only the west coast is of interest for this species then data should be
restricted to this spatial extent.

b. White-beaked dolphin: available data collated to inform the JCP project from
Scottish territorial waters initially. If the influence of sandeel presence is
negligible (i.e. sandeel presence is not chosen as a predictor), then Scottish
shelf waters (i.e. to 200 m depth) should be considered. Sandeel data are not
available for the entire shelf.

c. Minke whale: available data collated to inform the JCP project from Scottish
territorial waters but omitting winter data.

d. Basking shark: available data provided for the JCP project (where basking
shark were recorded) from Scottish territorial waters, augmented with the
Speedie data possibly additionally augmented with data from the Isle of Man
but omitting winter data.

In all cases a small buffer zone may be applied to the area from which input data are
collated, to avoid edge effects in the predictions.

. The following additional data may prove useful CRRU, WCD and more recent HWDT

data, although some work will be required to integrate these data sets into the
existing JCP data resource framework.

. GAMs should be used to create predicted relative density surfaces. It is likely that

mixed model GAMs or GEE-GAMs will be used to manage the presumed spatial
correlation in the data. It is possible for the data sparse species (i.e. Risso’s dolphin)
a model cannot be fitted, in which case an empirical approach to the identification of
regions of relatively higher density should be undertaken.

. Delineation of areas to be assessed as MPAs should be performed by drawing

polygons using predicted relative animal densities or abundances for individual
species. The resulting areas can then be considered by SNH alongside other
contextual information (e.g. on behaviour) to inform their advice on areas to be
considered for designation as Nature Conservation MPAs.
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