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Bin Fan, Zhexiong Wan, Boxin Shi, Senior Member, IEEE, Chao Xu, and Yuchao Dai, Member, IEEE

Abstract—Currently, the general domain of video reconstruc-
tion (VR) is fragmented into different shutters spanning global
shutter and rolling shutter cameras. Despite rapid progress in the
state-of-the-art, existing methods overwhelmingly follow shutter-
specific paradigms and cannot conceptually generalize to other
shutter types, hindering the uniformity of VR models. In this
paper, we propose UniVR, a versatile framework to handle var-
ious shutters through unified modeling and shared parameters.
Specifically, UniVR encodes diverse shutter types into a unified
space via a tractable shutter adapter, which is parameter-free
and thus can be seamlessly delivered to current well-established
VR architectures for cross-shutter transfer. To demonstrate its
effectiveness, we conceptualize UniVR as three shutter-generic
VR methods, namely Uni-SoftSplat, Uni-SuperSloMo, and Uni-
RIFE. Extensive experimental results demonstrate that the pre-
trained model without any fine-tuning can achieve reasonable
performance even on novel shutters. After fine-tuning, new state-
of-the-art performances are established that go beyond shutter-
specific methods and enjoy strong generalization. The code is
available at https://github.com/GitCVfb/UniVR.

Index Terms—Unified model, video reconstruction, rolling
shutter, global shutter, motion approximation, deep learning.

I. INTRODUCTION

AS a fundamental video processing task, the goal of
video reconstruction (VR), is to generate the desired in-

between frames given a pair of consecutive image frames [1],
[2]. VR involves the understanding of pixel motion, image
appearance, and even 3D structure, which contributes to many
practical applications, such as slow-motion animation [3], [4],
video compression [5], [6], novel view synthesis [7], [8], and
other real-world systems [9], [10], [11], [12]. In recent years, a
plethora of VR techniques has been actively studied around the
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Fig. 1. Comparison between previous shutter-specific VR models and our
proposed UniVR. The generality and scalability of the existing approaches
are poor, i.e., shutter-specific models struggle to interconvert across different
shutter types, including GS images (γ1 = 0) and various RS images
(γ2:n ∈ (0, 1]). Note that γ denotes the readout time ratio [14], which can
be employed to identify different camera types. In contrast, our unified model
can seamlessly cope with consecutive image input of various shutter types
through a tractable shutter adapter (STAR) and a well-established GS-based
VR model with shared parameters.

common global shutter (GS) and rolling shutter (RS) cameras,
e.g., GS video frame interpolation [3] and RS temporal super-
resolution [13], with increasingly impressive results powered
by the rapid progress of deep neural networks.

Recently, the GS-based VR algorithms have received sig-
nificant attention and exhibited remarkable performances. In
general, the flow-based scheme is the most prevalent and can
be roughly classified into three types:

• Estimating the bidirectional optical flow, then approxi-
mating the intermediate motion field for forward warp-
ing (Type 1) or backward warping (Type 2) of the input
frame, and finally adding a frame synthesis module to
complete the intermediate frame reconstruction. Among
them, the most representative baseline efforts are Soft-
Splat [15] and SuperSloMo [3], which are based on
forward and backward warping, respectively.

• Designing sub-networks to directly estimate the interme-
diate motion field (Type 3), which is used to warp the
input frame, and then similarly grafting a frame synthesis
module. RIFE [16] is a seminal baseline on this line.

https://github.com/GitCVfb/UniVR
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With the ubiquity of RS cameras in commercial and indus-
trial applications, it has also gradually attracted researchers’
interest in reviving and reliving the latent GS video from
adjacent RS frames, driving the emerging development of RS-
based VR. The row-by-row readout of RS cameras notably
yields geometric image distortions (e.g., skew, wobble) [17],
[18], [19], [20], [21], [22], [23], [24], [25] when shooting
dynamic objects or moving the RS camera. As such, un-
like GS-based VR, RS-based VR paradigms must perform
RS correction and frame interpolation simultaneously, which
poses additional challenges for network design [26], [27].
To eliminate the unintended RS distortion, existing RS-based
VR methods either implicitly encapsulate the underlying RS
geometry in the overall network model to embed the dedicated
RS correction capability [2], [13], [27], or explicitly engineer
a two-stage combination of RS correction [28], [29], [30] and
GS-based VR [3], [15], [16] methods.

Unfortunately, these crafted VR approaches currently suffer
from several obvious drawbacks when popularized to general
camera types, as shown in Fig. 1. First, the prevailing works
are largely driven by designing shutter-specific models to solve
each camera type independently, resulting in poor scalability.
For example, a well-designed VR method for GS images can
only be dedicated to GS cameras, but cannot conceptually
generalize to RS-based VR, and vice versa. Second, the model
trained on a customized RS dataset is only applicable to its
corresponding RS camera, leading to difficulties in robust
generalization across different types of RS cameras. This is
because RS correction, as a favored component of the RS-
based VR model, essentially encodes RS-specific underly-
ing geometry. Additionally, two-stage RS-based VR methods
struggle to eliminate error accumulation via joint optimization,
and thus suffer from the disadvantages of larger and more
time-consuming models [26], [31]. All of these issues increase
the marginal cost of developing VR models for cameras with
novel shutter types, and greatly limit the effective deployment
of existing methods in practice, indicating shutter-specific
paradigm is not suitable for generic VR modeling.

To deal with these fragmentations, our key insight is
to break shutter-specific designs by seamlessly extending
generally-applicable GS-based VR approaches to the RS im-
age domain. We argue that RS-based VR itself can also be
regarded as a pure frame interpolation task like GS-based VR,
without compounding an additional RS correction procedure.
During its network design, RS correction can be naturally
included in the frame warping proposal of the GS-based VR
network at hand, which lays the foundation for generic VR
modeling. This design philosophy eliminates the gap between
the formulations of GS-based and RS-based VR tasks, thereby
encouraging information sharing and mutual collaboration of
cross-shutter VR paradigms.

In this paper, we propose a unified video reconstruction
architecture, termed UniVR, for both RS and GS cameras. It
focuses on a flexible, parameter-free ShutTer AdapteR (STAR)
to adaptively identify the RS-specific geometry, as illustrated
in Fig. 1. Note that our shutter adapter is plug-and-play and
does not introduce any shutter-specific learnable parameters,
ensuring the scalability and generality of the resulting unified
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Fig. 2. The PSNR performance of different methods on the Fastec-RS
dataset [28]. The original GS-based VR methods (i.e., SoftSplat [15], Su-
perSloMo [3], and RIFE [16]) have extremely poor generalization (red). Our
unified model can hot-swap from GS images to RS images without any
shutter-specific retraining (green). Also, fine-tuning based on either random
initialization (blue) or pre-trained models (brown) can further improve the
performance. “G” and “R” indicate that GMFlow [32] and RAFT [33] are
adopted as the optical flow estimation backbone, respectively.

model. Specifically, for Type 1 and Type 2, we present
a shutter-adaptive frame warping model and complete the
unification of forward and backward motion approximations.
This makes it possible to extend the GS-based VR model
to work with both RS and GS cameras. For Type 3, we
unify the scanline times of the input RS and GS images
under a shutter-aware imaging formulation. This ensures that
intermediate motions specific to varying shutter types can be
learned directly by simply changing the temporal interpolation
instance outside the network. Subsequently, STAR can be
seamlessly embedded into the well-established GS-based VR
framework. In this way, the RS-based and GS-based VR
models will be abstracted into a shutter-generic model.

We approach three widely used GS-based VR benchmarks,
i.e., the aforementioned SoftSplat [15], SuperSloMo [3], and
RIFE [16], and adapt them to the RS principle to form our
UniVR model. Extensive experiments on multiple RS datasets
show that, by aligning the generic modeling of GS-based
and RS-based VR tasks, the pre-trained knowledge on one
shutter data can be well transferred to another shutter data
without any fine-tuning, e.g., from GS to RS cameras (Fig. 2),
and between RS cameras with diverse γ (Sec. IV-E). Such
cross-shutter transfer benefits from shared model parameters
to efficiently handle various shutter types in the inference pro-
cess. Moreover, the performance can be further improved after
fine-tuning with additional shutter-specific data, outperforming
state-of-the-art methods by a large margin, as evidenced by our
experiments (e.g., Fig. 2). Meanwhile, our unified model also
supports end-to-end training from scratch based on sufficient
new shutter data, achieving promising sub-optimal results. The
main contributions of this paper are three-fold:

• To the best of our knowledge, we offer the first attempt
to develop a unified video reconstruction pipeline, termed
UniVR, which supports cross-shutter transfer at runtime
without any shutter-specific retraining.
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• We propose a tractable shutter adapter for shutter-adaptive
frame warping that is seamlessly compatible with GS and
RS cameras.

• Experiments demonstrate that our approach not only
outperforms the best-specialized architectures but also
enjoys good generalization for cross-shutter deployment.

II. RELATED WORK

GS-based video reconstruction. The GS-based VR task,
a.k.a., video frame interpolation (VFI), has been a long-
standing researched topic in computer vision. With recent
advances in optical flow estimation [32], [33], [34], [35], flow-
based VFI methods have been actively studied to exploit pixel-
level motion information explicitly [36]. In general, VFI can
be viewed as the process of approximating the intermediate
motion field and then blending the warped image appearance
to synthesize the target frame. In addition to carrying out e.g.,
occlusion reasoning [37], [38], [39], context warping [40],
[41], [42] for frame synthesis, researchers have also worked
on developing linear [3], [9], [15], [37], [41], [43], [44],
[45], quadratic [46], [47], quasi-quadratic [48], cubic [49],
and hybrid [50] schemes for motion approximation. Further-
more, designing sub-networks to predict intermediate motions
directly is a recent research hotspot, such as [16], [51], [52],
[53], [54]. More generally, the linear motion can often be
subdivided into backward warping (e.g., [3], [41], [43], [44])
and forward warping (e.g., [1], [9], [15], [45]).

The computer vision community has witnessed the tremen-
dous success of VFI, however, they work with a common
assumption that the camera employs a GS mechanism. Due
to design defects, their scalability remains unsatisfactory,
especially the inability to effectively migrate to the widely
used RS camera. Although Naor et al. [55] recently tried to
sample a GS proposal by taking the relevant scanline from
temporally-interpolated RS frames that have the same number
as image rows, the connection between GS-based and RS-
based VR tasks has not been essentially established, limited
by high computational costs and time-specific GS recovery.
In contrast, we bridge this gap with a plug-and-play shutter
adapter, which can seamlessly extend well-established VFI
baselines pre-trained on a large variety of real-world GS videos
to shutter-varying RS cameras.
RS-based video reconstruction. In the recent literature, the
RS-based VR task, a.k.a., RS temporal super-resolution [13],
is in its infancy being developed for extracting high frame rate
GS videos hidden in adjacent RS frames. Typically, constant
velocity [2], [13] and constant acceleration [26], [27] motion
assumptions are employed to model the underlying spatio-
temporal coherence, so that the intermediate motion is approx-
imated for forward warping. Alternatively, a cluster of work
bypasses the high complexity of time-arbitrary GS recovery,
aiming to generate just one time-specific GS image from
consecutive RS images, e.g., corresponding to the first [55],
[56], [57] or central [28], [29], [30], [58] scanline time.

Despite the RS-based VR becoming emerging, their trained
model inherently encapsulates the underlying RS geometry,
which is determined by the intrinsic camera parameter, result-
ing in poor generalizability. Hence, this specific model design
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Fig. 3. Illustration of the RS imaging mechanism between two consecutive
frames. The readout time ratio γ ∈ (0, 1] [14] of the RS camera can be
defined as the ratio between the total readout time and the total frame time.
Note that γ = 0 can be utilized to represent GS cameras, while γ ∈ (0, 1] is
capable of identifying various γ-specific RS cameras.

becomes a critical bottleneck when popularized to RS cameras
with varying intrinsic parameters, let alone GS cameras. In this
paper, we propose for the first time to unify GS-based and RS-
based VR tasks, yielding a shutter-flexible, time-arbitrary, and
performance-excellent video frame reconstruction framework.
Importantly, our unified model triggers a new paradigm of
designing unified architectures for consecutive image input of
various shutter types.

III. METHOD

In this section, we first introduce the readout time ratio for
shutter interpretation in Sec. III-A and define a unified VR
task in Sec. III-B. Then, we derive a shutter-aware imaging
formulation to develop an intermediate motion estimation
model for our shutter adapter in Sec. III-C. Finally, we detail
how to seamlessly extend the off-the-shelf well-established
GS-based VR model to a variety of RS camera types for
shutter-generic VR in Sec. III-D.

A. Shutter Interpretation with Readout Time Ratio

To conceptualize a unified representation of GS and RS
cameras, we propose to employ the readout time ratio γ
to interpret different camera types. Fig. 3 illustrates the RS
imaging mechanism between two consecutive RS frames. The
readout time ratio γ [14] is defined as the ratio between the
total readout time and the total frame time (including inter-
frame delay time). As a hardware-specified camera parameter,
γ can be calibrated by [17], [22], and γ ∈ (0, 1] is often
employed to model the underlying RS geometry in [13], [14],
[26], [57], [59], [60]. Note that, γ ∈ [0, 1] can be leveraged
to identify different camera types in the subsequent unified
formulation, i.e., γ = 0 for GS cameras and γ ∈ (0, 1] for
various RS cameras, which facilitates the unification of the
video reconstruction model for RS and GS cameras.

B. Problem Definition of Unified VR

The unified VR task takes consecutive frames I0 and I1
as input and synthesizes an intermediate GS frame IGS

t at
interpolation time t ∈ [−γ/2, 1 − γ/2] as output, as dis-
played in Fig. 4. It is easy to verify that when γ = 0, it
advocates generating the non-existent intermediate GS frame
at interpolation time t ∈ [0, 1], consistent with the video frame
interpolation task [3], [10]. And when γ = 1, the latent GS
frame corresponding to the interpolation time t ∈ [−0.5, 0.5]
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(a) Forward warping (b) Backward warping
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(c) Shutter-aware imaging formulationFig. 4. Illustration of shutter-aware imaging formulation. We define three
timelines. 1) Interpolation time t ∈ [−γ/2, 1− γ/2] (horizontal black line),
e.g., the subscript of IGS

t . 2) Scanline time (ideally perpendicular to the pink
line and with the same origin as the interpolation time axis), i.e., the time for
each scanline in an image (e.g., I0, I1, It0 ). 3) Temporal interpolation instance
TGS

t , i.e., the scanline time of target GS images, which is a function of t and
scanline y (see Eq. 1) and thus varies with the scanline. Our motivation for
unified modeling is to uniformly fix the scanline times of the two consecutive
inputs I0 and I1 at 0 and 1, respectively. Given the interpolation time t ∈
[−γ/2, 1 − γ/2], the scanline-varying temporal interpolation instance TGS

t
can be attached to the target GS image IGS

t based on the shutter type (cf., γ).

is recovered, consistent with the RS temporal super-resolution
task defined in [2], [31]. As such, we can perform a uniform
formulation regardless of whether the inputs I0 and I1 belong
to GS images or RS images.

C. Shutter Adapter

In addition to the unified representation based on γ, we
notice that an important reason why the existing GS-based and
RS-based VR methods struggle to unify is that their input time
instances are unaligned. Namely, the GS-based VR method
characterizes the scanline times of the input images I0 and I1
as 0 and 1 respectively, while the RS-based VR method makes
different scanlines of I0 and I1 have different scanning times.
Such a shutter-specific VR formulation, physically tailored on
the input camera type, appears conceptually straightforward.
However, it limits the unification of GS-based and RS-based
VR methods, making general VR modeling intractable.

In order to make the proposed UniVR model compatible
with both GS and RS cameras, we first encode the scanline
times of I0 and I1 uniformly as 0 and 1, respectively, in the
input dimension. For example, all scanlines of I0 share the
same scantime 0. At the same time, we allow the desired GS
image to have scanline-varying temporal interpolation instance
TGS

t in the output dimension so that GS-based and RS-
based VR tasks can be aligned under a unified representation
framework. Furthermore, we point out that UniVR can be
characterized as a pure frame interpolation task. During its
network design, it only needs to model a reasonable frame
warping, which can naturally integrate intermediate frame
approximation and RS correction for RS-generic VR. In this
way, the gap between the formulations of GS-based and RS-
based VR tasks can be bridged for universal VR modeling.

To sum up, we introduce a tractable shutter adapter, which
is parameter-free and thus can be seamlessly delivered to
current well-established GS-based VR networks (e.g., [3],
[15], [16]), as illustrated in Fig. 1. Concretely, in the modeling
process of STAR, we first derive a shutter-aware imaging

formulation depicted in Fig. 4, and then approximate the
temporal interpolation factor ΦGS

t to efficiently estimate the
intermediate motion fields (i.e., F0→t,F1→t or Ft→0,Ft→1

as shown in Fig. 5) for frame warping. The details will be
elaborated in the following.

1) Shutter-aware imaging formulation: After uniformly
representing the scanline times of the input images I0 and I1 as
0 and 1, respectively, as illustrated in Fig. 4, we build a shutter-
aware imaging formulation to characterize the latent GS image
IGS
t corresponding to the interpolation time t ∈ [−γ/2, 1 −
γ/2]. In particular, the scanline-varying temporal interpolation
instance TGS

t and the temporal interpolation factor ΦGS
t can be

explicitly computed such that the intermediate motion fields
are estimated effectively.
Temporal interpolation instance TGS

t . In Fig. 4, one can
observe that the y0-th scanline of the target GS image IGS

t is
identical to the y0-th scanline of the temporally-interpolated
RS frame It0 . Therefore, an RS proposal corresponding to the
interpolation time t0 and the y0-th scanline can be sampled to
approximate the pixel qt0 of the y0-th scanline of IGS

t . Given
an image with a total number of H scanlines, we can easily
get TGS

t (γ, y0) ≜ t0 = t− γ
H y0 + γ by the similarity scaling

of H(t0 − t) = γ(H − y0). More generally, we have

TGS
t (γ, y) = t− γ

H
y + γ, y = 0, 1, ...,H − 1, (1)

which models the scanline-wise interpolation time of the target
GS image IGS

t . Stacking all image scanlines in matrix form,
the scanline-varying temporal interpolation instance TGS

t of
the target image IGS

t can be obtained.
Temporal interpolation factor ΦGS

t . As shown in Fig. 4, it
is assumed that the pixel q0 in I0 matches the pixel q1 in
I1, with q0 and q1 located at the y0-th and y1-th scanlines,
respectively. Assume also that this pixel passes through the
pixel qGS

t in IGS
t at interpolation time t ∈ [−γ/2, 1 − γ/2].

As a result, −−→q0q1 and −−→q1q0 can denote the forward and
backward optical flows F0→1(q0) and F1→0(q1), respectively.
According to the RS geometry modeling in [13], [14] based
on the constant velocity motion assumption, we can easily
obtain ||

−−→
q0q

′|| = 1 + γ
H (y1 − y0). Also, Eq. 1 is able to

produce ||−−−→q0qt0 || ≜ t0 = TGS
t (γ, y0). Further, to approximate

the intermediate motion field by scaling the optical flow vector,
we define the corresponding temporal interpolation factor as
ΦGS

t (γ, y0, y1) ≜ ||
−−−→
q0q

GS
t ||/||−−→q0q1||.

Using the principle of similar triangles, the constraint satis-
fies ||

−−−→
q0q

GS
t || · ||

−−→
q0q

′|| = ||−−−→q0qt0 || · ||
−−→q0q1||. Substituting the

above notations yields

ΦGS
t (γ, y0, y1) =

t− γ
H y0 + γ

1 + γ
H (y1 − y0)

. (2)

Note that for the forward optical flow F0→1(q0) associated
with the pixel q0 located at the y0-th scanline of I0, its vertical
component Fv

0→1(q0) follows: y1−y0 = Fv
0→1(q0). Similarly,

for each pixel q1 that lies on the y1-th scanline of I1, we have
y1 − y0 = −Fv

1→0(q1). Consequently, the forward and back-
ward temporal interpolation factors can be obtained by Eq. 2
as ΦGS;f

t (q0) ≜ ΦGS
t (γ, y0, y1), ΦGS;b

t (q1) ≜ ΦGS
t (γ, y1, y0).

When bidirectional optical flows F0→1 and F1→0 are known,
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(c) Shutter-aware imaging formulation

Fig. 5. Illustration of intermediate motion approximation. Based on the
shutter-aware imaging formulation, we can approximate the forward motion
field in (a) by scaling the corresponding optical flow vector, and the backward
motion field of the yellow pixel in (b) by borrowing the optical flow vector
from pixels at the same location in the first and second input images.

stacking all pixels in matrix form can yield the temporal inter-
polation factor ΦGS

t = {ΦGS;f
t ,ΦGS;b

t }. Thus, Eq. 2 achieves
the unification of forward and backward interpolations and
facilitates the intermediate motion approximation.

2) Intermediate motion approximation: As shown in Fig. 5,
with the pixel-wise temporal interpolation factor ΦGS

t , the
forward motion fields F0→t,F1→t and the backward motion
fields Ft→0,Ft→1 can be approximated by scaling the bidirec-
tional optical flow fields F0→1,F1→0 between the two input
frames.
Forward motion fields F0→t,F1→t. Given the temporal
interpolation factors ΦGS;f

t ,ΦGS;b
t derived from Eq. 2, we can

obtain the forward motion fields shown in Fig. 5 (a) by a
simply scaling operation as follows:

F0→t = ΦGS;f
t ⊙ F0→1,

F1→t = (1−ΦGS;b
t )⊙ F1→0,

(3)

where ⊙ is an element-wise multiplier. Note that the analytical
proof of Eq. 3 based on the assumption of constant velocity
motion can be found in [13], [27]. Using the forward motion
fields, one can forward warp the input images to the destination
of a virtual GS image by

ÎGS
i→t = WF (Ii,Fi→t) , i = 0, 1, (4)

where WF indicates the forward warping operator. Notably,
Softmax splatting [15] is often used to alleviate hole or
occlusion artifacts in forward warping, caused by collisions
when multiple pixels are mapped to the same location, by
adaptively combining overlapping pixel information.
Backward motion fields Ft→0,Ft→1. Inspired by the as-
sumption in [3], [43], [44], [61] that neighboring pixels have
similar motion vectors, we can simply borrow optical flow
vectors from F0→1 and F1→0 to approximate Ft→0 and Ft→1
shown in Fig. 5 (b) as follows:

Ft→0 = −ΦGS;f
t ⊙ F0→1︸ ︷︷ ︸
Ff

t→0

or ΦGS;b
t ⊙ F1→0︸ ︷︷ ︸

Fb
t→0

,

Ft→1 = (1−ΦGS;f
t )⊙ F0→1︸ ︷︷ ︸
Ff

t→1

or −(1−ΦGS;b
t )⊙ F1→0︸ ︷︷ ︸
Fb

t→1

,
(5)

where superscripts “f” and “b” denote forward and backward
candidates for Ft→0 and Ft→1, respectively.

Further, similar to [3], [10], [46], [50], we also take ad-
vantage of the temporal distance DGS

t for intermediate motion
approximations, such that the temporally-closer pixels can be

assigned higher motion confidence. Specifically, for brevity,
we harness the temporal interpolation instance TGS

t and restrict
its value between 0 and 1 to ensure temporally meaningful
weighting, i.e.,

DGS
t = min(max(TGS

t ,0),1). (6)

Therefore, the backward motion fields Ft→0,Ft→1 can be
approximated holistically by combining the candidates in Eq. 5
based on Eq. 6, given by

Ft→0 = (1−DGS
t )⊙ Ff

t→0 +DGS
t ⊙ Fb

t→0,

Ft→1 = (1−DGS
t )⊙ Ff

t→1 +DGS
t ⊙ Fb

t→1,
(7)

which can be adopted to backward warp the input images to
a virtual GS canvas corresponding to interpolation time t as

ÎGS
t←i = WB (Ft→i, Ii) , i = 0, 1, (8)

where WB indicates the backward warping operator.
In summary, the forward and backward motion fields are

modeled in Eqs. 3 and 7, respectively, which can be used for
forward and backward warping as shown in Eqs. 4 and 8. Note
that our formulation is parameter-free and shutter-adaptive,
with γ to determine the camera type, thus ensuring shutter-
aware frame warping. And it is easy to verify that when using
γ = 0 to model the GS camera, Eqs. 3 and 7 will degenerate
into the warping models commonly used in classical GS-based
VR methods (e.g., [9], [15] and [3], [10]).

D. Unified Architecture for Shutter-generic VR

To address the problem that VR methods dealing with
different camera types are often incoherent and crafted for
camera shutters, we seamlessly integrate the above simple
yet flexible STAR into the motion estimation module of the
well-established GS-based VR framework, forming our unified
model. The overall architecture of our UniVR model is shown
in Fig. 6. Thanks to the fact that the model parameters are
shared across shutters, our method allows hot-swapping from
the generally-applicable GS-based VR model, which is pre-
trained on a large variety of real-world GS videos, to shutter-
varying RS-based VR. Specifically, based on three most repre-
sentative baselines, i.e., SoftSplat [15], SuperSloMo [3], and
RIFE [16], we implement three tractable UniVR models as
follows:

1) Uni-SoftSplat: We replace the forward motion fields
F0→t,F1→t in the original SoftSplat with Eq. 3 for
forward warping without changing the other parts (see
Type 1 in Fig. 6).

2) Uni-SuperSloMo: We replace the backward motion
fields Ft→0,Ft→1 in the original SuperSloMo with Eq. 7
for backward warping without altering the rest (see Type 2
in Fig. 6).

3) Uni-RIFE: Since the original RIFE can predict the
time-arbitrary backward motion fields, we implant the
scanline-varying temporal interpolation instance TGS

t de-
fined in Eq. 1 to directly generate Ft→0 and Ft→1

corresponding to the interpolation time t while leaving
everything else unchanged (see Type 3 in Fig. 6).
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Fig. 6. Overall architecture of our UniVR. We derive our unified model by embedding the parameter-free shutter adapter (STAR) into the well-established
GS-based VR framework (e.g., SoftSplat [15], SuperSloMo [3], RIFE [16]). In our STAR modeling, the temporal interpolation factor ΦGS

t and the temporal
interpolation instance TGS

t can be explicitly calculated. According to motion estimation and frame warping, our UniVR can be divided into three types:
Type 1 (Uni-SoftSplat): using ΦGS

t to estimate the intermediate motion fields F0→t,F1→t for forward warping, without altering the original SoftSplat
network. Type 2 (Uni-SuperSloMo): using ΦGS

t to estimate intermediate motion fields Ft→0,Ft→1 for backward warping, without altering the original
SuperSloMo network. Type 3 (Uni-RIFE): directly learning shutter-adaptive intermediate motion fields Ft→0,Ft→1 for backward warping, by simply varying
TGS

t outside the network of the original RIFE.

It is also easy to verify that when γ = 0, our UniVR model
will degenerate into the original GS-based VR model. More-
over, unlike current shutter-specific VR designs, our UniVR
establishes a shutter-generic frame interpolation framework,
such that time-arbitrary GS video frames can be faithfully
recovered by accessing γ, regardless of the input image type.

IV. EXPERIMENTS

A. Experimental Setup

Datasets. We devote to adapting the well-established GS-
based VR method to the RS domain. Since their effectiveness
on large-scale GS datasets (e.g., Vimeo90K [37], Adobe240-
fps [62]) has been fully verified, we will not employ the
GS dataset. On the contrary, we exploit the standard RS
benchmark dataset, i.e., Carla-RS and Fastec-RS [28], similar
to [2], [13], [26], [27]. The Carla-RS dataset is generated from
a virtual 3D environment using the Carla simulator, involving
general six-degree-of-freedom camera motions. The Fastec-RS
dataset contains real-scene RS images synthesized by row-by-
row stitching of high-speed GS videos collected by a ground
vehicle. They provide GS ground-truth (GT) corresponding
to interpolation times −γ/2, 1 − γ, and 1 − γ/2, which
can be used as supervisory signals to fine-tune our UniVR
model. At the inference phase, our method can recover latent
GS video frames corresponding to arbitrary interpolation time
t ∈ [−γ/2, 1− γ/2]. Moreover, we utilize the real-world BS-
RSC dataset [30], in which various camera and object motions
(e.g., vehicles and pedestrians) are recorded by a beam-splitter
system in the dynamic urban environment. Since it contains
only the GS GT at the specific interpolation time of 1− γ/2,
we use it for RS correction evaluation in Sec. IV-H.
Implementation details. Given the time t ∈ [−γ/2, 1− γ/2],
the original SoftSplat1, SuperSloMo2, and RIFE3 can di-

1https://github.com/JHLew/SoftSplat-Full
2https://github.com/avinashpaliwal/Super-SloMo
3https://github.com/megvii-research/ECCV2022-RIFE

rectly synthesise the corresponding in-between images. We
integrate the proposed STAR to develop Uni-SoftSplat, Uni-
SuperSloMo, and Uni-RIFE, which can hot-swap pre-trained
models yielded on disjoint GS datasets to recover latent GS
videos for RS cameras. Note that SoftSplat and RIFE are
pre-trained on the Vimeo90K dataset, and SuperSloMo uses
the Adobe240-fps dataset. GMFlow [32] is adopted as the
optical flow estimator of Uni-SoftSplat and Uni-SuperSloMo,
which is frozen during fine-tuning. The readout time ratio γ
of Carla-RS, Fastec-RS, and BS-RSC datasets is specified to
1.0, 1.0, and 0.45, respectively. Besides, our Uni-SoftSplat,
Uni-SuperSloMo, and Uni-RIFE are fine-tuned for 300 epochs
based on random initialization or pre-trained models, with
batch sizes of 2, 4, 6, respectively. The learning rate is
fixed at 0.0001 in the Adam optimizer [63]. Meanwhile, data
augmentation similar to [2] is utilized. All experiments are
conducted using a single NVIDIA RTX 3090 GPU.
Evaluation metrics. We apply PSNR, SSIM, and LPIPS [64]
metrics to compute the quantitative result. Methods with high
PSNR/SSIM and low LPIPS scores are favored. Note that un-
less otherwise stated, we refer to the GS images corresponding
to 1 − γ for consistent comparison. Since the GT occlusion
mask is available in the Carla-RS dataset, following [2], [27],
[28], we report Carla-RS with occlusion mask (CRM), Carla-
RS without occlusion mask (CR), and Fastec-RS (FR).
Comparison methods. We perform comparisons with four
classes of methods: (i) Non-learning-based DiffSfM [14],
DiffHomo [59], and learning-based DeepUnrollNet [28],
VideoRS [55], SUNet [56], JCD [58], AdaRSC [30], JAM-
Net [29], DFRSC 2F [65] are classical RS correction meth-
ods, which can only recover a time-specific GS image. (ii)
RSSR [13], CVR [2] are RS-based VR methods, which
can produce time-arbitrary GS images from two adjacent RS
images. We do not compare with [27] because it requires five
RS frames as input. (iii) SoftSplat [15], SuperSloMo [3],
RIFE [16] are generally-applicable GS-based VR methods,
which are tailored specifically for GS cameras. (iv) Two-



IEEE TRANSACTIONS ON IMAGE PROCESSING 7
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Fig. 7. Visual comparisons against existing RS-based VR methods on the Fastec-RS dataset [28]. Our method can successfully remove the RS artifact to
generate crisp and pleasing GS images. It is worth mentioning that high-quality GS frames at any interpolation time can be recovered by our method.

TABLE I
QUANTITATIVE COMPARISONS OF RECOVERING GS IMAGES AT INTERPOLATION TIME 1− γ ON CARLA-RS AND FASTEC-RS DATASETS [28]. GRAY

BACKGROUNDS ARE USED TO MARK THE METHODS THAT CAN ONLY PRODUCE ONE GS IMAGE. THE AVERAGE RUNTIME FOR 640× 480 IMAGES ON A
SINGLE 3090 GPU AND THE NUMBER OF MODEL PARAMETERS ARE REPORTED. BASED ON THE PRE-TRAINED MODEL ON THE LARGE-SCALE GS

DATASET, OUR METHOD SHOWS REASONABLE PERFORMANCE ON THE RS DATASET WITHOUT ANY FINE-TUNING. AFTER FINE-TUNING, OUR METHOD
ACHIEVES THE MOST SATISFACTORY RESULTS IN TERMS OF SPEED AND ACCURACY. NOTE THAT OUR UNI-RIFE EMBRACES REAL-TIME PERFORMANCE.

Method Runtime #Params PSNR↑ (dB) SSIM↑ LPIPS↓
(ms) (Million) CRM CR FR CR FR CR FR

DiffHomo [59] 4.2e5 - 19.60 18.94 18.68 0.606 0.609 0.1798 0.2229
DiffSfM [14] 4.7e5 - 24.20 21.28 20.14 0.775 0.701 0.1322 0.1789
VideoRS [55] 1.3e6 24.26 31.84 31.43 28.57 0.919 0.844 - -
DeepUnrollNet [28] 131 3.91 26.90 26.46 26.52 0.807 0.792 0.0703 0.1222
SUNet [56] 92 12.0 29.28 29.18 28.34 0.850 0.837 0.0658 0.1205
DeepUnrollNet [28] + BMBC [43] 964 14.9 27.29 27.58 24.95 0.829 0.787 0.0980 0.2024
DeepUnrollNet [28] + DAIN [41] 297 27.9 27.48 27.88 26.19 0.874 0.807 0.0821 0.1453
JAMNet [29] + SoftSplat [15] 115 12.1 30.40 30.14 26.63 0.895 0.815 0.0629 0.1982
JAMNet [29] + SuperSloMo [3] 93 29.2 28.89 28.04 25.17 0.869 0.790 0.0924 0.1634
JAMNet [29] + RIFE [16] 66 15.4 29.96 29.74 26.81 0.877 0.813 0.1241 0.2315
RSSR [13] 58 26.0 30.17 24.78 21.23 0.867 0.776 0.0695 0.1659
CVR [2] 70 42.7 32.02 31.74 28.72 0.929 0.847 0.0368 0.1107
SoftSplat [15] 67 7.44 20.84 20.71 21.40 0.638 0.683 0.0859 0.2086
Uni-SoftSplat (w/o ft) 67 7.44 30.78 30.73 27.03 0.912 0.826 0.0372 0.1716
Uni-SoftSplat (ft, rand init) 67 7.44 32.92 32.80 29.85 0.938 0.869 0.0197 0.0814
Uni-SoftSplat (ft, pretrain init) 67 7.44 33.12 33.02 29.99 0.942 0.872 0.0182 0.0767
SuperSloMo [3] 44 24.5 20.90 20.69 20.94 0.643 0.657 0.1142 0.1642
Uni-SuperSloMo (w/o ft) 44 24.5 30.97 30.43 26.75 0.910 0.822 0.0463 0.0967
Uni-SuperSloMo (ft, rand init) 44 24.5 33.15 33.07 29.22 0.941 0.856 0.0249 0.0759
Uni-SuperSloMo (ft, pretrain init) 44 24.5 33.20 33.11 29.49 0.942 0.859 0.0226 0.0710
RIFE [16] 19 10.7 21.25 21.13 21.82 0.666 0.702 0.1408 0.2331
Uni-RIFE (w/o ft) 19 10.7 30.47 30.19 27.62 0.891 0.829 0.0851 0.1768
Uni-RIFE (ft, rand init) 19 10.7 31.87 31.75 29.30 0.918 0.866 0.0267 0.0719
Uni-RIFE (ft, pretrain init) 19 10.7 32.97 32.82 30.13 0.937 0.875 0.0204 0.0711

Fig. 8. Fine-tuning performance on the validation set of the Fastec-RS dataset.
Using the pre-trained model yields better performance in both training speed
and reconstruction accuracy than a random initialized model, demonstrating
the effectiveness of cross-shutter transfer.

stage methods contain five cascades, namely “DeepUnrollNet
+ BMBC [43]”, “DeepUnrollNet + DAIN [41]”, “JAMNet +
SoftSplat”, “JAMNet + SuperSloMo”, and “JAMNet + RIFE”.
In our implementation, we first utilize DeepUnrollNet or
JAMNet to sequentially recover two GS images corresponding

to the central scanline (i.e., interpolation time 1 − γ/2) from
three consecutive RS images, and then use various GS-based
VR methods to reconstruct one GS image corresponding to
the first scanline (i.e., interpolation time 1− γ).

B. Comparison and Analysis

The quantitative results are reported in Tables I and II. It
can be seen that our approach consistently achieves excel-
lent RS correction performance, outperforming state-of-the-
art methods by a large margin. Using GS-based VR methods
directly on RS cameras leads to disappointing results due to
network flaws, alluding to the extremely poor scalability and
generality of shutter-specific methods. After introducing our
shutter adapter to export the shutter-generic model, the pre-
trained knowledge on the large-scale GS dataset can be seam-
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TABLE II
QUANTITATIVE COMPARISONS OF RECOVERING GS IMAGES AT INTERPOLATION TIME 1− γ/2 ON CARLA-RS AND FASTEC-RS DATASETS [28]. GRAY

BACKGROUNDS ARE USED TO MARK THE METHODS THAT CAN ONLY PRODUCE ONE GS IMAGE. IN ADDITION TO THE EXCELLENT RS CORRECTION
PERFORMANCE OF OUR METHOD AT TIME 1− γ IN TABLE I, OUR METHOD ALSO CONSISTENTLY ACHIEVES THE HIGHEST GS RECONSTRUCTION
ACCURACY AT TIME 1− γ/2, WHICH REQUIRES ONLY A SIMPLE MODIFICATION OF EXISTING GS-BASED VR METHODS, INDICATING THAT OUR

PROPOSED UNIFIED VR MODEL CAN SERVE AS A FRUITFUL BASIS FOR CONNECTING GS AND RS CAMERAS.

Method PSNR↑ (dB) SSIM↑ LPIPS↓
CRM CR FR CR FR CR FR

DiffSfM [14] 25.93 22.88 21.44 0.770 0.710 0.1201 0.2180
AdaRSC [30] - - 28.56 - 0.855 - 0.0796
JCD [58] 28.12 27.75 26.48 0.836 0.821 0.0595 0.0943
DeepUnrollNet [28] 27.86 27.54 26.73 0.829 0.819 0.0555 0.0995
SUNet [56] 28.44 28.17 27.06 0.838 0.825 0.0702 0.1030
JAMNet [29] 31.00 30.70 28.70 0.905 0.865 0.0371 0.0691
DFRSC 2F [65] - 31.33 28.88 0.921 0.870 0.0228 0.0699
SUNet [56] + BMBC [43] 28.51 28.69 25.49 0.848 0.796 0.1033 0.2118
SUNet [56] + DAIN [41] 28.63 28.93 27.12 0.851 0.823 0.0919 0.1642
RSSR [13] 29.36 26.57 24.89 0.900 0.824 0.0553 0.1109
CVR [2] 29.41 29.19 26.67 0.915 0.838 0.0403 0.1011
Uni-SoftSplat (ft, pretrain init) 32.10 31.93 28.96 0.933 0.866 0.0206 0.0760
Uni-SuperSloMo (ft, pretrain init) 32.10 31.93 28.41 0.935 0.853 0.0244 0.0683
Uni-RIFE (ft, pretrain init) 32.01 31.80 28.72 0.928 0.863 0.0229 0.0718

Original Uni-model ft, rand init ft, pretrain init
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Fig. 9. Visual results of different models. Directly applying the original GS-based method to RS images cannot remove RS artifacts (see red lines), while
our Uni-model can tackle this issue by hot-swapping in a shutter-adaptive manner. However, a small amount of artifacts may exist, as shown by red circles.
Higher-quality GS images can be further recovered after fine-tuning. A dynamic presentation of these results can be seen in the supplementary video.

lessly hot-swapped to RS-based VR, with 47.7%, 48.2%, and
43.4% enhancements on the Carla-RS dataset, and with 26.3%,
27.7%, and 26.6% enhancements on the Fastec-RS dataset,
respectively. Note that such direct cross-shutter transfer even
surpasses the corresponding two-stage method.

As visualized in Fig. 7, high-fidelity GS video frames are
restored with rich details and fewer artifacts. Remarkably, this
also demonstrates the superior generalization ability from the
GS camera (γ = 0) to the RS camera (γ = 1). Furthermore,
the performance can be further boosted after fine-tuning with
additional training data. Compared to the randomly initialized
model, when fine-tuning with a pre-trained model as initializa-
tion, we not only achieve better performance (also see Fig. 2)
but also faster training speed (see Fig. 8). In particular, we can
observe that the two-stage method is prone to suffer from local
errors and blurring artifacts due to error accumulation, and
is also computationally inefficient. Overall, these experiments
validate the superiority of our unified architecture for shutter-
generic video reconstruction.

C. Visualization of UniVR Models

In addition to the quantitative analysis in Sec. IV-B, we
further provide visual results of different UniVR models,
i.e., original model, hot-swapped Uni-model, fine-tuned Uni-
model based on random initialization, and fine-tuned Uni-
model based on pre-trained parameters, as displayed in Fig. 9.
It can be seen that applying the original GS-based VR model
directly to RS images cannot successfully remove RS artifacts,
e.g., the buildings are still curved. By contrast, our proposed
Uni-model can hot-swap models pre-trained on large-scale GS
datasets to various RS cameras, effectively removing most of
the RS artifacts and interpolating intermediate frames. By fine-
tuning on the new shutter data, higher-quality GS images can
be reconstructed, which further demonstrates the effectiveness
and advancement of our unified VR model. In particular, using
a pre-trained model as initialization for fine-tuning can achieve
better results than randomly initializing the model.
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Fig. 10. Example results of 5× temporal upsampling on the Fastec-RS dataset [28]. These GS video images correspond to interpolation times
{−0.5,−0.3,−0.1, 0.1, 0.3, 0.5}, respectively. Our method is able to produce temporally consistent and visually pleasant GS video sequences with arbitrary
frame rates. Also, more image details can be restored by our method. Best viewed on screen.

Fig. 11. Cross-shutter transfer evaluation on SSIM against state-of-the-art
methods. Our model exhibits the most superior generalization ability, e.g.,
between the Carla-RS dataset (γ = 1) and the BS-RSC dataset (γ = 0.45).

D. Video Reconstruction Results

We generate multiple in-between GS images at arbitrary
interpolation time t ∈ [−γ/2, 1 − γ/2]. Fig. 10 illustrates
the visual result of 5× temporal upsampling, where smooth
and continuous GS video sequences are reconstructed success-
fully by our approach. In principle, our approach supports
arbitrary-framerate GS video reconstruction. Moreover, we
attach a supplementary video to dynamically show the video
reconstruction result, where 10× temporally-upsampled slow-
motion GS videos are effectively restored by our approach
from two consecutive RS frames. In summary, our unified
model can cope with general-purpose VR tasks, regardless of
the input shutter type of the camera.

E. Cross-shutter Transfer between Varying RS Cameras

A unique benefit of our unified model is that it naturally
enables cross-shutter transfer since all learnable parameters
are identical. Sec. IV-B demonstrates the generalization from
GS camera to RS camera, and here we verify the transfer
capability between RS cameras with varying γ. We leverage
the Carla-RS dataset (γ = 1) and the BS-RSC dataset (γ =
0.45) for cross-testing. Inspired by [27], we adopt the relative
decay rate 1− SSIMγi

γj
/SSIMγj

γj
, where training is performed

at the superscript (γi-dataset) and testing at the subscript (γj-
dataset). The heatmap in Fig. 11 shows that state-of-the-art
methods struggle to robustly perform cross-shutter transfers
due to significant changes in the intrinsically encapsulated
γ-specific geometry. Thanks to our unified model, strong
generalization ability is achieved by our approach with an
average relative decay rate of less than 0.1.

We further leverage real RS data, provided by [14] and [66]
with γ of 0.96 and 0.92, respectively, in which handheld
cameras move rapidly and irregularly in the outdoor scene
to capture consecutive RS image frames. We qualitatively
demonstrate the effectiveness of an RS-based VR model pre-
trained on the Carla-RS dataset (γ = 1.0) when hot-swapped
to these new cameras, i.e., the cross-shutter transfer from γ
of 1.0 to 0.96 and 0.92, as illustrated in Fig. 12. It can be
seen that our method exhibits excellent cross-shutter transfer
capabilities, which can be generalized to various types of RS
cameras to remove diverse RS artifacts in realistic scenes,
thereby achieving high-quality GS video reconstruction.
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Fig. 12. Cross-shutter transfer results between real-world RS images with varying γ. The left four columns are from [14] (γ = 0.96) and the right two
columns are from [66] (γ = 0.92). Note that they use the same model pre-trained on the Carla-RS dataset (γ = 1.0). Our approach can hot-swap to remove
various noticeable RS distortions in real-world scenarios for high-quality GS image recovery.

TABLE III
ABLATIONS ON OPTICAL FLOW ESTIMATOR. RESULTS CORRESPONDING TO INTERPOLATION TIME 1− γ ON THE CARLA-RS AND FASTEC-RS

DATASETS [28] ARE REPORTED. COMPARED TO BUILDING ON PWCNET [34] AND RAFT [33], THE PIPELINE WITH GMFLOW [32] CONSISTENTLY
ACHIEVES THE BEST PERFORMANCE, DEMONSTRATING THE EFFECTIVENESS OF THE PROPOSED UNIFIED ARCHITECTURE.

Method Optical Flow PSNR↑ (dB) SSIM↑ LPIPS↓
Estimator CRM CR FR CR FR CR FR

Uni-SoftSplat (ft, rand init) PWCNet 32.29 32.17 28.43 0.928 0.840 0.0237 0.1642
Uni-SoftSplat (ft, pretrain init) PWCNet 32.44 32.34 28.75 0.933 0.847 0.0204 0.1590
Uni-SoftSplat (ft, rand init) RAFT 32.07 32.00 29.35 0.931 0.864 0.0231 0.0784
Uni-SoftSplat (ft, pretrain init) RAFT 32.24 32.15 29.52 0.935 0.866 0.0212 0.0781
Uni-SoftSplat (ft, rand init) GMFlow 32.92 32.80 29.85 0.938 0.869 0.0197 0.0814
Uni-SoftSplat (ft, pretrain init) GMFlow 33.12 33.02 29.99 0.942 0.872 0.0182 0.0767
Uni-SuperSloMo (ft, rand init) PWCNet 32.77 32.65 28.53 0.936 0.839 0.0299 0.1235
Uni-SuperSloMo (ft, pretrain init) PWCNet 32.88 32.75 28.57 0.938 0.842 0.0243 0.1230
Uni-SuperSloMo (ft, rand init) RAFT 32.89 32.75 29.35 0.940 0.857 0.0242 0.0743
Uni-SuperSloMo (ft, pretrain init) RAFT 32.94 32.81 29.37 0.941 0.858 0.0227 0.0738
Uni-SuperSloMo (ft, rand init) GMFlow 33.15 33.07 29.22 0.941 0.856 0.0249 0.0759
Uni-SuperSloMo (ft, pretrain init) GMFlow 33.20 33.11 29.49 0.942 0.859 0.0226 0.0710

TABLE IV
COMPARISONS UNDER DIFFERENT FINE-TUNING SETTINGS. THE DATA

PERCENTAGE (DP) USED FOR FINE-TUNING IS NOTED. FINE-TUNING ON
NEW SHUTTER DATA WITH FEWER TRAINING SAMPLES (˜10%) CAN

CONVERGE THE PERFORMANCE TO A SATISFACTORY LEVEL.

Method Carla-RS Fastec-RS DPPSNR SSIM PSNR SSIM

Uni-SoftSplat 32.57 0.937 29.07 0.858 ˜10%
33.02 0.942 29.99 0.872 100%

Uni-SuperSloMo 32.74 0.939 28.57 0.844 ˜10%
33.11 0.942 29.49 0.859 100%

Uni-RIFE 32.46 0.932 29.23 0.857 ˜10%
32.82 0.936 30.13 0.875 100%

F. Ablations on Optical Flow Estimator

Previously, we employed GMFlow [32] as the optical flow
estimation backbone of UniSoftSplat and Uni-SuperSloMo. To
investigate the influence of optical flow estimation baselines on
the proposed method, we replace GMFlow with other classical
optical flow estimators, namely PWCNet [34] and RAFT [33].
Note that the recently proposed GMFlow surpasses PWCNet
and RAFT in terms of optical flow estimation accuracy. As
shown in Table III as well as Fig. 2, the overall performance
decreases when using the PWCNet or RAFT as the optical

flow estimator, but it is still significantly better than the
state-of-the-art RS-based VR methods (e.g., [2], [13]). This
demonstrates the flexibility and scalability of our proposed
architecture. In the future, our UniVR will also benefit from
the advancement of optical flow estimation models.

G. Effectiveness on Limited Fine-tuning Data
During the construction process of the RS dataset in [28],

the Carla-RS dataset has 210 video sequences for training,
each containing 9 consecutive RS image pairs; the Fastec-RS
dataset is divided into a training set of 56 sequences, each with
33 consecutive RS image pairs. We previously fine-tuned the
proposed UniVR models using all the training data (which
is abundant), and the effectiveness of our method has been
validated. To simulate new shutter data with limited training
samples and evaluate the performance of our method, we
sample the training sets of Carla-RS and Fastec-RS datasets.
Specifically, we take the first set of RS image pairs of each
sequence in the Carla-RS training set, resulting in a sampled
data percentage of 1/9. For the Fastec-RS dataset, we take
the first three sets of RS image pairs of each sequence for
fine-tuning, resulting in a sampled data percentage of 1/11.
From Table IV, we can observe that, even when dealing with
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TABLE V
QUANTITATIVE COMPARISONS OF RS CORRECTION RESULTS ON THE

REAL-WORLD BS-RSC DATASET [30]. GRAY BACKGROUNDS ARE USED
TO MARK THE METHODS THAT CAN ONLY PRODUCE ONE GS IMAGE. OUR

METHOD HAS COMPARABLE PERFORMANCE TO STATE-OF-THE-ART RS
CORRECTION METHODS. IT IS WORTH MENTIONING THAT OUR METHOD

CAN RECOVER LATENT GS IMAGES AT ARBITRARY INTERPOLATION
TIMES, REGARDLESS OF THE SHUTTER TYPE OF THE INPUT IMAGE.

Method PSNR↑ (dB) SSIM↑
DiffSfM [14] 19.80 0.698
JCD [58] 25.59 0.841
SUNet [56] 27.76 0.875
AdaRSC [30] 28.23 0.882
JAMNet [29] 32.93 0.941
DFRSC 2F [65] 33.39 0.947
FRSC [57] 24.97 0.872
DeepUnrollNet [28] 25.21 0.833
RSSR [13] 26.47 0.880
CVR [2] 28.14 0.895
Uni-SoftSplat (Ours) 32.60 0.944
Uni-SuperSloMo (Ours) 31.57 0.929
Uni-RIFE (Ours) 31.60 0.927

RS frame 1 DeepUnrollNet JCD AdaRSC

JAMNetGT Uni-SoftSplat Uni-SuperSloMo Uni-RIFE

Fig. 13. Qualitative comparisons with state-of-the-art RS correction methods
on the BS-RSC dataset [30]. Compared to DeepUnrollNet [28], JCD [58],
AdaRSC [30], and JAMNet [29], our approach can successfully remove real-
world RS artifacts and estimate high-fidelity GS images.

new shutter data with fewer training images, our pipeline still
demonstrates competitive performance. This is attributed to
our unified architecture that bridges the gap between GS-based
and RS-based VR tasks, enabling cross-shutter information
sharing and mutual collaboration.

H. RS Correction Results on Real-world BS-RSC Dataset

Since the real-world BS-RSC dataset [30] is released for
time-specific RS correction task, we leverage it to train our
method to generate the GS image corresponding to the central
scanline of the second RS frame, i.e., t = 1 − γ/2. As
shown in Table V and Figs. 13 and 14, our unified model
can perform well for real-world RS correction, where signifi-
cant de-distortion capabilities are highlighted, even surpassing
networks dedicated to the time-specific RS correction. Note
that this does not require laborious network design, but only
the migration of the GS-based VR method in conjunction with
our tractable shutter adapter. Taken together, our pipeline owns
great potential both for time-specific RS effect removal and for
time-arbitrary GS interpolation.

V. DISCUSSION AND LIMITATION

A. Motivation for Selecting GS-based VR Baselines

We approach three well-established GS-based VR baselines
(i.e., SoftSplat [15], SuperSloMo [3], and RIFE [16]), and
adapt them to three tractable unified VR models (namely, Uni-
SoftSplat, Uni-SuperSloMo, and Uni-RIFE) by embedding the
parameter-free shutter adapter. We selected these three GS-
based VR baselines because they are the most representative
flow-based frame interpolation frameworks. (i) Among the
methods oriented to the intermediate motion approximation of
forward warping (Type 1), the most prevalent GS-based VR
baseline is SoftSplat [15]. We believe that some subsequent
improvements of SoftSplat, such as [1], [45], [67], can also
be easily transformed into an effective UniVR model in the
same vein. (ii) Among the methods oriented to the intermediate
motion approximation of backward warping (Type 2), the
pioneering GS-based VR method is SuperSloMo [3]. We
believe that some of its subsequent improvement work, such
as [43], [44], [61], can also be similarly converted into a viable
UniVR model. (iii) Among the methods of directly learning
intermediate motions by sub-networks (Type 3), the seminal
GS-based VR baseline is RIFE [16]. It will also be feasible to
adapt its successors, e.g., [52], [53], [54], by simply changing
the temporal interpolation instance outside the network. In the
future, we will port our ideas to these follow-up GS-based VR
methods to more fully validate the generality and effectiveness
of our proposed shutter adapter.

B. Discussion on the Characteristics of Three Motion Models

As far as we know, there is no common conclusion in
the generally-applicable GS-based VR about which forward,
backward, and learning motion models are better. We have
the following observations: (i) The forward model is more
conducive to temporal continuity interpolation, but it may
lead to hole artifacts when multiple pixels are mapped to the
same position [2], [13], [15], [26]. (ii) The backward model
is more efficient in implementation, but recovering a smooth
video often requires supervision from a larger number of GS
GT frames [3], [43], [61], [68]. (iii) The learning model can
adaptively estimate more general motion in a data-dependent
manner without the need for motion assumptions, becoming a
hot topic in the past two years [16], [31], [51], [52], [53], [54].
However, to achieve consistent multi-frame reconstruction, it
also relies on more moments of GS GT for supervision.

C. Limitation and Future Work

Our approach can be adapted to GS and various RS inputs
by customizing the readout time ratio γ ∈ [0, 1]. Note that
the GS-based VR method is a special case of our unified
VR model when γ = 0. Nevertheless, there are still several
limitations, such as:
• Model architecture aspect. In this paper, we derive three

UniVR variants, i.e., Uni-SoftSplat, Uni-SuperSloMo,
and Uni-RIFE, which can be used to reconstruct a co-
herent video from two consecutive images, regardless of
the input shutter type. They involve intermediate motion
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Fig. 14. Four sets of RS correction results on the real-world BS-RSC dataset [30]. Existing RS correction methods (i.e., DeepUnrollNet [28], JCD [58],
AdaRSC [30]) are difficult to completely remove RS distortions and even introduce other undesired artifacts (e.g., ghosting, non-smoothing, missing details,
local errors). In contrast, our approach obtains higher-quality GS image reconstruction results.

estimation based on forward warping [15], backward
warping [3], and direct learning [16], respectively. As
such, integrating their essence into a more unified and
versatile VR model architecture deserves further research.

• Training data aspect. Our UniVR insight might shed
some light on jointly training a single model based on
diverse shutter datasets to adapt to cameras with multiple
shutter types. We have not shown such an experiment in
this paper. This would require addressing some additional
challenges, e.g., how to balance different shutter data
during joint training. In this paper, we focus on and
demonstrate the feasibility and effectiveness of extending
the well-established GS-based VR approach to compat-
ible GS and RS cameras, where abundant or limited
new RS training data is employed (cf., Sec. IV-G). In
the future, it is promising that a single UniVR model
is jointly trained on a collection of datasets spanning
different shutters.

• Multi-frame fusion aspect. We have verified the appli-
cability of our UniVR model to the 2-frame input set-
ting. Recent studies have shown that exploiting temporal
contextual information from neighboring multiple frames
can effectively improve the image reconstruction quality,
whether based on GS [46], [47], [69] or RS [27], [30],
[58] cameras. Therefore, extending our UniVR pipeline
to multi-frame inputs is an intriguing future direction.

• Extreme scene aspect. Currently, both GS-based and RS-
based VR methods primarily focus on clear video frames.
However, in real-world applications, extreme conditions
such as low-light [70] and high-speed motion [71] often
degrade the image quality. Developing a unified model
to address these challenges would be a valuable research
topic, which can open up new avenues for improving VR
models in complex environments.

VI. CONCLUSION

In this paper, we proposed a universal video reconstruction
framework that processes a variety of shutters using a single
model with shared parameters. Compared with shutter-specific
methods, our approach shows a superior ability for cross-
shutter transfer, which opens up the possibility of bridging

the shutter-generic video reconstruction task. Based on models
pre-trained on large-scale GS datasets, our approach allows
hot-swapping to various RS camera types during inference.
With fine-tuning new shutter data, our approach significantly
outperforms the best shutter-specific methods in terms of
performance and generalization.
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