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Abstract

Polarimetric imaging is a challenging problem in the field of polarization-based
vision, since setting a short exposure time reduces the signal-to-noise ratio, making
the degree of polarization (DoP) and the angle of polarization (AoP) severely de-
generated, while if setting a relatively long exposure time, the DoP and AoP would
tend to be over-smoothed due to the frequently-occurring motion blur. This work
proposes a polarimetric imaging framework that can produce clean and clear polar-
ized snapshots by complementarily fusing a degraded pair of noisy and blurry ones.
By adopting a neural network-based three-phase fusing scheme with specially-
designed modules tailored to each phase, our framework can not only improve the
image quality but also preserve the polarization properties. Experimental results
show that our framework achieves state-of-the-art performance.

1 Introduction

Polarimetric imaging aims to obtain the degree of polarization (DoP) and the angle of polarization
(AoP) of the scene to provide physical clues for downstream polarization-based vision applications
(e.g., reflection removal [16], shape from polarization [5], dehazing [31], etc.). In practice, the DoP
and AoP cannot be captured directly, but are usually calculated from polarized snapshots1 in an
indirect manner. However, since a polarizer would block part of the light, selecting an appropriate
exposure time could be challenging, making the captured polarized snapshots often degrade [15, 33].
As shown in Fig. 1 (left), setting a short exposure time would result in a very low signal-to-noise ratio
(SNR), making the DoP and AoP severely degenerated; while if setting a relatively long exposure time
to increase the SNR, motion blur is more likely to occur, making the DoP and AoP over-smoothed,
as shown in Fig. 1 (middle). To deal with the above issues, several methods have been proposed
to handle the low-light noise [10, 25, 15, 32] or motion blur [33] in the polarized images. Since
these methods can work in a polarization-aware manner (i.e., they explicitly take the preservation of
polarization properties into consideration), they usually demonstrate higher performance compared
with the corresponding methods designed for conventional images [3, 29, 14, 23]. However, due to
the ill-posedness of the problems they face, the quality of their results is still limited.

Considering the fact that different types of degraded polarized snapshots would provide complemen-
tary knowledge, i.e., the short-exposure noisy ones tend to be clear while the long-exposure blurry

† Most of this work was done as a PhD student at Peking University.
* Corresponding author.

1A polarized snapshot consists of four polarized images with different polarizer angles (0◦, 45◦, 90◦, 135◦),
which can be captured using a polarization camera in a single shot or using a polarizer in multiple shots.
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Figure 1: In polarimetric imaging, since a polarizer would block part of the light, setting a short
exposure time would result in a low SNR, making the DoP and AoP severely degenerated (left);
while if setting a relative long exposure time to increase the SNR, motion blur is more likely to
occur, making the DoP and AoP over-smoothed (middle). Our framework can produce clean and
clear results with high-quality DoP and AoP by complementarily fusing a degraded pair of noisy and
blurry polarized snapshots (right).

ones tend to be clean, an intuitive strategy to improve the quality of polarimetric imaging could be
complementarily fusing a degraded pair of noisy and blurry polarized snapshots. Such a strategy can
not only achieve an effect similar to “boosting” (i.e., combining multiple weak ones into a strong
ones) to produce clean and clear results, but also bring the existing degraded polarized snapshots
alive. However, current methods that can fuse noisy and blurry pairs [17, 2, 27, 28] are designed for
conventional images, which are not suitable for polarimetric imaging since they cannot preserve the
polarization properties, resulting in inaccurate DoP and AoP.

In this paper, we propose a quality-improved and property-preserved polarimetric imaging framework
that can produce clean and clear polarized snapshots by complementarily fusing a degraded pair of
noisy and blurry ones, as shown in Fig. 1 (right). Specifically, we design a neural network-based
three-phase fusing scheme that can explicitly take the preservation of polarization properties into
consideration. The first phase is irradiance restoration, aiming to restore the polarization-unrelated
high-level irradiance information of the scene by recovering the total intensity of the light, where
the color and structure cue fusion (CSCF) module is proposed to make full use of the color and
structure cues encoded in the Stokes parameters. The second phase is polarization reconstruction,
aiming to establish the physical correlation between the polarized images by reconstructing the DoP
and AoP, where the coherence-aware aggregation (CAG) and coherence injection (CI) modules are
proposed to optimize the values of the DoP and AoP in a Cartesian coordinate representation. The
third phase is artifact suppression, aiming to suppress the artifacts lying in the details by performing
refinement in the image domain. Unlike the fusing methods designed for conventional images
[17, 2, 27, 28], our framework can fully utilize the complementary knowledge from the noisy and
blurry pairs in a polarization-aware manner, by virtue of our three-phase fusing scheme. Different
from the polarized image enhancement methods [32, 33] designed for enhancing a single noisy or
blurry polarized snapshot, our framework can effectively explore the usage of different physical
quantities to improve the overall performance, thanks to the specially-designed modules tailored to
each phase. To summarize, this paper makes contributions by demonstrating:

• A quality-improved and property-preserved polarimetric imaging framework, for the first
time applying a fusing strategy to polarimetric imaging.

• A neural network-based three-phase fusing scheme, fully utilizing the complementary
knowledge from the noisy and blurry pairs in a polarization-aware manner.

• Specially-designed modules tailored to each phase, effectively exploring the usage of
different physical quantities to improve the overall performance.

2 Related work

Low-light enhancement and deblurring for polarized images. There are many methods specially
designed for enhancing polarized images, aiming to improve the quality of polarimetric imaging.
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IPLNet [10] and ColorPolarNet [25] adopted residual dense blocks to build the backbone for dealing
with multiple polarized low-light noisy images simultaneously. Li et al. [15] proposed a noise
modeling method for realistic polarized low-light data synthesis along with a powerful vision
Transformer-based network structure to reduce the noise. PLIE [32] designed a novel Stokes-domain
low-light enhancement strategy and proposed a dual-branch network to reduce the artifacts lying
in the DoP and AoP. PolDeblur [33] proposed a polarized image deblurring pipeline along with a
two-stage network to remove the motion blur in a polarization-aware manner. However, they are not
good at recovering details due to the ill-posedness of the problem they face.

Image enhancement by fusing noisy and blurry pairs. In comparison with the image enhancement
methods that only take a single degenerated image as the input (e.g., low-light enhancement [3, 29]
or deblurring [14, 23] methods that focus on processing either a single low-light noisy image or a
single blurry image), fusing noisy and blurry pairs could usually achieve higher performance and
better generalization ability since additional information can be acquired. Early works are usually
based on numerical optimization. Yuan et al. [26] adopted a residual deconvolution process along
with a gain-controlled deconvolution process to reduce the overall ringing artifacts during fusing.
Choi et al. [4] designed a novel camera system that could capture two blurry images and one noisy
image in a single shot, and proposed a motion-based image merging algorithm to merge the captured
images into a high-quality one. Son and Park [22] proposed a patches-based point spread function
(PSF) estimation approach by extracting the structure information from the noisy image, along with
a channel-dependent deblurring method to obtain the blur-free image. Son et al. [21] proposed a
scheme to alternatively estimate the PSF and perform the deconvolution operation on the blurry
image using the noisy image as a guiding signal. Gu et al. [7] proposed a method based on Gaussian
mixture model to estimate the underlying intensity distribution of the noisy and blurry pairs first
and then perform the pixel fusing. Recently, deep neural networks have also been adopted to handle
this problem. LSD2 [17] and LSFNet [2] proposed to use convolutional neural networks to fuse the
images in an end-to-end manner. SelfIR [27] proposed a self-supervised learning strategy to restore
the clean and clear image contents. D2HNet [28] adopted a two-phase pipeline to further increase
the visual quality. However, the above methods are designed to enhance the quality of a single input
image, which would show inferior performance when handling multiple polarized images.

3 Method

3.1 Problem formulation and overall framework

As shown in Fig. 1, our goal is to reconstruct a clean and clear polarized snapshot with preservation
of polarization properties (denoted as I = Iα1,2,3,4) from a degraded pair of noisy and blurry
polarized snapshots (denoted as L = Lα1,2,3,4 and B = Bα1,2,3,4 respectively), where α1,2,3,4 =
0◦, 45◦, 90◦, 135◦ stand for the polarizer angles of the polarized images in the polarized snapshot
respectively. Once I becomes available, high-quality DoP p and AoP θ could be calculated using

p =

√
S2
1 + S2

2

S0
and θ =

1

2
arctan(

S2

S1
), (1)

where S0,1,2 are called the Stokes parameters [13]2, which can be computed as
S0 =

1

2
(Iα1

+ Iα2
+ Iα3

+ Iα4
) = Iα1

+ Iα3
= Iα2

+ Iα4

S1 = Iα3 − Iα1

S2 = Iα4
− Iα2

. (2)

Here, we can see S0 describes the total intensity of the light, which is polarization-unrelated. In the
following, we will use SL

0,1,2 and SB
0,1,2 to denote the Stokes parameters of L and B respectively.

The overall reconstruction process of our framework can be formulated as maximizing a posteriori of
the output I conditioned on the inputs L and B along with the fusing function f parameterized by Ψ:

argmax
Ψ

f(I|L,B,Ψ). (3)

2More information about the Stokes parameters could be found in the supplementary material.
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Figure 2: The workflow of our framework, consisting of three phases: irradiance restoration, polar-
ization reconstruction, and artifact suppression.

To solve this maximum a posteriori estimation problem, we design a neural network-based three-
phase fusing scheme to implement the fusing function f , as shown in Fig. 2. First, the irradiance
restoration phase restore the polarization-unrelated high-level irradiance information of the scene,
by enhancing SL

0 to obtain the coarse value of the total intensity of the light St
0 under the guidance

of the color and structure cues provided by SB
0 and SB

1,2 respectively. Then, we compute (xt,yt),
which are the coarse values of the DoP and AoP in a Cartesian coordinate representation, and feed
them into the polarization reconstruction phase to obtain the corresponding enhanced values (x′,y′)
with the help of (xB,yB) (the DoP and AoP of B in a Cartesian coordinate representation) along
with the irradiance clues encoded in St

0, aiming to establish the physical correlation between the
polarized images. Finally, we compute the coarse values of the polarized images I′α1,2,3,4

, and adopt
an artifact suppression phase to obtain Iα1,2,3,4 that make up the clean and clear polarized snapshot I ,
by suppressing the artifacts in the image domain for increasing the quality of details.

3.2 Phase1: Irradiance restoration

This phase aims to restore the polarization-unrelated high-level irradiance information for providing
further guidance. As shown in Fig. 1, since L would retain better contours than B, we propose
to learn the residual between SL

0 and St
0 instead of the residual between SB

0 and St
0. However, SL

0
usually suffers from color bias and noise, which would increase the difficulty of feature extraction,
resulting in erroneous global tone and less salient local structure. Fortunately, despite that SB

0 would
suffer from motion blur, it still contains undamaged color information due to the relatively high SNR
of B; besides, SL

1,2 could provide distinctive structure information since both of them describe the
difference between two polarized images (see Eq. (2)), which would highlight the regions with high
gradients. Therefore, we propose to effectively explore the usage of SB

0 and SL
1,2.

Specifically, we first explicitly adopt two modal-specific feature encoders F c
enc and F s

enc to extract the
multiscale color and structure features Fc

1,2,3 and Fs
1,2,3 from SB

0 and SB
1,2 respectively for guidance.

Then, we propose to use three color and structure cue fusion (CSCF) modules to apply the guidance
provided by Fc

1,2,3 and Fs
1,2,3 to Fin

1,2,3 in a successive manner, and output Fout
1,2,3 for restoring

St
0. Here, Fin

1,2,3 and Fout
1,2,3 denote the multiscale input and output features of the CSCF modules

respectively, which are extracted from and fed into the encoder and decoder part of a modified
autoencoder architecture [9] where a dense block [11] is inserted into the coarsest layer.
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Figure 3: The details of the proposed CSCF (color and structure cue fusion) and CAG (coherence-
aware aggregation) modules.

CSCF: color and structure cue fusion. The CSCF module aims to address the issues of erroneous
global tone and less salient local structure in the feature space. Without losing generality, we describe
how the i-th scale (i = 1, 2, 3) CSCF takes Fc

i , F
s
i, and Fin

i as the input and output Fout
i , as shown in

Fig. 3 (a). We first learn a multiplier mi and a bias bi from Fc
i by

mi = Bc(Cm(Sigmoid(Fc
i))) and bi = Bc(Cb(F

c
i)), (4)

where Bc denotes a bottleneck block [8] used for feature projection, Cm and Cb denote two different
convolution layers. Then, we apply an affine transformation to Fin

i using mi and bi, to adjust the
color in the feature space for solving the issue of erroneous global tone by

Ft
i = mi ⊙ Fin

i + bi, (5)

where Ft
i denote the transformed feature, ⊙ denotes element-wise product operation. Finally, to solve

the issue of less salient local structure, we apply a deformable convolution layer [34] D to align the
gradients and overcome the possible shifts caused by the exposure interval in the feature space by

Fout
i = D(Ft

i,∆Pi,∆Mi), (6)

where ∆Pi and ∆Mi are the offsets of sampling points and the modulation scalars learned by

∆Pi = Bs(CP (F
s
i)) and ∆Mi = Bs(CM (Fs

i)), (7)

where Bs, CP , and CM denotes another bottleneck block [8] and convolution layers respectively.

3.3 Phase2: Polarization reconstruction
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Figure 4: The Cartesian co-
ordinate representation of the
DoP and AoP.

This phase aims to establish the physical correlation between the
polarized images by reconstructing the high-quality DoP and AoP.
To achieve it, previous methods usually choose to repair the degen-
erated values in the image domain [10, 25, 15, 33] or Stokes domain
[32] for an indirect reconstruction, since the degeneration patterns
of the DoP and AoP could be more complicated than the polarized
images or Stokes parameters due to their non-linearity (see Eq. (1)),
which could increase the ill-posedness. In contrast, we propose to re-
construct the DoP and AoP in a Cartesian coordinate representation,
which can not only relieve the ill-posedness since the non-linearity
reduces, but also optimize the values of the DoP and AoP in a direct
manner to prevent error accumulation.

Here, we explain what is the Cartesian coordinate representation
of the DoP and AoP: as shown in Fig. 4, if we regard p and 2θ in
Eq. (1) as the magnitude and angle of a vector S⃗ lying inside a unit
circle, the Cartesian coordinate representation of S⃗ could be written
as (x,y), which satisfying

x =
S1

S0
and y =

S2

S0
. (8)
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Specifically, we propose to learn the residual between (xt,yt) and (x′,y′), with the help of (xB,yB)
and St

0, where

xt =
SL
1

St
0

, yt =
SL
2

St
0

, xB =
SB
1

SB
0

and yB =
SB
2

SB
0

. (9)

First, we propose to use a coherence-aware aggregation (CAG) module to estimate the coherence
volumes Fx and Fy from xB,t, yB,t, and St

0. Then, we adopt two branches for reconstructing x′ and y′

respectively. The first branch contains a feature encoder Fx
enc and three cascaded coherence injection

(CI) modules using Fx for guidance. Similarly, the second branch contains a feature encoder Fy
enc

and three cascaded CI modules using Fy for guidance.

CAG: coherence-aware aggregation. The CAG module aims to aggregate the priors about the
coherence between the polarization properties and the irradiance information. As shown in Fig. 3
(b), it contains two symmetrical parts for estimating Fx and Fy respectively. Here, we only describe
how to estimate Fx since the estimation process of Fy could be similar. We first adopt two bottleneck
blocks [8] to extract polarization features and irradiance features from xB,t and St

0 respectively.
Then, we project the extracted features into the coherence features Zx ∈ RN×C×H×W using a
convolution layer, where N,C,H,W represent the batch size, number of channels, height, and
width respectively. After that, inspired by CBAM [24] that can make full use of the inter-channel
relationship of features, we propose to learn an attention vector Ax ∈ RN×C×1×1 to recalibrate Zx
for obtaining Fx ∈ RN×C×H×W :

Fx = Ax ⊙ Zx = P (MLP (Sigmoid(Zx)))⊙ Zx, (10)

where P denotes the global average pooling operation and MLP denotes a multi-layer perceptron.

CI: coherence injection. The CI module aims to inject the priors about coherence into the recon-
struction of xt and yt. To enlarge the receptive field and include long-range association, we choose to
use Transformer modules [6] with cross-attention layers. Taking one of the CI module in the first
branch (the branch for reconstructing xt) as an example, denoting its input as Fin

x (from the previous
CI module or Fx

enc) and Fx (from the CAG module), we let Fin
x to serve as the query vector and adopt

convolution layers to learn the key vector and the value vector from both Fin
x and Fx.

3.4 Phase3: Artifact suppression

With St
0 and (x′,y′) available, we could compute the coarse values of the polarized images I′α1,2,3,4

.
However, we should not output I′α1,2,3,4

directly since their quality is still not satisfying. This is
because St

0 and (x′,y′) are estimated from two different phases so that the irradiance-polarization
consistency would break, bringing artifacts to the details. Therefore, we add an extra phase to refine
I′α1,2,3,4

for increasing the quality of details by suppressing the artifacts in the image domain.

Specifically, we propose to learn the residual between I′α1,2,3,4
and Iα1,2,3,4

. According to Eq. (2), we
choose to divide I′α1,2,3,4

into two groups (I′α1,3
and I′α2,4

) first to ensure both of them contain the
full irradiance information and each of them contains half of the polarization properties. Then, we
use two convolution layers to extract the features of I′α1,3

and I′α2,4
respectively, and adopt a feature

merger Fmer to obtain the merged dual-group features Fmer. After that, a U-Net backbone [18] is used
to perform pixel-wise multi-scale feature refinement on Fmer, and another two convolution layers are
adopted for decoding the refined dual-group features into the residuals of each group.

4 Implementation details

Loss function. The total loss function can be written as

L = Ls + Lp + Lr, (11)

which consists of three terms to optimize the three phases respectively: irradiance loss Ls, polarization
loss Lp, and refinement loss Lr. The irradiance loss could be written as

Ls = λa
sL1(S

t
0,S

gt
0 ) + λb

sLperc(S
t
0,S

gt
0 ), (12)

where λa,b
s are set to be 10.0 and 0.05 respectively, L1 and Lperc denote the ℓ1 loss and perceptual

loss respectively, the subscript gt labels the ground truth throughout this paper. The perceptual loss
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Table 1: Quantitative comparisons on synthetic data. The comparisons involve our framework, the
state-of-the-art polarized image low-light enhancement method PLIE [32] and its improved version
PLIE+, the only existing polarized image deblurring method PolDeblur [33] and its improved version
PolDeblur+, and four learning-based image enhancement methods designed for conventional images
that also fuse noisy and blurry pairs (LSD2 [17], LSFNet [2], SelfIR [27], and D2HNet [28]).

PSNR-p SSIM-p PSNR-θ SSIM-θ PSNR-S0 SSIM-S0

Ours 29.23 0.797 16.96 0.382 39.05 0.982
PLIE [32] 27.91 0.790 15.92 0.371 38.95 0.978
PLIE+ 27.98 0.794 16.93 0.379 39.01 0.979
PolDeblur [33] 24.52 0.676 15.73 0.280 26.12 0.794
PolDeblur+ 25.31 0.758 16.75 0.374 39.04 0.981
LSD2 [17] 25.73 0.662 13.75 0.288 27.88 0.905
LSFNet [2] 25.56 0.693 15.90 0.282 26.76 0.826
SelfIR [27] 19.43 0.647 15.39 0.231 25.90 0.785
D2HNet [28] 24.45 0.671 15.63 0.264 25.25 0.803

Lperc is defined as

Lperc(S
t
0,S

gt
0 ) = L2(ϕh(S

t
0), ϕh(S

gt
0 )), (13)

where L2 denotes the ℓ2 loss, ϕh denotes the feature map from h-th layer of VGG-19 network [20]
pretrained on ImageNet [19], and we use activations from V GG3,3 convolution layer here. The
polarization loss could be written as

Lp = λa
p(L1(x

′,xgt) + L1(y
′,ygt)) + λb

p(Ltv(x
′) + Ltv(y

′)) + λc
pL

1
pol(x

′,xgt,y′,ygt), (14)

where λa,b,c
p are set to be 1.0, 0.15, and 1.0 respectively, Ltv denotes the total variation loss, L1

pol is a
polarization-based regularization term to ensure the ratio between x′ and y′ defined as

L1
pol(x

′,xgt,y′,ygt) = L2(x
′ ⊙ ygt,y′ ⊙ xgt). (15)

The refinement loss could be written as

Lr = λa
rL1(Iα1,2,3,4

, Igt
α1,2,3,4

) + λb
rL

2
pol(Iα1,2,3,4

), (16)

where λa,b
r are set to be 10.0 and 100.0 respectively, L2

pol denotes another polarization-based regular-
ization term defined as

L2
pol(Iα1,2,3,4

) = L2(Iα1
+ Iα3

, Iα2
+ Iα4

), (17)

which is similar to the one used in [30] for enforcing the preservation of polarization properties.

Dataset preparation. We propose to generate a synthetic dataset due to the fact that there is no
public dataset for our settings. First, we choose the PLIE dataset [32] as our data source. It provides
short-exposure polarized snapshots that suffer from low-light noise along with the corresponding
high-quality reference snapshots captured by a Lucid Vision Phoenix polarization camera, which
could serve as L and I . Then, we adopt the approach proposed in [33] to generate the blurry polarized
snapshots that suffer from motion blur, which could be served as B. To generate more severe motion
blur for increasing the diversity, we add impulsive variation [1] to the motion trajectories. The images
are resized and randomly cropped to 256 × 256 (512 × 512) pixels in the training (test) set. The
training (test) set contains 7500 (300) different images in total.

Training strategy. Our framework is implemented using PyTorch with 2 NVIDIA 2080Ti GPUs, and
a two-stage training strategy is applied. First, to ensure a stable initialization of the training process,
we train the irradiance restoration phase and the polarization reconstruction phase independently for
300 epochs with learning rates of 0.01 and 0.0001 respectively. Then, we train the entire network for
100 epochs with learning rate of 0.0001, and in this training stage we multiply the loss terms Ls,p,r
with 5.0, 10.0, and 10.0 respectively. For optimization, we use Adam optimizer [12] with β1 = 0.5,
β2 = 0.999.
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Figure 5: Qualitative comparisons on synthetic data. See the caption of Tab. 1 for explanation. We
visualize the DoP p and AoP θ using color maps after normalizing and averaging the RGB channels
(as done in other methods designed for polarized images [10, 25, 15, 32, 33]) throughout this paper.

5 Experiments

5.1 Evaluation on synthetic data

First, we compare our framework with the state-of-the-art polarized image low-light enhancement
method PLIE [32] and the only existing polarized image deblurring method PolDeblur [33]. Besides,
we also compared with PLIE+ and PolDeblur+ (the improved versions of PLIE [32] and PolDeblur
[33], where slight modifications are made to allow them to accept noisy and blurry pairs as the
input) to ensure a fair comparison. In addition, four learning-based image enhancement methods
designed for conventional images that also fuse noisy and blurry pairs (LSD2 [17], LSFNet [2],
SelfIR [27], and D2HNet [28]) are also compared to ensure a comprehensive evaluation. Note that
all compared methods are retrained on our dataset. As other methods designed for polarized images
[10, 25, 15, 32, 33] do, we not only evaluate the quality of p and θ, but also the quality of S0.

To evaluate the results quantitatively, we adopt two frequently-used metrics including PSNR and
SSIM. Results are shown in Tab. 1, where our framework consistently outperforms the compared
methods on all metrics. These results could demonstrate three points:

(1) Complementarily fusing can improve the quality of polarimetric imaging, which could be
deduced from the fact that PLIE+ and PolDeblur+ (which can accept a degraded pair of
noisy and blurry polarized snapshots as the input) achieve better performance compared
with PLIE [32] and PolDeblur [33] (which can only accept a single degraded polarized
snapshot as the input) respectively.

(2) Our framework can utilize the complementary knowledge in a more effective manner, since
our framework still outperforms PLIE+ and PolDeblur+ despite that they share the same
kind of input as our framework.
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Figure 6: Qualitative comparisons on real data. See the caption of Fig. 5 for explanation.

(3) Designing a fusing framework tailored to the polarized images is necessary, since the
performance of both LSD2 [17], LSFNet [2], SelfIR [27], and D2HNet [28] is inferior in
the task of polarimetric imaging.

Visual quality comparisons are shown in Fig. 53. As for p and θ, our framework can produce clean
and clear edges, since it can make full use of the complementary knowledge in a polarization-aware
manner, while the compared methods suffer from noisy or blurry artifacts. As for S0, our results
resemble the reference more closely with less color and structure distortion.

5.2 Evaluation on real data and downstream application

To evaluate on real data, we capture several pairs of noisy and blurry polarized snapshots from various
scenes using a Lucid Vision Phoenix polarization camera. Qualitative results are shown in Fig. 64,
from which we can see our framework can produce high-quality details.

Besides, in Fig. 7 we show that complementarily fusing can be beneficial to downstream polarization-
based vision application such as reflection removal. Here, we feed a short-exposure noisy, a long-
exposure blurry, and the fused polarized snapshots into a reflection removal network (RSP [16])
respectively. From the results we can see the reflection-removed image with the fusing process of our
framework contains more detailed textures and less reflection contamination.

5.3 Ablation study

To verify the validity of each design choice, we conduct a series of ablation studies and show
comparisons in Tab. 2. First, we show the effectiveness of the first phase by substituting it with

3Additional results can be found in the supplementary material.
4Please see the supplementary material for additional results.
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Reflection-contaminated input Reflection-removed output 

Figure 7: Results of reflection removal (using RSP [16]). Please zoom-in for better details.

Table 2: Quantitative evaluation results of ablation study.

PSNR-p SSIM-p PSNR-θ SSIM-θ PSNR-S0 SSIM-S0

LSD2 [17] as Phase1 29.12 0.794 16.91 0.376 38.98 0.980
W/o CSCF 29.21 0.796 16.93 0.378 38.94 0.978
W/o CAG 29.07 0.793 16.87 0.371 38.97 0.980
W/o CI 28.92 0.788 16.90 0.371 38.90 0.976
W/o Cartesian 28.04 0.785 16.58 0.363 38.84 0.971
W/o refinement 29.02 0.791 16.84 0.367 38.89 0.976
Complete framework 29.23 0.797 16.96 0.382 39.05 0.982

a learning-based image enhancement methods designed for conventional images (LSD2 [17] as
Phase1). The reason why we choose LSD2 [17] is that it outperforms other similar methods (LSFNet
[2], SelfIR [27], and D2HNet [28]) in restoring S0 (see Tab. 1). We can see that the performance
becomes inferior since our first phase can make full use of the color and structure cues encoded in the
Stokes parameters while LSD2 [17] cannot. Then, we show the effectiveness of the proposed CSCF
modules in the first phase (W/o CSCF) by substituting them with vanilla convolution layers. We can
see that the performance degenerates since the CSCF modules are more suitable for addressing the
issues of erroneous global tone and less salient local structure in the feature space. Similarly, we
also show the effectiveness of the proposed CAG module and CI modules in the second phase (W/o
CAG and W/o CI). We can see that the CAG module can facilitate the establishment of the physical
correlation between the polarized images, and the CI modules can offer better optimization to the
values of the DoP and AoP. Besides, we demonstrate the advantage of reconstructing the DoP and
AoP in a Cartesian coordinate representation (W/o Cartesian) by directly reconstructing their values.
We can see that the performance degraded severely due to the non-linearity. Finally, we verify the
necessity of the third phase used for refinement (W/o refinement) by removing it. These results show
our complete framework achieves the first performance with the proposed specific designs.

6 Conclusion

We propose a quality-improved and property-preserved polarimetric imaging framework by com-
plementarily fusing a degraded pair of noisy and blurry polarized snapshots. By adopting a neural
network-based three-phase fusing scheme consisting of irradiance restoration, polarization reconstruc-
tion, and artifact suppression, with specially-designed modules tailored to each phase, our framework
can produce clean and clear polarized snapshots with high-quality DoP and AoP.

Limitations. Since our framework is designed for reconstructing a single high-quality polarized
snapshot from a degraded pair of noisy and blurry polarized snapshots, it cannot reconstruct a
polarized video. Besides, it cannot be used to fuse conventional RGB images since our first phase
requires the Stokes parameters as part of the input, which are not available in such a setting.
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A Appendix

Please see the supplemental material for the things mentioned in Footnote 2, 3, and 4.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: No need for justification since the answer is “Yes”.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: No need for justification since the answer is “Yes”.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]

Justification: No need for justification since the answer is “Yes”.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: No need for justification since the answer is “Yes”.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: No need for justification since the answer is “Yes”.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: No need for justification since the answer is “Yes”.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: No need for justification since the answer is “Yes”.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: No need for justification since the answer is “Yes”.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: No need for justification since the answer is “Yes”.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: No need for justification since the answer is “Yes”.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
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A. More information about the Stokes parameters

When placing a polarizer with polarizer angle α in front of the camera, according to the Malus’ law
[3], the captured polarized image1 Iα can be calculated as

Iα =
1

2
I · (1− p · cos(2(α− θ))), (1)

where I denotes the total intensity of the light, which can be regarded as the unpolarized image
(i.e., the image captured without using the polarizer), p ∈ [0, 1] and θ ∈ [0, π] denote the degree of
polarization (DoP) and the angle of polarization (AoP) of the incoming light to the sensor respectively.
Reformulating Eq. (1) into a polynomial form, Iα can be expressed as a linear combination of three
parameters S0,1,2:

Iα =
1

2
S0 −

1

2
cos(2α) · S1 −

1

2
sin(2α) · S2, (2)

where


S0 = I

S1 = I · p · cos(2θ)
S2 = I · p · sin(2θ)

(3)

are called the Stokes parameters [4] of the incoming light to the sensor. Once S0,1,2 are available, the
DoP p and AoP θ could be acquired by

p =

√
S2
1 + S2

2

S0
and θ =

1

2
arctan(

S2

S1
). (4)

The downstream polarization-based vision applications (e.g., reflection removal [5], shape from
polarization [2], dehazing [9], etc.) usually require the DoP p and AoP θ to provide physical clues.
To acquire p and θ, we need at least three polarized images with different polarizer angles since
Eq. (3) contains three unknowns S0,1,2. In practice, instead of using a conventional camera equipped
with a polarizer to capture three times by rotating the polarizer, using a polarization camera could be
more convenient. This is because a polarization camera (e.g., the Lucid Vision Phoenix polarization

† Most of this work was done as a PhD student at Peking University.
* Corresponding author.

1Here we assume the camera response function to be linear since the polarization cameras usually output
images with a linear camera response function. Besides, we only focus on linear polarization (i.e., do not
consider circular polarization) since polarization cameras only equip linear polarizers.
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camera used in this work) can capture a polarized snapshot I consisting of four polarized images
Iα1,2,3,4 with different polarizer angles α1,2,3,4 = 0◦, 45◦, 90◦, 135◦ in a single shot. Plugging
α1,2,3,4 into Eq. (1), Eq. (2), and Eq. (3), we could deduce that the Stokes parameters S0,1,2 can be
directly calculated from Iα1,2,3,4

:
S0 = 1

2 (Iα1 + Iα2 + Iα3 + Iα4) = Iα1 + Iα3 = Iα2 + Iα4

S1 = Iα3 − Iα1

S2 = Iα4
− Iα2

, (5)

making the acquisition of p and θ much more easily.

B. Additional results on synthetic data

In this section, we provide additional visual quality comparisons on synthetic data among our
framework, the state-of-the-art polarized image low-light enhancement method PLIE [10] and its
improved version PLIE+, the only existing polarized image deblurring method PolDeblur [11] and
its improved version PolDeblur+, and four learning-based image enhancement methods designed
for conventional images that also fuse noisy and blurry pairs (LSD2 [6], LSFNet [1], SelfIR [7], and
D2HNet [8]), as shown in Fig. A., Fig. B., and Fig. C..

C. Additional results on real data

In this section, we provide additional visual quality comparisons on real data among our framework,
the state-of-the-art polarized image low-light enhancement method PLIE [10] and its improved
version PLIE+, the only existing polarized image deblurring method PolDeblur [11] and its improved
version PolDeblur+, and four learning-based image enhancement methods designed for conventional
images that also fuse noisy and blurry pairs (LSD2 [6], LSFNet [1], SelfIR [7], and D2HNet [8]), as
shown in Fig. D., Fig. E., and Fig. F..
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Figure A.: Additional visual quality comparisons on synthetic data (part1).
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Figure B.: Additional visual quality comparisons on synthetic data (part2).
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Figure C.: Additional visual quality comparisons on synthetic data (part3).
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Figure D.: Additional visual quality comparisons on real data (part1).

6



Noisy input Blurry input Reference Ours PLIE PolDeblur

PLIE+ PolDeblur+ LSD2 LSFNet SelfIR D2HNet

Noisy input Blurry input Reference Ours PLIE PolDeblur

PLIE+ PolDeblur+ LSD2 LSFNet SelfIR D2HNet

𝐩𝐩

𝜽𝜽

Blurry input Reference Ours PLIE PolDeblur

PLIE+ PolDeblur+ LSD2 LSFNet SelfIR D2HNet𝐒𝐒0

Noisy input

Figure E.: Additional visual quality comparisons on real data (part2).

7



Noisy input Blurry input Reference Ours PLIE PolDeblur

PLIE+ PolDeblur+ LSD2 LSFNet SelfIR D2HNet

Noisy input Blurry input Reference Ours PLIE PolDeblur

PLIE+ PolDeblur+ LSD2 LSFNet SelfIR D2HNet

𝐩𝐩

𝜽𝜽

Blurry input Reference Ours PLIE PolDeblur

PLIE+ PolDeblur+ LSD2 LSFNet SelfIR D2HNet𝐒𝐒0

Noisy input

Figure F.: Additional visual quality comparisons on real data (part3).
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