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Abstract

Natural Light Uncalibrated Photometric Stereo
(NaUPS) relieves the strict environment and light assump-
tions in classical Uncalibrated Photometric Stereo (UPS)
methods. However, due to the intrinsic ill-posedness and
high-dimensional ambiguities, addressing NaUPS is still an
open question. Existing works impose strong assumptions
on the environment lights and objects’ material, restricting
the effectiveness in more general scenarios. Alternatively,
some methods leverage supervised learning with intri-
cate models while lacking interpretability, resulting in a
biased estimation. In this work, we proposed Spin Light
Uncalibrated Photometric Stereo (Spin-UP), an unsuper-
vised method to tackle NaUPS in various environment lights
and objects. The proposed method uses a novel setup that
captures the object’s images on a spinning platform, which
mitigates NaUPS’s ill-posedness by reducing unknowns
and provides reliable priors to alleviate NaUPS’s ambigui-
ties. Leveraging neural inverse rendering and the proposed
training strategies, Spin-UP recovers surface normals,
environment light, and isotropic reflectance under complex
natural light. Experiments have shown that Spin-UP out-
performs other supervised / unsupervised NaUPS methods
and achieves state-of-the-art performance on synthetic
and real-world datasets. Codes and data are available at
https://github.com/LMozart/CVPR2024-SpinUP.

1. Introduction
Natural light uncalibrated photometric stereo (NaUPS) [6]
is proposed to relieve the dark room and directional light as-
sumption in classical uncalibrated photometric stereo, aim-
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ing to reconstruct the surface normal given images of an
object captured at arbitrary environment light. The impli-
cations of NaUPS are far-reaching: it makes photometric
stereo universal. However, solving NaUPS is still an open
question because of the intrinsic ill-posedness introduced
by the varying light of each image and the high dimensional
ambiguities between the light and objects [6].

Previous optimization-based methods use the simple
light model to represent the varying environment lights and
Lambertian reflectance to represent the material [6, 7, 21].
These models help mitigate the ill-posedness and ambi-
guities to some extent but become ineffective in handling
objects with general reflectance (e.g., non-Lambertian re-
flectance) under complex environmental lighting, leading to
unsatisfactory reconstruction outcomes. Besides, since they
solely model the varying lights in each image, the unknowns
introduced by the light model may increase with the resolu-
tion and numbers of the images, restricting their method to
low-resolution and insufficient images.

Considering the difficulties of explicitly mitigating the
ill-posedness and ambiguities, recent advances [10, 11] turn
to data-driven methods. Specifically, they train a deep learn-
ing model on large-scale datasets and implicitly exploit
deep light features from images to improve performance.
Those methods lack interpretability, making them hard to
constrain during training. Consequently, the model may be
affected by the data bias and prone to specific types of light
sources [10] or reflection variations [11] among images.

Despite a persistent exploration in this research field, a
method capable of handling general objects under natural
light while free from data bias is still missing. In this pa-
per, we provide a new perspective to solve NaUPS. Specif-
ically, we propose a novel setup that acquires images on a
rotatable platform under a static environment light. In such
cases, the object is illuminated by rotated environment light.



The unknowns of light representation are significantly re-
duced since we model the light as a uniform environment
light multiplied by low degree-of-freedom (DOF [5]) rota-
tion matrices. This allows us to implement advanced para-
metric light models (e.g., spherical Gaussian) and isotropic
reflectance models to handle general scenarios. Addition-
ally, based on such a setup, we further derive a reliable
light initialization method by analyzing the pixel value at
object’s occluding boundary. Such light initialization will
help the model converge at the beginning, thereby alleviat-
ing the ambiguity between light and objects during training.

With the help of the proposed setup and light ini-
tialization method, we develop Spin Light Uncalibrated
Photometric Stereo (Spin-UP), addressing NaUPS by op-
timizing inverse rendering framework in an unsupervised
manner. To our best knowledge, this is the first unsuper-
vised method that can handle general objects under natural
light. Unlike previous methods, Spin-UP can jointly recon-
struct arbitrary environment light, isotropic reflectance, and
complicated shape with low GPU memory (5GB) and rea-
sonable running time (around 25 minutes). Such low cost is
attributed to two proposed training strategies: interval sam-
pling and shrinking range computing. Experiments on syn-
thetic and real-world datasets demonstrate our superior per-
formance over previous methods on general scenarios. In a
nutshell, our contributions are summarized as follows:
1. We design a novel setup for NaUPS, which reduces un-

knowns of light representation and facilitates solving
NaUPS in an unsupervised manner.

2. We introduce a light prior, which leverages an object’s
occluding boundaries to initialize a reliable environment
light. Based on the setup and light prior, the unsuper-
vised NaUPS method Spin-UP is proposed.

3. We present two training strategies for robust optimiza-
tion and fast convergence of Spin-UP.

2. Related Work
In this section, we briefly review recent supervised and un-
supervised NaUPS methods. We also summarize other tech-
niques that exploit priors from occluding boundaries. Ad-
ditionally, we discuss recent advances in 3D vision to dis-
tinguish our techniques from other neural inverse rendering
approaches. Note that there is a group of works reconstruct-
ing 3D surfaces from a single image by deep learning under
natural light [15] or shading [4, 12, 32]. Those works suffer
from extreme ambiguities and poor reconstruction quality
on general objects and fall beyond the scope of this paper.
Natural Light Uncalibrated Photometric Stereo. Un-
supervised NaUPS methods jointly recover the light, re-
flectance properties, and surface normal. These methods ex-
plicitly model the environment light by low-order spherical
harmonics (SH) [2, 21], spatially varying spherical harmon-
ics (SV-SH) [7, 18] or equivalent directional light [6] to mit-

igate the ill-posedness, and use integrability constraint [2],
shape initialization [7], non-physical lighting regulariza-
tion [21], or graph-based ambiguity relaxation [6] to alle-
viate the ambiguity. In contrast, supervised NaUPS meth-
ods [10, 11] apply deep learning models like transformers to
reconstruct normal maps without explicitly estimating the
environment light. The models are trained on a dataset
containing images of diverse objects captured under var-
ious lighting conditions, including directional, point, and
environmental light. Compared to previous work, the pro-
posed Spin-UP distinguishes itself in three key facets: 1) it
features a novel setup explicitly designed to model correla-
tions among observed images to mitigate the ill-posedness
of NaUPS, 2) leveraging this unique setup, a novel light ini-
tialization method is introduced to mitigate ambiguities, and
3) an advanced light and material model is implemented to
address a broader range of scenarios.
Priors from the Boundaries. The occluding boundaries
of an object are considered to reveal adequate information
about the object’s shape and the scene’s light. Given the fact
that the projection of the boundaries’ normal to xy-plane is
perpendicular to the boundaries in orthographic projection,
methods are developed to constraint the surface normal esti-
mation during iterative optimization [16] or recover a rough
shape to initialize the geometry in multi-view [8] or photo-
metric stereo [7]. Other methods associate the boundaries
normal with the reflectance to estimate a rough position of
the directional lights [27]. However, none of them derive
the environment light from the boundary reflectance. Given
the setup in Spin-UP, we can roughly estimate the envi-
ronment by analyzing occluding boundaries and the corre-
sponding pixel points. This approach provides a reliable ini-
tialization for lighting that alleviates ambiguity in NaUPS.
Inverse rendering in 3D Vision. Neural Radiance Fields
(NeRF) [19] implicitly store the scene’s shape and re-
flectance through MLPs optimized by inverse volume ren-
dering. While NeRF can only recover coarse 3D shapes,
several subsequent works [3, 25, 26, 29, 31, 33] have been
proposed to combine the surface rendering and volume ren-
dering techniques, recovering fine shapes under varying
viewpoints but static environment light. In contrast, view-
points in Spin-UP are relatively static to the objects. While
most neural field methods aim to recover the whole 3D ge-
ometries, Spin-UP only recovers the object’s surface.

3. Proposed Method

In Sec. 3.1, we explain the Spin-UP’s setup and how it re-
duces the unknowns. In Sec. 3.2, we introduce the light
prior that alleviates ambiguities in NaUPS, including de-
tails of the light initialization method based on that prior.
In Sec. 3.3, we describe the implementation details of the
proposed Spin-UP framework and losses. In Sec. 3.4, we
demonstrate two proposed training strategies.
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Figure 1. The proposed image capturing setup. Left: an illustra-
tion of image-capturing equipment consisting of a rotatable plat-
form, a camera, and the target object. We spin the platform in
360◦ and capture images of the object. The object and camera ro-
tate together with the platform. Right-top: Four observed images.
Right-bottom: The ground truth environment light. Dashed color
boxes indicate the camera views at different positions.

3.1. Spin Light Setup

As shown in Fig. 1, we capture a sequence of images
I ≜ {Ij |j ∈ [0, 1, ..., NI ]} for an object by rotating it to-
gether with a linear perspective camera in 360◦ on a rotat-
able platform1. Since the relative positions and orientations
between the camera and the object are fixed during rotation,
each observed image is aligned with the rotated environ-
ment light L(Rj · ω), where ω ∈ R3 indicates the incident
light’s direction, Rj = R(θj) is the 1-DoF [5] rotation ma-
trix representing rotation about the vertical axis, θj is the
rotation angle, θ0 = 0. As we control unidirectional rota-
tion and assume a constant velocity (not strictly required in
practice), Rj can be initialized by θj = 2πj(NI − 1)/NI .
Given a sequence of images I and the initialized R, Spin-
UP iteratively optimizes the normal map N , the environ-
ment light L, isotropic BRDF map M , and rotation angle
R by solving

argmin
L,M ,N ,R

NP∑
i=1

NI∑
j=1

E (mij , m̂ij) , (1)

where NP is the number of sampled points on the surface,
mij and m̂ij indicate the ground truth and estimation of
point i’s color in image Ij , respectively. E(·, ·) is loss func-
tion between mij and m̂ij (i.e, mean absolute error). We
adopt the rendering equation to calculate the color m̂2

m̂ =

∫
Ω

sL (ω) ρ (ω · n) dω,

=

∫
Ω

sL (ω) (ρs + ρd) (ω · n) dω.

(2)

where Ω represents the upper hemisphere centered at the
normal vector n and s is the cast shadow. ρs and ρd indi-
cate the specular and diffuse reflectance, respectively. The
ambiguities between the light L and reflectance of the ob-

1We assume a geometrically smooth around boundary (occluding
boundary). The rotatable platform can be extended to fit various scenarios.

2The subscripts are omitted for simplicity.

Table 1. A comparison of unknowns’ number among Spin-UP and
representative unsupervised NaUPS methods.

Ours QL15 [21] HY19 [7] GM21 [6]
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Figure 2. The proposed light initialization method in Spin-UP. We
crop the boundary pixels mb and normal nb from input images.
Here, we use half boundary points as we experimentally find that
this improves reconstruction accuracy. Then, we remap them on
the sphere and spin them with their corresponding rotations R.
Based on a light probe composed of gray-scale boundary pixels,
we optimize the SG light model to obtain the environment light.

ject M are often disregarded [13, 16].
Unknowns reduction. The proposed spin light setup re-
duces the unknowns of the light representation L by ex-
ploiting correlations between different images. In contrast
to previous NaUPS methods that separately model the light
for each image, we consider an environment light L repre-
sented by the parametric model like spherical Gaussian and
1-DoF rotation angle θ for each image. As such, the un-
knowns consist of the environment light model’s parameters
and the number of rotational angles that are quantitatively
equal to NI . The total unknown amount is reduced com-
pared to other methods (Table 1), which helps mitigate the
ill-posedness and facilitates solving NaUPS with advanced
light and reflectance models in an unsupervised manner.

3.2. Light Prior from Boundaries

Based on the spin light setup, we can exploit priors from the
object boundary for light initialization to alleviate the ambi-
guity. The idea is motivated by the observation that the pixel
value mb at an object’s boundary provides insights into the
environment light (see Fig. 2). For an object with occlud-
ing boundaries, the normal of those boundaries nb can be
pre-computed [13, 16]. By bonding mb, nb, and R, we can
roughly derive a light map indicating the light sources’ po-
sitions and intensities, where mb directly represent the light
intensity L(ωb) at ωb = R ·nb. However, the derived light
map for objects with different materials may contain mis-
matched light source positions and chromatic bias, leading
to inaccurate light initialization.

The mismatched light source positions are caused by
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Figure 3. An illustration of mismatched light source positions.
Rows from top to bottom: an illustration of reflection on materials
with different roughness; the initial environment light before ap-
plying any filters given objects’ boundary pixels; the ground truth
environment light. Objects are (a) the diffuse-dominant sphere, (b)
the diffuse and specular mixture sphere, and (c) the specular dom-
inant sphere. The yellow and red lines in rows 2 and 3 indicate a
rough position of the light sources.

the specular component ms
b in mb. When ms

b dominates,
approximating L(ωb) by mb becomes a biased estimation
as ms

b is a reflection of lights in different directions than
ωb Fig. 3. By contrast, the approximation is more rea-
sonable when the diffuse component (md

b ) dominates since
md

b =
∫
Ω
L (ω) ρd (ω · ωb) dω indicates that L(ωb) con-

tributes most to the actual pixel value, making it less biased
to use md

b to represent L(ωb). Therefore, to conduct a less
biased estimation of environment light for initialization, a
diffuse filter Fd(.) is necessary on md

b to relieve the bias of
mismatched light source positions. Similarly, a chromatic
filter Fc(.) is also required on md

b to relieve the chromatic
bias caused by the spatially varying material at boundaries.
The filtered pixel value m̂d

b = Fc(Fd (mb)) are the basis
for our light initialization method.
Light initialization method. The procedure of light initial-
ization method is summarized in Algorithm 1. This method
aims to derive an initialized environment light model with
parameter Θ. Specifically, we use NL = 64 spheri-
cal Gaussian (SG) bases [28] as the light model, where
L(ω|ξt, λt,µt) =

∑NL

t=1 G(ω; ξt, λt,µt). ξt, λt, and µt

stands for Gaussian lobes’ direction, amplitude, and sharp-
ness, respectively3. Inspired by the conclusion in [23]
that diffuse reflectance can be approximated by the low-
frequency reflectance, we design Fd(.) as a threshold filter
Fd

TH(.) that remove pixels value at a point with intensity
higher than 80 percent of the point’s intensity profile [23]
plus a low-pass filter (i.e, 3-order spherical harmonics fil-
ters4) noted as Fd

SH [22, 23]. Fd
TH further reduces the bias

by removing the brightest parts in observed images, usually
attributed to the specular reflectance. Fd

SH helps estimate

3In practice, we find that initializing Gaussians’ parameters by Fi-
bonacci lattice [31] and freezing λt gives the best results.

4We implement a Gaussian filter and rescale the pixel value’s range to
Fd

TH(mb)’s range to suppress ringing effect and negative energy in SH.

the low-frequency reflectance. Moreover, we design Fc5 as
the converter transferring pixel values into gray-scale, miti-
gating biases from spatially varying material.

Algorithm 1 Light Initialization Method
Input: pre-computed boundary normal nb, relative rotation
matrices {R1 ...,RNI}, boundary pixels {mb1, ...,mbNI

},
diffuse filter Fd

TH(.) and Fd
SH(.), chromatic filter Fc(.), fit-

ting epochs N , environment light with parameters L(.|Θ),
learning rate η.
Output: An initialized environment lights L(ωb).
for j = 1, ..., NI do

ωbj = Rj · nb

m̂d
b = Fc(Fd

SH(Fd
TH(mb)))

for e = 1, ..., N do
J =

∑
(L(ωb|Θ)− m̂d

b)
2

Θ← Θ− η∂J/∂Θ

3.3. Framework of Spin-UP

With reliable initial SG lights and rotation matrices R, we
develop Spin-UP based on neural inverse rendering [3, 13,
16, 31] given the rendering equation in Eq. (2).
Shape model. We use the neural depth field to represent
the 3D surface. An MLP6 predicts the depth value given
the surface point’s image coordinates as the input. The co-
ordinate will first be passed to a positional encoding mod-
ule [19] with a frequency band equal to 10. then feed to an
8-layer MLP. To compute normal given the surface’s depth
map, we extend the normal fitting method described in [16]
to the perspective projection7.
Material model. We represent the spatially varying,
isotropic reflectance as a simplified Disney Model [31]. The
diffuse albedo ρd is predicted by another MLP with a simi-
lar structure given the query surface point’s 2D image co-
ordinate. The frequency band for this MLP’s positional
encoding module is 6. The spatially varying specular re-
flectance is calculated as a weighted sum of NS = 12 SG
bases, so ρs =

∑NS

n=1 c
nD (v,ω)F (h,ω)G(n,ω,v, λn),

where D, F , and G accounts for micro-facet’s normal dis-
tribution, Fresnel effects, and local shadow, respectively,
v is the view direction, h is the half-vector, calculated by
h = (v + ω)/ ∥v + ω∥, λn is the roughness terms initial-
ized as (0.1 + 0.9(n − 1))/(NS − 1) and set as learnable
parameters, cn is the weights predicted by the MLP.
Shadow model. We apply a shadow mask similar in [13] to
handle the cast shadow.
Loss functions. Similar to other inverse rendering-based
methods [13, 16], we use the inverse rendering loss to train

5Despite a gray-scale initialization, we still optimize the light model in
RGB channels.

6Please refer to the supplementary material for more details about the
network structure.

7Please refer to the supplementary material for more details about the
modified normal fitting method.
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Figure 4. Proposed training strategies. (Top) Interval sampling
(IS). The high-resolution images are down-sampled into several
low-resolution sub-images by extracting pixels with an interval of
Np, where Np = 2 in this example. (Bottom) Shrinking range
computing (SRC). Far points (yellow circles) that are k (k = 3
in this example) point away w.r.t the query position is selected to
interpolate the close points (blue circles)’s depth for normal cal-
culation. During optimization, k will be gradually reduced to 1.
Experiments show SRC facilitates convergence at the early stage.

the framework. The three-stage schema [16] is applied,
as well as other smoothness terms (total variance regular-
ization [13, 16]) on the normal map, diffuse albedo map,
and the Gaussian bases’ weights (c) for the material. Sim-
ilar to [30], the normalized color loss is implemented to
help Spin-UP learn a better albedo representation. Follow-
ing [16], we calculate the boundary loss for normal regular-
ization8.

3.4. Training Strategies

Optimizing Spin-UP in an unsupervised manner requires
smoothness terms to facilitate convergence and avoid local
optima. However, those terms are often implemented on
full-resolution images, which requires extra time and com-
putational cost. To reduce those costs, we propose to use
a sampling strategy noted as interval sampling (IS). To fur-
ther improve convergence, we introduce another technique
noted as shrinking range computing (SRC).
Interval sampling (IS). IS samples ray batches from im-
ages to reduce the costs. Unlike random ray sampling [19]
or patch-based sampling [20], IS preserves the object’s
shape. The idea of IS is similar to downsampled tech-
niques in [11, 24], but we don’t merge the sub-images to
full resolution. We experimentally find this strategy impor-
tant for training on down-sampled sub-images with smooth-
ness terms to avoid local optima (Sec. 5.2). Specifically,
we divide the image in full resolution into non-overlapping
blocks, and each block contains NB ×NB pixel points. By
extracting pixel points from the same position in each block
(e.g., the left-top pixel), we obtain maximum NB × NB

8Please refer to the supplementary material for more details about the
forms of the loss function and setup of hyperparameters.

sub-images with a down-sampled resolution (See Fig. 4 for
illustration). When the image resolution is not divisible by
NB , we will pad the image to ensure each sub-image has
the same resolution. During training, those sub-images are
randomly sampled in each step, and the smoothness terms
are calculated based on the sub-images resolution, which
ensures the effectiveness of those terms.
Shrinking range computing (SRC). Without merging sub-
images to a full-resolution image in IS, there will be an
aliasing issue in the inverse rendering process. Such an
issue is caused by the fact that the normal calculation in
our framework on sub-images requires four adjacent points’
depths in sub-images resolution [16], which degrades the
precision of normal calculation9. Therefore, Shrinking
range computing (SRC) is applied for anti-aliasing. It uses
points adjacent to the query point (blue circles in Fig. 4) in
the full-resolution image coordinates to calculate the nor-
mal for each pixel in the sub-images. Such a strategy main-
tains the precision of normal calculation. However, at the
early stage of training, calculating the normal based on the
blue circles’ depth is vulnerable to perturbation in per-pixel
training. Therefore, SRC gradually selects points (yellow
circles) from far (k = 3 points away) to close (blue circles)
w.r.t query points to interpolate the blue circles’ depth, as
normal calculation on far points’ depth will lead to a more
smooth and stable normal map at the early stage, which
eventually improves convergence. Experiments have shown
this improves the accuracy of the estimated surface normal.

4. Experiments

We validate the effectiveness of the proposed Spin-UP on
synthetic and real-world data. We use mean angle error
(MAE) to evaluate the normal map’s reconstructed qual-
ity and PU-PSNR [1], and PU-SSIM [1] to evaluate the re-
constructed environment light. Since no existing datasets
follow our spin light setup, we collect the dataset using
Blender and our device. All experiments are conducted on
an RTX A6000 GPU.

4.1. Evaluation on Synthetic Datasets

We collect several objects, environment maps, and materials
to render the synthetic dataset in Blender by Cycles. Specif-
ically, five shapes from the DiLiGenT-MV dataset [14] (i.e,
BUDDHA, BEAR, COW, POT2, and READING) and a gen-
erated shape (BALL), five HDR environment maps (i.e,
LANDSCAPE, QUARRY, URBAN, ATTIC, STUDIO), two
PBR materials (i.e, RUSTY STEEL, LEATHER), and four
synthetic materials (i.e, VORONOI DIFF, VORONOI SPEC,

9According to normal’s definition, the smaller the distance between the
adjacent points and the query points (red circle in Fig. 4), the more ac-
curately representing the geometry at query points. Therefore, the blue
circles’ depths are preferred for normal calculation.



Table 2. Qualitative comparison results in terms of MAE on shape group (left-top), light group (left-bottom), reflectance group (right-top),
and spatially varying material group (right-bottom). Bold numbers indicate the best results in MAE. In light group, {U., A., S., L.}
stand for environment map named URBAN, ATTIC, STUDIO, and LANDSCAPE, respectively. In the reflectance group, {D. , S.} stand
for material named GREEN DIFF and GREEN SPEC, respectively. In spatially varying material group, {D. , S.} stand for material named
VORONOI DIFF and VORONOI SPEC, respectively.

Method Shape Group Reflectance Group
BALL BEAR BUDDHA READING AVG POT2 (D.) POT2 (S.) READING (D.) READING (S.) AVG

HY19 [7] 41.32 53.88 67.90 54.85 54.49 57.45 37.43 65.48 58.04 54.60
S22 [10] 7.35 14.03 26.37 18.77 16.63 15.56 11.83 18.97 18.38 16.19
S23 [11] 5.56 10.37 18.54 15.10 12.39 13.46 9.75 16.22 12.67 13.03

Spin-UP 3.54 6.33 17.30 7.71 8.72 5.83 7.11 13.09 10.30 9.08

Method Light Group Spatially Varying Material Group
COW (U.) COW (A.) COW (S.) COW (L.) AVG POT2 (D.) POT2 (S.) READING (D.) READING (S.) AVG

HY19 [7] 67.63 39.21 40.28 48.47 48.89 40.97 37.46 49.27 48.96 44.17
S22 [10] 17.17 12.74 17.11 11.35 14.59 18.59 17.63 22.80 23.75 20.69
S23 [11] 11.93 7.52 12.38 11.60 10.84 14.22 11.00 14.58 14.31 13.53

Spin-UP 5.50 4.40 3.33 4.94 4.54 5.58 6.97 12.54 11.52 9.15

GREEN DIFF, GREEN SPEC)10 are used for evaluation. We
devise four groups of data for evaluation: shape group,
light group, reflectance group, and spatially varying mate-
rial group, each containing four scenes. For each scene, 50
observed images with a resolution of 512 × 512 are ren-
dered by a perspective camera with the focal of 50mm and
a frame size of 36mm × 36mm. The camera rotation θ for
consecutive images follows a non-uniform rotation velocity.
We compare Spin-UP with three advanced NaUPS methods,
including two supervised NaUPS methods (S22 [10] and
S23 [11]) and one unsupervised UPS method (HY19 [7])11.
Normal estimation comparison. According to results in
Table 2, Spin-UP presents a superior performance com-
pared to all other NaUPS methods. Specifically, in shape
group, the low MAE on BALL, BEAR, BUDDHA, READ-
ING in RUSTY STEEL rendered under QUARRY indicate the
practicability of Spin-UP to various shapes. In light group,
the low-variance of MAE (1.15◦ for Spin-UP vs. 2.47◦ for
S23 [11]) on COW in LEATHER rendered under QUARRY,
URBAN, ATTIC, and STUDIO demonstrates robustness to-
ward different environment lights. In reflectance group,
the results on POT2 and READING in GREEN DIFF and
GREEN SPEC rendered under LANDSCAPE demonstrate the
ability to handle non-Lambertian objects. In spatially vary-
ing material group, results on POT2 and READING ren-
dered in VORONOI DIFF or VORONOI SPEC under LAND-
SCAPE prove adaptability to challenging scenarios. A com-
parative analysis of the outcomes of the reflectance group
and the spatially varying material group in our method re-
veals that the MAE remains relatively consistent across

10The generated pattern for VORONOI DIFF and VORONOI SPEC follow
similar setup in CNN-PS [9].

11Please refer to the supplementary material for all the qualitative com-
parison between Spin-UP and other methods on the synthetic and real-
world dataset.

Ground Truth

POT2(D.) POT2 (S.) READING (D.) READING (S.)

COW (A.) COW (L.) COW (S.) COW (U.)

LANDSCAPE

Estimated Light

LANDSCAPE POT2(D.) POT2 (S.) READING (D.) READING (S.)

Ref.

QUARRY BALL BEAR BUDDHA READING

Shape

SV.

Light.

Ground Truth

Estimated 
Light

Figure 5. The visual quality comparison of light between the es-
timated one by Spin-UP (columns 2-4) and the ground truth (col-
umn 1) on the four groups, i.e, shape (row 1), reflectance (row 2),
spatially varying material (row 3), and light group (row 4-5).

identical objects with different materials, underscoring the
robustness of Spin-UP in handling diverse materials. Also,
we find that Spin-UP sometimes performs better on spec-
ular objects than on diffuse objects (i.e, READING). We
attribute this to the high-frequency details in specular re-
flectance that may be useful for shape-light reconstruction
during training.
Light estimation comparison. Fig. 5 provides a qualita-
tive comparison between the estimated environment light
and the ground truth on four groups. We can observe that
the learned light map reflects the position of the light source,
especially in COW (S.) given such a challenging setup with-
out any prior information about the object material or shape.
It also reconstructs a reasonable light map for objects with
diffuse reflectance, such as POT2 (D.) and READING (D.),
further highlighting the effectiveness of the proposed light
initialization. However, it should be noted that the estimated
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Figure 6. Illustration of the device for real data collection. Please
refer to the supplementary material for more details. Left: the
capture system contains a camera, a spin platform, and an object.
Right: Captured images and paired mirror balls (as light reference)
of two objects in the indoor and outdoor scenes, respectively.
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Figure 7. Qualitative comparison for the estimated normal map
and environment light on SOLDIER (row 1) and PLAYER (row 2)
capturing under outdoor (columns 1-6) and indoor (columns 7-10)
between ours (column 3, 8), SS23 [11] (column 4, 9), and S22 [10]
(column 5, 10). We also show the reference sphere and reference
environment light in columns 2 and 7.

environment light is influenced by the object material, par-
ticularly when handling objects with a nearly uniform base
color (e.g., reflectance group) or spatially varying material,
which may generate unpleasant artifacts (i.e, inconsistent
color in estimated environment light of READING (D.) in
the spatially varying material group.). Those artifacts are
hard to eliminate without priors.

4.2. Evaluation on Real-world Datasets

We set up our spin light capture system to collect real data
under indoor and outdoor scenes, as shown in Fig. 6. Af-
ter preprocessing, we end up with 50 images for each ob-
ject, with a 540 × 540 resolution. Here, we showcase the
normal estimation results on two objects (i.e, SOLDIER,
and PLAYER) under indoor and outdoor environment lights
in Fig. 7, compared with S23 [11], S22 [10]. We do not
show HY19 [7] as it failed on the captured data.
Normal estimation comparison. According to the Fig. 7,
Spin-UP has competitive performance compared to the
state-of-the-art supervised method [11]. In some scenar-

Table 3. Ablation studies on Spin-UP’s alternatives regarding av-
erage PU-PSNR [1] and PU-SSIM [1] on synthetic dataset. ‘Fib.’
and ‘Rand.’ represent the Fibonacci and random initialization
method, respectively. Bold number indicates the best results.

w Rand. w Fib. Spin-UP
PU-PSNR [1]↑ 16.86 18.98 21.61
PU-SSIM [1]↑ 0.45 0.52 0.62

ios, we recover more reasonable results regarding the over-
all distribution compared to the reference sphere, particu-
larly for SOLDIER indoor and PLAYER indoor. Spin-UP
can effectively capture high-frequency details such as wrin-
kles on clothes in PLAYER and SOLDIER. By contrast,
S23 [11] may contain artifacts (i.e, an incorrect normal map
distribution) even though they have more details than ours,
and S22 [10] generates over-smooth results. By compar-
ing indoor and outdoor results, we observe that the perfor-
mance of S23 [11] degrades significantly in indoor scenar-
ios, which may be attributed to the data bias and low pixel
variance (Fig. 7), while our method is not greatly affected.

5. Ablation Study

5.1. Light Initialization Validation

To comprehensively validate the effectiveness of our light
initialization method, we conduct experiments in two as-
pects: a comparison of different light initialization methods
and the effectiveness of the filters.
Comparison on light initialization methods. We com-
pare our light initialization method with two widely used
SG light initialization methods, i.e, the random initializa-
tion noted as ‘w Rand.’ and Fibonacci lattice [31] noted as
‘w Fib.’. A quantitative comparison of reconstructed normal
and light maps is shown in Table 3 and Table 4. Compared
with ‘w Rand.’, the obvious improvement in average (1.81◦

reduction in MAE on normal estimation and 2.63/0.1 in-
crease in PU-PSNR/PU-SSIM on light estimation, respec-
tively) indicates our light initialization method’s adaptabil-
ity. Compared with ‘w Fib.’, we observe an advantage in the
shape group (0.61◦ reduction in MAE), while a smaller ad-
vantage in the challenging spatially varying material group
(0.19◦ reduction in MAE). This is because the material and
shape will affect the quality of the initial environment light.
While the estimated environment light is most accurate on
smooth geometry with simple material (e.g., BALL), the
quality will degrade on complicated geometry and spatially
varying material.
Comparison on the designed filters. We compare Spin-
UP with three alternatives (i.e, w/o Fc, w/o Fd

SH , and
w/o Fd

TH ). The results in Table 4 demonstrate the effec-
tiveness of those filters. Specifically, dropping Fd

TH will
lead to mismatching light source position in the initialized
environment light introduced by the specular reflectance,
which eventually affects the accuracy of the estimated nor-



Table 4. Ablation studies on Spin-UP’s alternatives regarding av-
erage MAE on four groups (shape, light, reflectance, and spatially
varying material group). ‘Fib.’, ‘Rand.’, ‘Intv.’, and ‘Shrk.’ rep-
resent the Fibonacci initialization method, random initialization,
interval sampling, and shrinking range computing, respectively.
Bold number indicates the best results in MAE.

Shape Light Ref. SV. AVG
S23 [11]† 12.96 12.29 13.93 16.07 13.81
w Rand. 12.02 6.44 9.79 10.28 9.60
w Fib. 9.33 5.34 10.20 9.34 8.55
w/o Intv. 8.87 5.02 9.83 10.12 8.37
w/o Shrk. 10.10 4.92 10.12 10.43 8.81
w/o Fc 9.38 4.65 8.77 9.28 7.95
w/o Fd

SH 9.75 8.29 8.93 15.73 10.41
w/o Fd

TH 9.30 5.04 9.18 12.49 8.82
Spin-UP 8.72 4.54 9.08 9.15 7.85
Spin-UP† 11.62 9.25 11.07 9.07 9.48

† Method with † is tested on dataset with point light + environment light Sec. 5.3.

mal; dropping Fd
SH will harm the performance, especially

in the spatially varying material group (6.56◦ increase in
MAE) since Fd

SH is essential in extracting low-frequency
reflectance to initialize the environment light; dropping Fc

will increase MAE in average (0.25◦), illustrating the ne-
cessity of reducing chromatic bias.

5.2. Training Strategies Validation
The interval sampling will facilitate the training of Spin-UP
in two ways. First, the training time is two times shorter
(25 min per object on average vs. 60 min on average, de-
pending on the image’s valid points for the object), and the
GPU memory occupation is five times smaller (around 5
GB vs. 25 GB during training) than directly training on
original resolution. Second, comparing Spin-UP with ‘w/o
Intv.’, which applies a random sampling strategy and cal-
culates the smoothness terms on patches (3 × 3 pixels), we
find that the performance drops 0.58◦ on average, and most
(0.95◦) on the spatially varying material group. This is be-
cause the patch-based smoothness may not work uniformly
on different parts of the object, diminishing the effective-
ness of smoothness terms, especially on objects in spatially
varying material with abrupt texture changes. The shrink-
ing range computing helps avoid local optima when train-
ing Spin-UP on down-sampled images while still using full-
resolution pixel coordinates. We compared Spin-UP with
the alternative ‘w/o Shrk.’, which does not implement this
strategy. The average MAE on normal estimation for four
groups increases 1.02◦, highlighting the importance of this
strategy in avoiding local optima.

5.3. Additional Validation on Point Light Source

To ensure a more fair comparison with the state-of-the-art
supervised methods (S23 [11]), we add a dominant point
light to the environment light in synthetic and real-world
dataset12. According to Table 4, the proposed Spin-UP has

12Point light’s setup follows [11] and [17].

S23Ref Ours

Near field (0.4m) Far field (2m)

Point Light + Environment Light

(a) (b)

S23 Ours

Figure 8. (a) Illustration of new light setup. (b) Qualitative com-
parison on SOLDIER between our method and S23 [11] with dom-
inant point light.

a lower MAE on estimated normal maps than S23 [11] on
the synthetic dataset (9.48◦ ours v.s. 13.81◦ S23 [11]). As
shown in Fig. 8, we have a visually comparable result on
the real-world dataset given far-field point light (2m) and a
better result given near-field point light (0.4m), validating
the adaptability of Spin-UP on unseen light sources.

6. Conclusion
This paper proposes Spin-UP to address NaUPS in an unsu-
pervised manner. Thanks to our setup to mitigate the ill-
posedness, the light initialization method to alleviate the
ambiguities of NaUPS, and the proposed training strategies
to facilitate convergence, Spin-UP can recover surfaces with
isotropic reflectance under various lights. Experiments in
synthetic and real-world datasets have shown that Spin-UP
is robust to various shapes, lights, and reflectances.
Limitations and future work. Although Spin-UP is ef-
ficient and robust in solving NaUPS, it has several limita-
tions: 1) Spin-UP assumes infinitely far light sources, which
omit the spatially varying lighting; 2) the materials’ base
color will bias the estimated environment light; 3) Spin-
UP assumes objects to have isotropic reflectance, ignoring
inter-reflections and anisotropic features, meaning that it
cannot perform well on objects with anisotropic reflectance,
such as aluminum, or strong inter-reflections, such as a glass
bowl; 4) Spin-UP doesn’t compute the shadow iteratively,
which may result in artifacts on objects with complicated
shapes. Overcoming those limitations will be regarded as
one of our future works. Also, we find it interesting to im-
prove the setup by relieving the requirement for single-axis
360◦ rotation to free rotations for easier implementation on
portable devices.
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In this supplementary material,
1. we give more implementation details in Sec. 7, including details of framework structure (footnote 6), loss functions, and

hyperparameters setup (footnote 8).
2. we introduce more about boundary normal calculation and normal calculation for rendering equation in perspective pro-

jection in Sec. 8 (footnote 7);
3. we provide an overview of the synthetic and real-world dataset in Sec. 9. We also explain how we collect and preprocess

the real-world dataset;
4. we showcase a qualitative comparison between Spin-UP and other methods on the real-world dataset in Sec. 10 (footnote

11). More results from the real-world dataset are also included in this section (footnote 11);

7. Implementation Details
7.1. Network Structure
We use the similar multi-layer perceptrons (MLPs)’ structures in [4, 5], shown in Fig. 9. The input of MLPs is pixels’ 2D
coordinate (p = (u, v)) in an image, which will pass through a positional encoding module similar in [6] calculated as

E(p) =
(
sin

(
20πp

)
, cos

(
20πp

)
, · · · , sin

(
2L−1πp

)
, cos

(
2L−1πp

))
, (3)

where L is the positional code’s dimension, which we set as 10.

2
5
6

2
5
6

2
5
6

2
5
6

2
5
6

2
5
6

2
5
6

2
5
6

2
5
6

2
5
6

2
5
6

2
5
6

2
5
6

2
5
6

2
5
6

2
5
6

2
5
6

2
5
6

𝒑

1
2
8

1
2
8

1
2
8

1
2
8

1
2
8

2
5
6

1
2
8

𝑤𝑖

𝑐0, … , 𝑐𝑖
𝑁𝑟

𝜌𝑑

Linear + ReLU

Absolute

𝜸(. )

Figure 9. Network structure of MLPs for depth and material estimation in Spin-UP.
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7.2. Loss Functions and Hyperparameters Setup

In Spin-UP, we implement:
1. L1 inverse rendering loss Lr calculated as,

∑NP

i=1

∑f
l=1 |mil− m̂il|, where, mil and m̂il is the ground truth and rendered

pixel intensity, f is the number of images.
2. Normalized color loss Lcolor, calculated as, λc∥Nor(A)− Nor(I)∥, where λc = 0.5, A is the albedo map, Nor(.) is the

vector normalization operator.
3. Boundary loss Lb, calculated as the cosine similarity between the pre-computed and estimated boundary normal.
4. Smoothness terms Lsm on albedo map A, normal map N , spatially varying Gaussian bases weights cn, is calculated as,

Lsm =
λ

NP

NP∑
i=1

∣∣∣∣∂A∂u +
∂A

∂v

∣∣∣∣+ λN

NP

NP∑
i=1

∣∣∣∣∂N∂u +
∂N

∂v

∣∣∣∣+ λS

NP

NS∑
n=1

NP∑
i=1

∣∣∣∣∂cni∂u
+

∂cni
∂v

∣∣∣∣ , (4)

where, λ = 0.01, λN = 0.02, λS = 0.01.
We train the Spin-UP in three stages similar to [5]. For the first stage, the loss Lstage1 is calculated as below for a faster

convergence

Lstage1 = Lr + Lb + λcLcolor + Lsm, (5)

For the second stage, we drop the smoothness term on the albedo map and reduce λN to 0.05 for details refinement, where
LN is the smoothness term on normal map

Lstage2 = Lr + Lb + λcLcolor + λNLN , (6)

For the third stage, we drop the smoothness terms LN to further refine the details

Lstage3 = Lr + Lb + λcLcolor. (7)

The three stages take 500, 1000, and 500 epochs, respectively. During training, we use Adam as the optimizer with a learning
rate αl = 0.001 and a batch size of 4 images per iteration.

8. Normal Calculation in Perspective View
8.1. Boundary Normal Calculation
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Figure 10. An illustration of occluding boundaries’ nor-
mal relationship with view directions for (a) front view
and (b) side view of a surface. The dotted line in (b)
indicates the outermost boundaries of an object in per-
spective projection.
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Figure 11. An illustration of (a) adjacent points’ posi-
tions for normal fitting method [5] in perspective pro-
jection, (b) Eq. (11).

In perspective projection, the surface normal is perpendicular to the object’s occluding boundaries B(u, v) and view
direction v, as shown in Fig. 10. Therefore, the boundaries’ normal nb is calculated as

nb · vb = 0, nb · (∂B
u

,
∂B

v
, 1)⊤ = 0, (8)



Table 5. Length, width, height, and capturing distance for SOLDIER, PLAYER, DANCER, POLICEMAN and EEVEE.

Properties SOLDIER PLAYER DANCER POLICEMAN EEVEE

Length (cm) 9.50 11.50 4.00 4.00 4.00
Width (cm) 7.00 11.00 5.00 4.00 4.00
Height (cm) 3.00 28.00 4.00 9.00 9.00
Distance (m) 0.90 0.90 0.40 0.40 0.30

In practice, the outer boundaries of an object in images may not precisely match its actual boundaries due to limited image
resolution. Therefore, we add a small offset (β = 0.1) to make the pre-computed boundaries normal more accurate:

nb = Nor(nbx, nby, nbz + β). (9)

8.2. Normal Calculation For Rendering Equation

The normal fitting method [5] in orthogonal projection is shown below:

n =

4∑
k=1

γknk =

4∑
k=1

γk Nor
[(
pk+1 − p

)
×

(
pk − p

)]⊤
,

γk =

∣∣dk∣∣−1∑4
k=1 |dk|

−1 , dk = wk + wk+1 − 2w,

(10)

where, pk = (uk, vk, wk) is the adjacent point of the query point p = (u, v, w), k = 1 if k + 1 > 4, as shown in Fig. 11,
(a). To extend the normal fitting method to the perspective projection, we first compute the points’ coordinates in the camera
coordinate system by

pk′ = (ukw
k

f
sx, v

kw
k

f
sy, w

k),

p′ = (u
wk

f
sx, v

w

f
sy, w).

(11)

where f is the camera’s focal, sx and sy are the width and height of the camera’s frame. Replace pk and p in Eq. (10) by pk′

and p′, we get the normal fitting method in perspective projection.

9. Datasets
9.1. Synthetic Dataset

In Fig. 12, we showcase all 5 objects with 6 materials under 5 HDR environment maps rendered by Blender Cycles1. This
results in 16 scenes2 of synthetic data that are classified into 4 groups, i.e, the shape group, light group, reflectance group,
and spatially varying group. We also show sample images with additional dominant point light in Fig. 12.

9.2. Real-world Dataset

The real-world dataset contains 5 objects captured under indoor and outdoor environments with spatially-varying materials.
The five real-world objects used in our study are the SOLDIER, PLAYER, POLICEMAN, DANCER, and EEVEE. The objects’
sizes are shown in Table 5.
Device introduction. SOLDIER, PLAYER, POLICEMAN, and DANCER’s observed images were captured by a customized
device shown in Fig. 13 (left), which consists of two stands (one for holding the subject being photographed, the other for
supporting the camera) and a rotating mechanism. The distance from the camera to the object is adjustable. In addition to
this, we also consider a more portable device shown in Fig. 13 (right), which is made up of a wooden rotatable platform3

with a diameter of 39mm and the camera. We capture EEVEE’s observed images based on this device.

1https://www.blender.org
2One scene representing an object with one material rendered under HDR environment maps.
3https://www.ikea.com/sg/en/p/snudda-lazy-susan-solid-wood-40176460/

https://www.blender.org
https://www.ikea.com/sg/en/p/snudda-lazy-susan-solid-wood-40176460/
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Figure 12. (a) HDR environment maps (row 1), objects (row 2), and materials (row 3) involved in the synthetic dataset. Each figure in
row 2 consists of two subfigures for 3D model preview (left) and normal map (right). Each figure in row 3 consists of two subfigures for
material rendered on a sphere (left) and albedo (right). (b) Example images from each scene in four groups. (c) Example images from the
scene with additional dominant point source.

Photographing requirements. Before photographing, the distance between the camera and the object is determined based
on the proportion of the object in the viewfinder, ensuring a balance of the occupied portion between the objects and the



(a) (b) (c)

(d)

Figure 13. Left: (a) Overview of the device, (b) Stand for the camera, (c) Stand for the object being photographed with dark cloth for
interreflection removal, (d) Rotating hinge. Right: A portable version of image capturing device, shown in top and bottom views.

camera. Three typical distances were used: 0.9 meters for large and 0.4 meters (or 0.3 meters) for small objects. During
photographing, the thumb rule is to capture a clear image with less noise and keep rotation velocity as uniform as possible.
For the camera’s parameters, we chose ISO 1600, an aperture size of f/13 for outdoor scenes; and ISO 3200, an aperture size
of f/6.3 for indoor scenes, respectively. The focal size is fixed at 31mm for different scenes.
Pre-processing pipeline. In the pre-processing pipeline, we extracted 50 images from the video at equal intervals to use as
our data. We then obtain the objects’ masks in each scene from the first frame by Photoshop. Those masks help separate
objects and backgrounds. In practice, there are translational motions in the horizontal and vertical directions, mostly obvious
on objects due to structural instability. Therefore, after calculating the relative rotation angle θj , we used a simple algorithm
for motion correction, assuming that the only motion of the object relative to the camera was translational in the horizontal
and vertical directions. Specifically, we pre-set the range of motion and iterate over the distance vector to find the distance
of movement (plus or minus 20 pixels) that minimizes the difference between the front and back frames after applying the
mask. Note that although large movement is corrected in this step, minor movements still exist and are hard to eliminate.
Fortunately, our method can tolerate those minor movements.



10. Qualitative Comparison
10.1. Qualitative Comparison on Synthetic Dataset

We show all the estimated normal maps, error maps of Spin-UP, S23 [3], S22 [2], and HY19 [1] of shape, light, reflectance,
and spatially-varying material groups in Fig. 15-Fig. 17.

Ours S23 S22 HY19
GT Normal /
Ref. Image

5.50 11.48 19.63 67.63COW (U.)

4.94 11.98 12.87 48.89COW (L.)

4.40 7.21 15.75 39.21COW (A.)

3.33 12.67 19.54 40.28COW (S.)

1(90°)0(0°)

Figure 14. The visual quality comparison among Spin-UP, S23 [3], S22 [2], and HY19 [1] on the light group in terms of normal map (row
1, 3, 5, 7), error map (row 2, 4, 6, 8). Numbers indicate the MAE for surface normal.



3.54 5.56 7.20 41.32

6.33 10.33 13.73 53.88

17.30 19.57 24.14 67.90

7.71 13.69 13.08 57.45

BALL

BEAR

BUDDHA

READING

Ours S23 S22 HY19
GT Normal /
Ref. Image

1(90°)0(0°)

Figure 15. The visual quality comparison among Spin-UP, S23 [3], S22 [2], and HY19 [1] on the shape group in terms of normal map (row
1, 3, 5, 7), error map (row 2, 4, 6, 8). Numbers indicate the MAE for surface normal.



Ours S23 S22 HY19
GT Normal /
Ref. Image

5.83 13.69 13.08 57.45POT2 (D.)

7.11 9.75 12.09 37.43POT2 (S.)

13.09 16.24 21.04 65.48READING (D.)

10.30 12.64 19.36 58.04READING (S.)
1(90°)0(0°)

Figure 16. The visual quality comparison among Spin-UP, S23 [3], S22 [2], and HY19 [1] on the reflectance group in terms of normal map
(row 1, 3, 5, 7), error map (row 2, 4, 6, 8). Numbers indicate the MAE for surface normal.



Ours S23 S22 HY19
GT Normal /
Ref. Image

5.58 9.29 16.37 40.97POT2 (D.)

6.97 9.00 16.12 37.46POT2 (S.)

12.54 14.82 14.82 49.27READING (D.)

11.52 14.18 14.18 48.96READING (S.)
1(90°)0(0°)

Figure 17. The visual quality comparison among Spin-UP, S23 [3], S22 [2], and HY19 [1] on the spatially varying material group in terms
of normal map (rows 1, 3, 5, 7), error map (rows 2, 4, 6, 8). Numbers indicate the MAE for surface normal.



10.2. Qualitative Comparison on Real-world Dataset

We show all the estimated normal maps of Spin-UP, S23 [3], and S22 [2] of real-world dataset in Fig. 18 and Fig. 19.

SOLDIER

PLAYER PLAYER

SOLDIER

Ours S23 S22 Ours S23 S22Ref. ImageRef. Image
Outdoor Indoor

POLICEMAN POLICEMAN

DANCER DANCER

Figure 18. The visual quality comparison among Spin-UP, S23 [3], and S22 [2] on the SOLDIER, PLAYER, POLICEMAN, and DANCER in
terms of the normal map. Left (right) side of the solid line: objects captured in CAMPUS (WORKPLACE) environment.



EEVEE

Ours S23 S22Ref. Image

Figure 19. The visual quality comparison among Spin-UP, S23 [3], and S22 [2] on EEVEE captured in a living room in terms of the normal
map based on more portable device.
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