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Self-Supervised Learning for Rolling Shutter
Temporal Super-Resolution
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Abstract—Most cameras on portable devices adopt a rolling
shutter (RS) mechanism, encoding sufficient temporal dynamic
information through sequential readouts. This advantage can be
exploited to recover a temporal sequence of latent global shutter
(GS) images. Existing methods rely on fully supervised learning,
necessitating specialized optical devices to collect paired RS-GS
images as ground-truth, which is too costly to scale. In this paper,
we propose a self-supervised learning framework for the first time
to produce a high frame rate GS video from two consecutive RS
images, unleashing the potential of RS cameras. Specifically, we
first develop the unified warping model of RS2GS and GS2RS,
enabling the complement conversions of RS2GS and GS2RS to
be incorporated into a uniform network model. Then, based on
the cycle consistency constraint, given a triplet of consecutive RS
frames, we minimize the discrepancy between the input middle
RS frame and its cycle reconstruction, generated by interpo-
lating back from the predicted two intermediate GS frames.
Experiments on various benchmarks show that our approach
achieves comparable or better performance than state-of-the-
art supervised methods while enjoying stronger generalization
capabilities. Moreover, our approach makes it possible to recover
smooth and distortion-free videos from two adjacent RS frames
in the real-world BS-RSC dataset, surpassing prior limitations.

Index Terms—Rolling shutter, Temporal super-resolution, Self-
supervised learning, Cycle consistency.

I. INTRODUCTION

CMOS image sensors are the mainstream choice for mobile
phones and low-budget commercial cameras due to their low
cost and simple manufactures [1], [2]. Most electronic CMOS
cameras employ a rolling shutter (RS) mechanism in which
pixels are exposed in a row-wise fashion. Unlike global shutter
(GS) cameras, which instantly take a snapshot of the entire
scene, the inter-row readout delay of RS cameras causes
distracting motion distortions known as the RS effect. For
instance, straight lines are skewed and the image content
appears to wobble, which is increasingly becoming a common
nuisance in photography [3]–[6].

To improve the practical applicability of RS cameras, an
intuitive motivation is to remove the RS effect, thus spawning a
spectrum of RS correction methods [10]–[15]. Existing methods
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Fig. 1. An RS temporal super-resolution example on the real-world BS-RSC
dataset [7]. We propose the first self-supervised learning method to recover a
sequence of GS video frames from two consecutive RS frames. Due to the
lack of sufficient paired RS-GS supervision signals, state-of-the-art supervised
methods (e.g., RSSR [8] and CVR [9]) fail to synthesize the temporal sequences
of latent GS images in the RGB color space. By contrast, benefiting from
the proposed self-supervised learning framework, our approach can accurately
produce a high frame-rate GS video with richer details and better temporal
consistency, e.g., the signpost in the blue box.

advocate recovering a single time-specific GS image from
adjacent RS frames, e.g., corresponding to the first [11], [16],
[17] or middle [7], [10], [18], [19] scanline time. As such,
they essentially do not alter the frame rate of the input video.
Considering the excellent temporal dynamics of RS cameras,
one would expect to not only eliminate the RS effect but also
to revive and relive all time-arbitrary latent views as beheld
by a virtual GS camera. Such a more challenging expectation
has the potential to go beyond the temporal resolution limit
of commercial cameras. Unfortunately, despite the remarkable
success of video frame interpolation (VFI) methods [20]–[22],
they cannot be applied to RS cameras to generate satisfactory
intermediate GS frames, leading to residual RS distortions [9].
This is because the VFI method inherently formulates frame
warping in a GS-adaptive manner, making it suitable solely
for GS-image-to-GS-video (GS2GS) conversion, but not for
RS-image-to-GS-video (RS2GS) conversion.

Towards the goal of RS2GS conversion, RS temporal super-
resolution (RSTSR) [8] emerges as an effective solution that
jointly handles VFI and RS correction, i.e., interpolating a
crisp and pleasing GS video to bring RS images alive. The
most crucial step in this process is the construction of the
RS2GS warping model. Typically, constant velocity [8], [9] and
constant acceleration [23], [24] camera motion assumptions are
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TABLE I
OVERVIEW OF UNROLLING THE SHUTTER FROM TWO ADJACENT FRAMES.

Method
Time-Specific Time-Arbitrary

DSUN
[10]

SUNet
[11]

CIEUnroll
[16]

JAMNet
[19]

RSSR
[8]

CVR
[9]

SelfRSSplat
(Ours)

Feature-based synthesis 3 3 3 3 7 7 3
RS2GS conversion 7 7 7 7 3 3 3
GS2RS conversion 7 7 7 7 7 7 3

Self-supervision 7 7 7 7 7 7 3

harnessed to model the underlying spatio-temporal coherence,
so that the undistortion flow can be estimated for frame warping
through RS2GS modeling. Despite the promising results, as
outlined in Table I, state-of-the-art RSTSR methods, e.g.,
RSSR [8], CVR [9], hinge on fully supervised training and are
only tailored for RS2GS conversion, resulting in two obvious
limitations:

- Expensive GT acquisition. There are two main means to
collect ground-truth (GT) RS-GS image pairs. On the one
hand, the RS image can be simulated [10] by row-by-row
splicing from high frame rate GS videos, but this suffers
from stripe artifacts and domain gaps with real data. On
the other hand, a well-designed beam-splitter system [7],
[18] can be used in practice, but this requires rigorous
optical registration and time synchronization. These factors
lead to costly GT acquisition of paired GS images and
also affect the algorithm’s generalization to new RS data
(see Fig. 1) where GS GT is limited or unavailable.

- Insufficient model scalability. Current RSTSR methods,
although constructing the RS2GS warping model, are
not yet adaptable to GS-image-to-RS-video (GS2RS)
conversion, which is a pivotal element in achieving self-
supervision learning. For GS2RS conversion, recent efforts
either leverage the pre-trained VFI method to synthesize
a high frame rate GS video sequence, followed by row-
by-row stitching [16], [25], [26], or engineer a complex
and independent warping function for dual-reversed RS
setups [27]. However, none of these strategies can assign
the two complement conversion attributes (i.e., RS2GS and
GS2RS conversions) to a common network model, which
calls for an urgent need for a unified model representation
of RS2GS and GS2RS.

To address the above limitations, we propose a self-
supervised RS temporal super-resolution method to unlock the
potential of RS cameras fully. It is trained in a self-supervised
cycle consistent fashion, canceling the necessity of paired GT
RS-GS images and shrinking the domain gap between synthetic
and real data. To the best of our knowledge, this is the first
attempt at the self-supervised RSTSR task. The key idea is
inspired by [28], [29], which is based on the cycle consistency,
where triplet samples with consecutive frames are constructed
to exploit inter-frame consistency. Furthermore, we derive a
unified model for RS2GS and GS2RS, which is parameter-free
and flexible, allowing the two desired conversion attributes to
be incorporated into a uniform network model simultaneously.

Specifically, we first inject the unified model of RS2GS and
GS2RS into the motion estimation module of the VFI method
(i.e., SoftSplat [21]) to conceptually adapt both RS2GS and
GS2RS conversions, termed RSSplat. It forward warps the RS

(or GS) context features based on the bidirectional motion
fields estimated by the RS2GS (or GS2RS) formulation, and
then decodes the target GS (or RS) image in the feature space.
We found that this feature-based synthesis architecture along
the lines of [10], [11], [16], [19] has superior performance
than CVR [9] that performs frame synthesis in RGB space,
which is why we base our self-supervised approach on RSSplat
instead of CVR (see Sec. IV-B). Then, in the context of cycle
consistency, we optimize RSSplat to minimize the difference
between the input second RS frame and its cycle reconstruction,
obtained by interpolating back from the estimated two latent GS
frames. In this way, we equip RSSplat with the self-supervised
learning ability, termed SelfRSSplat1, to generalize to RS
videos with limited or no GS GT references. Meanwhile, a
simple yet effective color consistency loss is imposed to combat
color degradation. Extensive experimental results demonstrate
that our SelfRSSplat achieves competitive performance with
prior supervised methods while exhibiting stronger generaliza-
tion. Interestingly, our SelfRSSplat outperforms state-of-the-art
(SoTA) methods on the LPIPS metric.

In a nutshell, our main contributions can be summarized as:

• We propose for the first time a self-supervised learning
framework for temporal super-resolution with RS images
by applying cycle consistency.

• We develop a unified model for RS2GS and GS2RS, which
endows a common network model with both complement
conversion attributes of RS2GS and GS2RS, ensuring
self-supervised training.

• Our approach is capable of unrolling two adjacent RS
images from the GT-limited real-world BS-RSC dataset
into a smooth and coherent GS video, as illustrated in
Fig. 1, unlocking the potential of RS cameras.

II. RELATED WORK

Video frame interpolation. VFI is a long-standing computer
vision research topic, where deep learning-based approaches
have shown extraordinary performance in the recent litera-
ture [30]–[33]. Depending on whether optical flow is utilized,
it can be roughly divided into two categories: flow-based [20],
[21], [34]–[36] and flow-agnostic [37]–[40]. With the rapid
development of optical flow estimation techniques [41]–[43],
flow-based VFI methods have achieved dominance. Notably,
linear [20], [21], [44], quadratic [45], quasi-quadratic [46],
cubic [47], and hybrid [48], [49] motion interpolation schemes
were developed. In addition, efficient frame synthesis archi-
tectures were designed, including contextual warping [50],
[51], occlusion inference [52], [53], and transformer [54], [55],
etc. Yet, all these VFI methods assume that the camera adopts
a GS mechanism, which hinders the generation of satisfactory
intermediate GS frames in the case of input RS images. In this
paper, we propose a tractable temporal super-resolution method
specifically for RS cameras, which can effectively remove RS
artifacts while synthesizing in-between frames.
RS temporal super-resolution. Recently, extracting latent
high frame rate GS videos hidden in RS images has received

1Code is available at https://github.com/GitCVfb/SelfRSSplat.

https://github.com/GitCVfb/SelfRSSplat
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increasing attention [6]. The pioneer work directly warped the
RS image based on geometric propagation models driven by
constant velocity [8] or constant acceleration [23] to generate
time-arbitrary GS images. Subsequently, Fan et al. [9] presented
a context-aware video reconstruction network, CVR, to perform
occlusion reasoning and motion compensation, resulting in
impressive results. In addition to the above exploration of
spatio-temporal coherence from a minimal configuration of two
adjacent RS frames, Qu et al. [24] proposed a quadratic motion
model to handle non-linear movements and complex occlusions
via five consecutive RS inputs. Moreover, additional global
reset features [56], [57], and dual-reversed RS images [25],
[58] were also fully exploited to better invert the RS imaging
mechanism. Unfortunately, all these methods require supervised
training based on datasets containing paired GT RS-GS images,
which poses huge challenges to both GS GT collection and
model deployment in real-world scenarios. In contrast, we
propose for the first time a self-supervised RSTSR method, as
detailed in Table I, which can be trained in a cycle-consistent
manner, eliminating the necessity of GS GT references.

Although Shang et al. [27] performed self-supervised video
reconstruction from dual-reversed RS images by applying cycle
consistency, it is inherently different from our method. In the
problem setting, the input of [27] is dual-reversed RS images,
while ours is two consecutive RS images. They have different
RS geometries and thus essentially belong to two different
research areas. Compared with consecutive RS input, the dual-
reversed RS image records an extra row of pixels during each
exposure and contains a shorter time step (i.e., single frame
imaging time) with smaller pixel displacement. As a result, the
dual-reversed RS setup is more friendly for temporal super-
resolution, as pointed out in [25]. Thus, cyclic consistency
can be fulfilled in [27] by directly warping the estimated GS
images to the input RS domain without introducing additional
RS frames. However, this strategy would become infeasible
for consecutive RS setups due to longer time steps. For two
consecutive RS inputs, both RS2GS and GS2RS need to be
performed in a common network to ensure cycle consistency,
which is challenging yet indispensable. We develop a unified
model of RS2GS and GS2RS and introduce an additional RS
frame for self-supervised training.
Cycle consistency. As a tractable constraint, it has been widely
applied in various self-supervised methods, such as correspon-
dence learning [59], [60], visual representation [61]–[63], and
image-to-image translation [64]. When challenged with the
video interpolation task, its core idea is to reconstruct back
frames from the original temporal resolution by interpolating
between predicted intermediate frames [28], [29], [65], [66].
The method closest to our work is UnSuperSloMo [28], which
optimizes the seminal VFI model (i.e., SuperSloMo [20])
based on a given triplet of consecutive frames to minimize the
discrepancy between the original middle frame and its cycle
reconstruction. However, the resulting model is only capable of
GS2GS and cannot yet be used for both RS2GS and GS2RS.
Note that RS2GS and GS2RS are the two essential complement
elements to achieve self-supervised RSTSR under the cycle-
consistency criterion, which poses significant challenges for
model design. In this paper, we build the analytical model
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Fig. 2. Schematic of the cycle consistency for self-supervised RS temporal
super-resolution. We first ¬  synthesize two intermediate GS images
(i.e., ÎGS

t , ÎGS
t+1) between each two input RS images (i.e., {IRS

0 , IRS
1 } and

{IRS
1 , IRS

2 }), and then ® reuse them to predict the original second RS
image as ÎRS

1 . Finally, the difference can be computed between IRS
1 and its

cycle reconstruction ÎRS
1 , which fully leverages the consistency within video

sequences. Note that these three steps, whether ¬  RS2GS or ® GS2RS
conversion, adopt a uniform network model M with learnable parameters θ.

of RS2GS and GS2RS under a unified framework, which
allows RS2GS and GS2RS conversions with shared parameters,
thereby supporting self-supervised cycle consistency training.

III. METHOD

In this section, we first provide a mathematical definition
of the RSTSR task in the general RS scenario in Sec. III-A,
and introduce how the self-supervised learning framework is
designed under the cycle consistency constraint in Sec. III-B.
Then, we develop a unified formulation for RS2GS and GS2RS
in Sec. III-C, laying the foundation for arranging the two
complement conversion attributes within a uniform network
model to achieve self-supervised training. Finally, we briefly
display the architecture of the proposed self-supervised RSTSR
method in Sec. III-D and summarize the loss function in
Sec. III-E.

A. Definition of the RS Temporal Super-resolution Task

Given two consecutive RS images IRS
0 and IRS

1 , we define
the RSTSR task similarly to CVR [9], aiming to restore
a temporal sequence of latent GS images, whose start and
end timestamps correspond to the middle scanline times of
IRS
0 and IRS

1 , respectively. Assuming an RS camera with a
readout time ratio of γ, where 0 < γ ≤ 1 represents the ratio
between the total readout time and the total imaging time of
an RS image frame. As an RS-specific parameter, γ can be
calibrated by [67], [68] and is widely used in RS geometric
modeling [8], [9], [17], [69], [70]. Without loss of generality,
in this paper, we denote the last scanline times of IRS

0 and IRS
1

as 0 and 1, respectively, which facilitates the unification of the
two complement conversions (i.e., RS2GS and GS2RS) later.
Further, it is easy to determine that the middle scanline times
of IRS

0 and IRS
1 are −γ/2 and 1− γ/2, respectively.

Therefore, as shown by the solid orange line segment at
the top of Fig. 2, the RSTSR task can be defined more
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Fig. 3. Illustration of unified formulation of RS2GS and GS2RS, aiming to approximate bidirectional motion fields for frame warping.

generally in the time dimension as recovering the time-arbitrary
intermediate GS image ÎGS

t at time t ∈ [−γ/2, 1− γ/2] from
two neighboring RS images IRS

0 and IRS
1 . Formally,

ÎGS
t =Mθ(I

RS
0 , IRS

1 , t, γ), (1)

where M denotes an RSTSR network model with learnable
parameters θ. Note that the off-the-shelf RSTSR methods, e.g.,
RSSR [8], CVR [9], require fully supervised training to learn
a feasible θ, which hinders video reconstruction in real-world
scenarios where GT RS-GS image pairs are limited or even
lacking. Below, we aim to answer the core question: Given
only two consecutive RS images without corresponding GT
RS-GS image pairs, how to design a self-supervised learning
framework to learn θ effectively?

B. Overview of Self-Supervised Learning

Inspired by the cycle consistency constraint, which is first
proposed in CycleGAN [64] and then becomes a tractable
constraint in self-supervised VFI methods [28], [29], [65], we
design a self-supervised learning framework for RSTSR. The
core design philosophy is that for a given triplet of input RS
image sequence, if we generate an intermediate GS frame
between each two consecutive RS frames, and generate back
their intermediate RS frame, the resulting RS frame must match
the original middle RS frame. Specifically, as illustrated in
Fig. 2, given a triplet of consecutive RS frames {IRS

0 , IRS
1 , IRS

2 },
we first synthesize an in-between GS frame ÎGS

t from IRS
0 and

IRS
1 according to Eq. (1), and then similarly, the latent GS

frame ÎGS
t+1 corresponding to time t+ 1 can be yielded from

IRS
1 and IRS

2 , i.e.,

ÎGS
t+1 =Mθ(I

RS
1 , IRS

2 , t, γ). (2)

Finally, based on these two predicted intermediate GS proposals
{ÎGS
t , Î

GS
t+1}, we can reconstruct back the input second RS frame

as follows:
ÎRS
1 =Mθ(Î

GS
t+1, Î

GS
t , t, γ). (3)

As a result, the model parameters θ can be updated by
minimizing the difference between the input RS image IRS

1 and
its cycle reconstruction ÎRS

1 , i.e.,

θ ← θ − η∇θL(IRS
1 , ÎRS

1 ), (4)

where η is the adaptive learning rate and L represents the
loss function. Such a cycle consistency framework enables
the model to make full use of its own inter-frame consistency
properties in a self-supervised fashion via Eqs. (1), (2), (3),

thereby obtaining an effective θ to bring RS images alive.
Note that this workflow contains two key elements: One is the
need to jointly handle two complement view conversions (i.e.,
RS2GS in Eqs. (1), (2), and GS2RS in Eq. (3)); the other is
the network model M used in these conversions should have
the same parameters θ. Next, we integrate the two complement
attributes into a uniform network through RS2GS and GS2RS
formulations.
Tackling degenerate solutions. A degenerate solution to the
optimization process of Eq. (4) might be to copy the input RS
frame IRS

1 as the intermediate prediction. However, this does
not occur in our learning setting because we utilize diverse
t in Eqs. (1) and (2) to estimate intermediate GS frames and
IRS
1 is located at different input positions, thus avoiding trivial

solutions. Note that another possible degradation is that the
colors of the intermediate GS images ÎGS

t and ÎGS
t+1 may be

distorted, as displayed in Fig. 4. While this does not affect
the final prediction of ÎRS

1 during cycle consistency training,
it leads to visually unpleasant ÎGS

t when inferring via Eq. (1).
To this end, we propose a color consistency loss in Sec. III-E
that forces the warped GS proposal to be consistent with the
input RS image in RGB space.

Training GTInput

Testing

Fig. 4. Degenerate solutions during training. Without imposing the color
consistency loss, the intermediate GS predictions ÎGS

t (the desired output) and
ÎGS
t+1 may suffer from color distortions.

C. Unified Formulation of RS2GS and GS2RS

In this subsection, we propose a unified formulation of
RS2GS and GS2RS so that Eqs. (1), (2), (3), i.e., RS2GS
and GS2RS conversions, can be simultaneously implemented
using the same set of shared learnable parameters θ. In the
following, based on the approximated bidirectional motion
fields F0→t,F1→t, which are obtained by performing a simple
linear scaling operation on the bidirectional optical flow fields
F0→1,F1→0, the warping models of RS2GS and GS2RS can
be established effectively.
RS2GS formulation. We note that the number of scanlines
of the input image is H , and the pixel point qi is located
at yi-th scanline, where 1 ≤ yi ≤ H . As shown in
Fig. 3 (a), suppose that q0 in IRS

0 and q1 in IRS
1 are a pair
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Fig. 5. Architecture overview of the proposed SelfRSSplat. Taking the RS2GS
conversion in Eq. (1) as an example, given two consecutive RS images,
our method consists of three main steps to recover a latent GS image ÎGS

t
corresponding to time t. First, contextual features are extracted; then, based on
the estimated bidirectional optical flow, the bidirectional motion fields (BMF)
are obtained using our unified formulation of RS2GS and GS2RS (i.e., Eq. (6));
finally, the warped features are decoded into the target GS image in the frame
synthesizer. In particular, this pipeline also accommodates Eq. (2) and Eq. (3),
ensuring the feasibility of self-supervised cycle-consistency learning.

of matching points, which passes through an intermediate
pixel point qt in IGS

t . Therefore, F0→1(q0) =
−−−−−−−−−−→
IRS
0 (q0)I

RS
1 (q1)

and F1→0(q1) =
−−−−−−−−−−→
IRS
1 (q1)I

RS
0 (q0) can represent a set of

bidirectional optical flow vectors. To obtain the bidirectional
motion vectors F0→t(q0) =

−−−−−−−−−−→
IRS
0 (q0)I

GS
t (qt) and F1→t(q1) =−−−−−−−−−−→

IRS
1 (q1)I

GS
t (qt), we try to employ the constraint of similar

triangles. Specifically, we first approximate the scaling factor
of RS2GS as ΦGS

t (q0,q1) = F0→t(q0)/F0→1(q0), which can
be expanded as:

ΦGS
t (q0,q1) =

t+ γ − γ
H y0

1 + γ
H (y1 − y0)

. (5)

Note that, the vertical component of the forward optical flow
vector F0→1(q0) can yield y1−y0 = Fv0→1(q0); the use of the
backward optical flow vector F1→0(q1) results in y1 − y0 =
−Fv1→0(q1). Thus, the bidirectional scaling factors can be
formulated as Φf

t(q0) , ΦGS
t (q0,q1), Φb

t(q1) , ΦGS
t (q1,q0).

Then, stacking all pixels in matrix form, we can obtain the
bidirectional scaling fields Φf

t, Φb
t . Finally, linearly scaling the

bidirectional optical flow fields can generate the bidirectional
motion fields as follows:

F0→t = Φf
t � F0→1,

F1→t = (1−Φb
t)� F1→0,

(6)

where � is the Hadamard product. The theoretical proof of
Eq. (6) can be found in [8], [17], involving the parallax effect
caused by depth variation. Heretofore, we have completed the
formulation of RS2GS, which can be utilized to warp the
RS input to a virtual GS counterpart corresponding to time
t ∈ [−γ/2, 1− γ/2].
GS2RS formulation. It is worth noting that we cleverly
propose to construct the opposite time axis (vs. RS imag-
ing) to subtly model GS2RS, as illustrated in Fig. 3 (b).
Analogously, F0→t(q0) =

−−−−−−−−−−→
IGS
0 (q0)I

RS
t (qt) and F1→t(q1) =−−−−−−−−−−→

IGS
1 (q1)I

RS
t (qt) can denote a set of bidirectional motion vectors.

To interpolate the RS frame IRS
t corresponding to time t from

the two adjacent GS frames IGS
0 and IGS

1 , we still exploit
the linear motion assumption, often used in VFI [20], [21],
[28], [34] and RSTSR [8], [9]. To begin with, we can easily
obtain ||

−−−−−−−−−−→
IGS
0 (q0)I

RS
t (q0)|| = t+γ− γ

H y0, ||
−−−−−−−−−−→
IGS
1 (q1)I

RS
t (q1)|| =

1− t− γ + γ
H y1. Furthermore, using the similarity constraint

on triangles, namely, ||
−−−−−−−−−−→
IGS
1 (q1)I

RS
t (q1)|| · ||F0→t(q0)|| =

||
−−−−−−−−−−→
IGS
0 (q0)I

RS
t (q0)|| · ||F1→t(q1)||, the scaling factor of GS2RS

can be approximated as ΦRS
t (q0,q1) = F0→t(q0)/F0→1(q0),

i.e.,

ΦRS
t (q0,q1) =

t+ γ − γ
H y0

1 + γ
H (y1 − y0)

. (7)

It can be seen that Eq. (7) and Eq. (5) share the same
structure despite serving different conversion purposes. We
thus can similarly derive the bidirectional scaling fields Φf

t, Φb
t

based on Eq. (7), as in Eq. (5). Subsequently, the bidirectional
motion fields F0→t and F1→t can be obtained by linearly
scaling the regular bidirectional optical flow fields. Note
that this GS2RS process can also be formulated by Eq. (6),
consistent with RS2GS. Hence, referring to Fig. 2, inputting
ÎGS
t+1 first and then ÎGS

t in Eq. (3) can be used to reconstruct
back the original RS frame ÎRS

1 , which is the key to achieve
self-supervised cycle consistency learning. At this time, the
formulation of GS2RS naturally remains the same as the above
RS2GS formulation, that is, the unification of GS2RS and
RS2GS warping models is achieved.

D. Architecture of the Proposed SelfRSSplat

Building upon the aforementioned unified formulation in
Eq. (6), we would like to have a uniform network model at
hand, which can be compatible with both RS2GS and GS2RS
conversions like M in Eqs. (1), (2), (3). To this end, as shown
in Fig. 5, we directly inject the parameter-free unified model
of RS2GS and GS2RS into the motion estimation module of
the well-established VFI method SoftSplat [21], which can
seamlessly adapt to both RS2GS and GS2RS conversions,
named RSSplat. The feature extractor and frame synthesizer
of RSSplat follow the structure of SoftSplat. Specifically, it
first estimates the bidirectional optical flow fields by the pre-
trained GMFlow [71], then performs forward warping of the RS
(or GS) context features in accordance with the bidirectional
motion fields approximated by Eq. (6), and finally combines
and refines the warped features into the target GS (or RS) image
within a frame synthesizer. In this way, motion compensation
and occlusion reasoning can be carried out efficiently.

Note that RSSplat inherits the advantages of using feature-
based synthesis like prevailing RS correction methods [7], [10],
[11], [18], [19] (cf., Table I) and VFI [21], [34], [50], [51],
[53] methods, and exhibits superior performance compared to
the image-based synthesis method CVR [9]. We also believe
extending the well-established VFI method (i.e., SoftSplat) to
support RS2GS and GS2RS can provide a valuable perspective.
Ultimately, based on our self-supervised learning framework
in Sec. III-B, the model parameters θ of RSSplat can be
optimized without using GT RS-GS image pairs, yielding
our self-supervised RSTSR model, SelfRSSplat, to unroll two
consecutive RS images into a smooth GS sequence.

E. Loss Function

The proposed pipeline can be end-to-end trained in a self-
supervised learning manner by minimizing the discrepancy
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TABLE II
QUANTITATIVE RESULTS AT TIME 1− γ ON CARLA-RS AND FASTEC-RS DATASETS. GRAY PART INDICATES THE TIME-SPECIFIC RS CORRECTION METHOD

AND THE REMAINDER IS THE TIME-ARBITRARY RSTSR METHOD. BOLD AND UNDERLINED NUMBERS DENOTE THE BEST AND SECOND-BEST
PERFORMANCE IN RSTSR METHODS. OUR SELF-SUPERVISED PIPELINE ACHIEVES COMPARABLE OR BETTER PERFORMANCE THAN SUPERVISED METHODS.

Method Supervision #Params PSNR↑ (dB) SSIM↑ LPIPS↓
(Million) CRM CR FR CR FR CR FR

DiffSfM [69] 7 - 24.20 21.28 20.14 0.775 0.701 0.1322 0.1789
CIEUnroll [16] 3 - 31.84 31.43 28.57 0.919 0.844 - -
DSUN [10] 3 3.91 26.90 26.46 26.52 0.807 0.792 0.0703 0.1222
SUNet [11] 3 12.0 29.28 29.18 28.34 0.850 0.837 0.0658 0.1205
DSUN [10] + BMBC [34] 3 14.9 27.29 27.58 24.95 0.829 0.787 0.0980 0.2024
DSUN [10] + DAIN [51] 3 27.9 27.48 27.88 26.19 0.874 0.807 0.0821 0.1453
JAMNet [19] + SoftSplat [21] 3 12.1 30.40 30.14 26.63 0.895 0.815 0.0629 0.1982
JAMNet [19] + RIFE [22] 3 15.4 29.96 29.74 26.81 0.877 0.813 0.1241 0.2315
RSSR [8] 3 26.0 30.17 24.78 21.23 0.867 0.776 0.0695 0.1659
CVR [9] 3 42.7 32.02 31.74 28.72 0.929 0.847 0.0368 0.1107
RSSplat (Ours) 3 7.44 32.92 32.80 29.85 0.938 0.869 0.0197 0.0814
SelfRSSplat (Ours) 7 7.44 31.06 31.00 27.25 0.915 0.814 0.0260 0.0828

between the input middle RS frame IRS
1 and its cycle reconstruc-

tion ÎRS
1 . In addition, possible color distortion of intermediate

GS predictions ÎGS
t , Î

GS
t+1 needs to be handled during cycle

consistency training. As a consequence, our total loss function
incorporates cycle consistency loss Lcycle and color consistency
loss Lcolor, i.e., L = Lcycle + Lcolor.
Cycle consistency loss Lcycle. It is a linear combination of
image reconstruction loss and perceptual loss [72]. The former
measures the pixel-wise cycle reconstruction error, and the
latter contributes to preserving fine details and enhancing the
perceptual quality, given by

Lcycle = ρ(IRS
1 − ÎRS

1 ) + λ‖φ(IRS
1 )− φ(ÎRS

1 )‖1, (8)

where ρ(x) =
√
x2 + ε2 is the Charbonnier function with

constant ε of 0.001, φ is the conv4 3 feature of the VGG16
model [73], and the weight λ is empirically set to 0.01.
Color consistency loss Lcolor. As illustrated in Fig. 4, the
estimated intermediate GS frames ÎGS

t , Î
GS
t+1 from Eqs. (1), (2)

may suffer from color distortion. Although this does not affect
the cycle reconstruction of ÎRS

1 in Eq. (3), it will lead to
degradation of the resulting SelfRSSplat model during inference
(i.e., Eq. (1)). Therefore, we force the warped intermediate GS
frame to align with the input middle RS frame IRS

1 based on
temporal distance, i.e.,

Lcolor =
{
ρ(IRS

1 −W(ÎGS
t+1,F

GS2RS
0→t )) if t ≤ (1− γ)/2

ρ(IRS
1 −W(ÎGS

t ,F
GS2RS
1→t )) if t > (1− γ)/2

(9)
where W indicates the frame warping operator, and FGS2RS

0→t ,
FGS2RS

1→t refer to the bidirectional motion fields approximated
during the execution of Eq. (3). We found that such a simple
constraint is sufficient for SelfRSSplat to maintain the correct
color in the RGB space.

IV. EXPERIMENTS

A. Experimental Setup

Datasets. We adopt three standard RS benchmark datasets,
including Carla-RS [10], Fastec-RS [10], and BS-RSC [7].
The synthetic Carla-RS dataset is generated from a virtual
3D environment, involving general 6-DoF camera motions,
and the image resolution is 640× 448. The Fastec-RS dataset
consists of RS image sequences synthesized by row-by-row

GT

RS image DSUN+DAIN JAMNet+RIFE JAMNet+SoftSplat

SUNet RSSR CVR SelfRSSplatRSSplat

Fig. 6. Visual comparison of RS correction results on the Fastec-RS
dataset [10]. Even rows: the absolute difference between the recovered image
and the corresponding GT GS image.

stitching of high-speed GS videos with dynamic scenes, with
an image resolution of 640× 480. Note that they provide GS
GT corresponding to the first and middle scanlines, and the
readout time ratios are all 1. Thus, GT RS-GS image pairs with
t = {−0.5, 0, 0.5} can be used for supervised training. The
real-world BS-RSC dataset [7] released later contains a variety
of camera and object movements (e.g., vehicles and pedestrians)
in urban environments, with a readout time ratio γ of 0.45 and
an image resolution of 1024× 768. Note that only the middle-
scanline GS GT is collected by a beam-splitter system. Due
to limited GS GT being recorded, it could previously only be
suitable for time-specific RS correction [7], [17], [19] and not
for time-arbitrary RSTSR tasks. In contrast, our SelfRSSplat
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TABLE III
QUANTITATIVE RESULTS AT TIME 1− γ/2 ON CARLA-RS AND FASTEC-RS DATASETS. GRAY PART INDICATES THE TIME-SPECIFIC RS CORRECTION

METHOD AND THE REMAINDER IS THE TIME-ARBITRARY RSTSR METHOD. BOLD AND UNDERLINED NUMBERS DENOTE THE BEST AND SECOND-BEST
PERFORMANCE IN TIME-ARBITRARY RSTSR METHODS. IN ADDITION TO THE OUTSTANDING PERFORMANCE AT TIME 1− γ IN TABLE II, THE SUPERIOR

PERFORMANCE AT TIME 1− γ/2 ALSO PROVES THE ADVANTAGE OF OUR PIPELINE IN HIGH-FRAME-RATE GS VIDEO RECONSTRUCTION.

Method Supervision PSNR↑ (dB) SSIM↑ LPIPS↓
CRM CR FR CR FR CR FR

DiffSfM [69] 7 25.93 22.88 21.44 0.770 0.710 0.1201 0.2180
AdaRSC [7] 3 - - 28.56 - 0.855 - 0.0796
JCD [18] 3 28.12 27.75 26.48 0.836 0.821 0.0595 0.0943
DSUN [10] 3 27.86 27.54 26.73 0.829 0.819 0.0555 0.0995
SUNet [11] 3 28.44 28.17 27.06 0.838 0.825 0.0702 0.1030
JAMNet [19] 3 31.00 30.70 28.70 0.905 0.865 0.0371 0.0691
SUNet [11] + BMBC [34] 3 28.51 28.69 25.49 0.848 0.796 0.1033 0.2118
SUNet [11] + DAIN [51] 3 28.63 28.93 27.12 0.851 0.823 0.0919 0.1642
RSSR [8] 3 29.36 26.57 24.89 0.900 0.824 0.0553 0.1109
CVR [9] 3 29.41 29.19 26.67 0.915 0.838 0.0403 0.1011
RSSplat (Ours) 3 31.93 31.75 28.98 0.929 0.864 0.0222 0.0797
SelfRSSplat (Ours) 7 29.49 29.35 26.47 0.894 0.810 0.0292 0.0684

enables the recovery of time-arbitrary GS images in this dataset
for the first time.

Training details. Since the optical flow estimation model pre-
trained on GS images can be used on RS images [2], [17], [24],
[69], we employ a pre-trained optical flow estimator and keep it
frozen, training only the feature extractor and frame synthesizer,
as shown in Fig. 5. Note that SelfRSSplat is trained within our
self-supervised learning framework, whereas RSSplat is used
as an RSTSR model with supervised training from scratch. The
model is trained for 200 epochs using the Adam optimizer with
a learning rate of 0.0001 and a batch size of 2. We randomly
sample diverse t ∈ [−γ/2, 1−γ/2] in the Carla-RS and Fastec-
RS datasets, and fix t to 1− γ in the BS-RSC dataset, since
55% blank rows between adjacent RS frames caused by γ of
0.45 may lead to training instability (cf., Sec. IV-F). 320×256
patches are cropped randomly from a triplet of RS images.
Random horizontal flipping and vertical flipping combined
with reverse order [19], are introduced for data augmentation.
All experiments are performed on a single NVIDIA RTX 3090
GPU. At the test phase, our method can reconstruct GS frames
corresponding to any time t ∈ [−γ/2, 1− γ/2].

Evaluation protocols. Since GT occlusion mask is available in
the Carla-RS dataset, following [9], [10], [24], we perform the
evaluation as: Carla-RS with mask (CRM), Carla-RS without
mask (CR), and Fastec-RS (FR). Standard PSNR and SSIM
metrics, and learned perceptual metric LPIPS [74] are applied.
A higher PSNR/SSIM (↑) or lower LPIPS (↓) score indicates
better performance.

Comparison methods. We evaluate our method against the fol-
lowing baselines: (1) DiffSfM [69], CIEUnroll [16], JCD [18],
AdaRSC [7], JAMNet [19], DSUN [10], SUNet [11] are time-
specific RS correction methods. (2) RSSR [8] and CVR [9]
are popular RSTSR methods that can restore time-arbitrary GS
images from two adjacent RS images. Since Qu et al. [24]
requires five consecutive RS frames as input, for fairness, we
do not compare with it. (3) Cascaded methods contain four
paradigms of RS correction followed by VFI methods, i.e.,
“DSUN + BMBC [34]”, “DSUN + DAIN [51]”, “JAMNet +
SoftSplat [21]”, and “JAMNet + RIFE [22]”.

RS image GT JCD

DSUN

AdaRSC

RSSR CVR SelfRSSplat

Fig. 7. Visual comparison of RS correction results on the real-world BS-
RSC dataset [7]. Areas with significant distortion are marked with red circles.
Even rows: the absolute difference between the recovered image and the
corresponding GT GS image.

B. Comparison and Analysis

1) Results on Carla-RS and Fastec-RS datasets: The quanti-
tative results corresponding to time 1−γ are reported in Table II.
Thanks to the context synthesis in feature space, RSSplat
consistently achieves SoTA results. Without using GS GT
references for supervision, our SelfRSSplat shows competitive
performance with prior supervised methods and even exceeds
them on the LPIPS metric, demonstrating the effectiveness of
our proposed self-supervised learning framework. Additionally,
our approach features a more lightweight network architecture.

Table III shows the RS correction result corresponding to
time 1 − γ/2. It can also be seen that RSSplat (supervised)
benefits from the powerful feature-based synthesis capability
and achieves significantly better results than the image-based
synthesis method CVR (supervised). Note that due to SelfRSS-
plat’s ability to leverage the intrinsic distribution information of
the input RS images themselves, it holds the potential to surpass
current supervised baselines in terms of visual perceptual
metrics, making the GS recovery results more faithful to the
latent GS image.
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Fig. 8. Visual comparison with existing RSTSR methods (i.e., RSSR and CVR) on real-world BS-RSC dataset [7]. Six consecutive latent GS video frames are
recovered from two adjacent RS frames. Moving pedestrians and vehicles are included. Fluid GS video sequences cannot be generated by supervised methods
RSSR and CVR because the limited GS GT is not efficiently sufficient to complete frame synthesis in RGB color space. Our SelfRSSplat circumvents this
problem by means of self-supervised learning to recover temporally consistent and visually pleasant GS video sequences.

A visual example is displayed in Fig. 6, where our method
exhibits impressive results in terms of local details and subjec-
tive perception even though it is self-supervised. Due to error
accumulation, cascaded methods are prone to blurring artifacts
and local inaccuracies. For example, JAMNet+SoftSplat and
JAMNet+RIFE have obvious unclear artifacts in grasses and
railings behind. These experiments collectively underscore the
effectiveness and superiority of our proposed self-supervised
architecture in RS effect removal.

2) Results on BS-RSC dataset: As shown in Table IV and
Fig. 7, our method eliminates the dependence on GS GT
reference and performs effectively in real-world scenarios, even
surpassing most time-specific RS correction methods. Moreover,
our SelfRSSplat achieves a 2.39 dB PSNR improvement
compared to SoTA time-arbitrary method CVR [9]. Note that
our pipeline also opens new avenues to unroll two consecutive
RS images into a high frame rate GS video for this dataset, as
evident in Sec. IV-C.

C. RS Temporal Super-Resolution Results

It should be emphasized that our approach not only out-
performs time-specific RS correction methods but also adapts
to time-arbitrary RSTSR tasks, i.e., our method can recover
intermediate GS frames corresponding to arbitrary time steps.
The visual result of 5× temporal upsampling on the real-world

TABLE IV
QUANTITATIVE COMPARISON ON THE REAL-WORLD BS-RSC DATASET [7].

DUE TO THE LIMITED GS GT PROVIDED, IT IS NOT ENOUGH TO TRAIN
RELIABLE RSTSR MODELS IN A SUPERVISED MANNER. OUR APPROACH IS
THE FIRST TO RECOVER TIME-ARBITRARY GS FRAMES FOR THIS DATASET.

Method PSNR↑ (dB) SSIM↑ Time-Arbitrary
DSUN [10] 25.21 0.833 7
SUNet [11] 27.76 0.875 7
JCD [18] 25.59 0.841 7
AdaRSC [7] 28.23 0.882 7
JAMNet [19] 32.93 0.941 7
RSSR [8] 26.47 0.880 7
CVR [9] 28.14 0.895 7
SelfRSSplat (Ours) 30.53 0.914 3

BS-RSC dataset is illustrated in Fig. 8. Furthermore, we present
a supplementary video to demonstrate the RSTSR results.

Due to hardware limitations, the BS-RSC dataset only col-
lects limited GS GT, which is insufficient for supervised training
of RSTSR networks. As a result, previous supervised methods
RSSR and CVR face difficulties in recovering smooth temporal
sequences of latent GS images from two consecutive RS frames.
For example, the pillar in Fig. 8 cannot be correctly corrected
in GS images far from the GT supervisory signal. In addition,
our approach is robust to moving objects, e.g., pedestrians and
vehicles in Fig. 8. We conjecture this is because the GS frame
candidates obtained by the linear motion-based warping can
be effectively fused in the frame synthesizer. Benefiting from
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Overlayed RS Predicted RSPredicted GS GT GS GT RSOverlayed GS

PSNR/SSIM: 33.55/0.95

PSNR/SSIM: 28.77/0.86

PSNR/SSIM: 33.09/0.95

PSNR/SSIM: 28.10/0.85

Fig. 9. Qualitative results of RS2GS and GS2RS conversions on the Carla-RS dataset. Our method not only supports RS correction to restore the underlying
GS image (i.e., RS2GS on the left), but can also be used in turn to synthesize a high-quality RS image (i.e., GS2RS on the right). Note that they share the
same network model of SelfRSSplat.

TABLE V
QUANTITATIVE RESULTS OF GS2RS AND RS2GS CONVERSIONS. OUR

APPROACH ALLOWS EFFICIENT INTERCONVERSION BETWEEN RS IMAGES
AND GS IMAGES USING THE SAME NETWORK MODEL.

Conversion PSNR↑ (dB) SSIM↑ LPIPS↓
CRM CR FR CR FR CR FR

GS2RS 30.98 30.95 27.14 0.914 0.809 0.0268 0.0842
RS2GS 31.06 31.00 27.25 0.915 0.814 0.0260 0.0828

the proposed self-supervised learning framework, our approach
not only successfully eliminates RS artifacts and preserves
rich image details, but also effectively reconstructs temporally
continuous GS sequences for various real-world RS images.

D. GS2RS Conversion Results

An important advantage of our proposed pipeline is its self-
supervised nature, which benefits from the widely-used cycle
consistency constraint and our proposed unified formulation
of RS2GS and GS2RS. Another advantage is its common
compatibility with both RS2GS and GS2RS conversions. This
nature is due to the unification of RS2GS and GS2RS warping
models in our formulation in Sec. III-C, allowing a common
network model to adapt to the two complement conversion
attributes at the same time.

As shown in Table V and Fig. 9, our method can be applied
not only to RS2GS conversion, i.e., generating high-frame-rate
and high-fidelity GS videos from two adjacent RS frames, but
also to GS2RS conversion. Note that GS2RS conversion can
potentially provide a promising possibility for simulating RS
datasets from real low-frame-rate GS videos. Previously, a naive
approach to this goal at hand would be synthesizing high-frame-
rate GS videos from low-frame-rate GS videos by off-the-shelf
video frame interpolation (VFI) methods [20], [22], [51], and
then performing row-by-row stitching, such as [16], [25], [26].
Nevertheless, this two-stage process is time-consuming and
labor-intensive, whereas our GS2RS conversion is capable of
efficiently doing it in one step. It is also worth emphasizing that
the GS2RS conversion is a key element for constructing the
cycle consistency constraint, which has not been investigated
before. Driven by the mutual conversion between RS2GS and
GS2RS, a tractable self-supervised learning framework is built
effectively in this paper.

RS frame CVR RSSplat SelfRSSplat
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Fig. 10. Generalization comparison of RSTSR on Gev-RS-Real test data [26].
For severe RS distortions caused by a fast-swinging calibration plate in
real-world scenarios, supervised CVR and RSSplat struggle to generalize
to interpolate a reliable GS sequence, while our SelfRSSplat delivers smooth
GS videos by virtue of self-supervised learning.

E. Generalization Evaluation on Other Real Data

To evaluate the generalization of our method, we adopt the
Gev-RS-Real test data [26], which contains noticeable real-
world RS distortions and the GS GT is not available. The image
resolution is 346× 260. We utilize the model pre-trained on
the real-world BS-RSC dataset due to smaller domain gaps. As
shown in Fig. 10, supervised CVR and RSSplat methods fall
short when dealing with new real RS images due to significant
differences in intermediate motion estimation, i.e., a large
number of visual artifacts and temporal discontinuities are
generated. In contrast, our SelfRSSplat directly fits the real-
world data distribution to model intermediate motion relations
in a self-supervised fashion, resulting in visually fluid and
temporally coherent results and reinforcing the potential of RS
cameras for broader applications.

Moreover, we also adopt the real RS data provided by [69]
and [75], in which a mobile phone is held and moved quickly
and irregularly outdoors, resulting in significant RS distortions.
The image resolutions are 1280×720 and 640×480 respectively.
The qualitative RS correction results are displayed in Fig. 11. It
can be seen that our method is able to effectively and robustly
remove real-world RS effects. While there is no access to GS
GT references e.g., for most real RS devices, our SelfRSSplat
can more comprehensively explore the intermediate motion
modeling of real RS data, thereby recovering temporally
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Fig. 11. RS correction results on real-world RS images provided by [69] (left three columns) and [75] (right three columns). Our method can robustly
generalize to remove significant RS artifacts in practical scenarios.

TABLE VI
ABLATION STUDIES ON SUPERVISION TIME, SYNTHESIS STRATEGY, AND TRAINING APPROACH. “DIVERSE t” MEANS THE GS RECONSTRUCTION TIME t IS
RANDOMLY SAMPLED IN THE TIME INTERVAL [−γ/2, 1− γ/2] DURING TRAINING. FIXED t MEANS THAT THE GS RECONSTRUCTION TIME t IS FIXED TO
1− γ DURING TRAINING. SELFCVR DENOTES THE CVR NETWORK [9] RETRAINED WITHIN OUR SELF-SUPERVISED LEARNING FRAMEWORK. “W/O

FROZEN” INDICATES THAT THE PARAMETERS OF THE OPTICAL FLOW ESTIMATOR ARE NOT FROZEN DURING SELF-SUPERVISED TRAINING. † INDICATES
TRAINING INSTABILITY. SINCE THE BS-RSC DATASET HAS 55% INTER-FRAME BLANK ROWS, THE SELF-SUPERVISED TRAINING WITH IMAGE-BASED

SYNTHESIS OR DIVERSE t MAY SUFFER FROM INSTABILITY OR FAILURE.

Method Carla-RS dataset Fastec-RS dataset BS-RSC dataset
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM

SelfRSSplat (fixed t) 29.35 0.881 0.0261 25.93 0.789 0.0916 30.53 0.914
SelfRSSplat (diverse t) 31.00 0.915 0.0260 27.25 0.814 0.0828 28.41† 0.902†

SelfCVR (image-based) 30.78 0.915 0.0398 26.70 0.804 0.1111 24.86† 0.820†
SelfRSSplat (feature-based) 31.00 0.915 0.0260 27.25 0.814 0.0828 30.53 0.914
SelfRSSplat (w/o frozen) 30.08 0.888 0.0375 26.21 0.787 0.1055 29.84 0.901
SelfRSSplat (w/ frozen) 31.00 0.915 0.0260 27.25 0.814 0.0828 30.53 0.914

consistent and geometrically correct distortion-free images.
These experiments verify that our method enjoys strong
generalization performance in practice, which also expands
more possibilities for the actual use of RS cameras.

F. Ablation Studies

We conduct ablation studies concerning supervision time,
synthesis strategy, training approach, and network structure.
Ablations on supervision time. We separately utilize diverse
t ∈ [−γ/2, 1− γ/2] and fixed t = 1− γ for network training.
Since Carla-RS and Fastec-RS datasets have good temporal
continuity (γ = 1), as shown in Table VI, sampling diverse t
during training is conducive to superior results. By contrast,
the BS-RSC dataset with γ = 0.45 creates 55% blank rows
across adjacent RS frames. This longer temporal distance makes
training based on diverse t prone to instability. Hence, we make
t fixed during the self-supervised training of this dataset, which
not only facilitates more stable network training but also yields
more accurate recovery results. And thanks to feature-based
synthesis as in [21], this does not prevent our method from
producing a continuous GS video.

TABLE VII
EFFICACY UNDER DIFFERENT OPTICAL FLOW ESTIMATORS (GMFLOW [71]

AND RAFT [43]). PSNR/SSIM AND NETWORK PARAMETERS FOR
SELFRSSPLAT ARE REPORTED. RUNTIME IS TESTED ON 640× 480 IMAGES

AND A SINGLE 3090 GPU.
SelfRSSplat w/ RAFT [43] w/ GMFlow [71]

Dataset
Carla-RS 31.72/0.929 31.00/0.915
Fastec-RS 28.13/0.832 27.25/0.814
BS-RSC 30.85/0.915 30.53/0.914

Metric Para. (Million) 8.02 7.44
Time (ms) 201 67

Ablations on synthesis strategy. From the comparison of
our RSSplat and CVR in Table II, feature-based synthesis
achieves better results than image-based synthesis in the case
of supervised training. To further understand its superiority
in the context of self-supervised training, we implement a
self-supervised version of CVR, called SelfCVR, based on
our self-supervised learning framework. As can be seen from
Table VI, our feature-based synthesis strategy exhibits more
excellent RS correction performance. Note that SelfCVR is
highly susceptible to training instability or even training failure,
whether it is based on diverse t or fixed t, due to the presence
of 55% blank rows between neighboring RS frames in the BS-
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Fig. 12. Comparison of different synthesis strategies under supervised and self-supervised training. Compared with SelfCVR and CVR which perform frame
synthesis in RGB color space, our feature-based synthesis methods SelfRSSplat and RSSplat exhibit better RS correction results.
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Fig. 13. RS temporal super-resolution comparison of SelfCVR and SelfRSSplat on real-world GT-limited BS-RSC dataset. Six consecutive latent GS video
frames are recovered from IRS

0 and IRS
1 . Due to 55% inter-frame blank rows, the image-based synthesis method SelfCVR cannot produce a smooth and accurate

GS video sequence, while our SelfRSSplat can synthesize a temporally and visually coherent GS video in the feature space.

RSC dataset. As shown in Fig. 12, our feature-based synthesis
methods (i.e., SelfRSSplat and RSSplat) have the potential to
recover higher quality GS frames than image-based synthesis
methods (i.e., SelfCVR and CVR), whether in fully supervised
or self-supervised contexts. This is also the reason why we
base our self-supervised approach on RSSplat instead of CVR.

Furthermore, it is difficult for SelfCVR to recover a trust-
worthy and temporally continuous GS video, as illustrated in
Fig. 13. Note that state-of-the-art supervised RSTSR methods
RSSR and CVR also struggle to reconstruct a coherent GS
video from two consecutive RS images in the BS-RSC dataset
(cf., Sec. IV-C). In contrast, our SelfRSSplat can effectively
reconstruct continuous and smooth GS videos in a self-
supervised learning manner even without GT GS images as the
supervision reference, unlocking the potential of RS cameras
for practical applications.
Ablations on optical flow estimator. Our approach employs
a pre-trained optical flow estimator, with its parameters frozen
during training. We first validate the effectiveness of parameter
freezing. As evident from Table VI, freezing the optical flow
estimator contributes to a more stable training process and supe-

rior GS reconstruction results. Subsequently, Table VII demon-
strates the efficacy of our proposed self-supervised RSTSR
framework when utilizing different optical flow estimators,
namely GMFlow [71] and RAFT [43]. Our method effectively
accommodates various optical flow estimators, attesting to its
scalability. The adoption of GMFlow achieves a favorable
balance between performance and efficiency. Consequently,
advancements in future optical flow estimation methods are
poised to benefit our framework as well.

G. Limitation and Discussion

As we all know, the more severe the relative motion between
the RS camera and the scene, the more obvious the RS
effect will be in the collected RS images. Consequently, in
some typical applications, RS images with significant RS
artifacts are often accompanied by motion blur. However, our
SelfRSSplat employs GMFlow [71] to estimate the bidirectional
optical flow fields between two clear RS images, and then
utilizes the warped RS features for frame synthesis, both
of which have limited adaptability and robustness to motion
blur. Two examples on the BS-RSCD dataset [18] are shown



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 12

Blurry RS 0 SelfRSSplat GTBlurry RS 1

SelfRSSplat GTBlurry RS 0 Blurry RS 1

Fig. 14. Limitations of our method in processing blurry RS images in the
BS-RSCD dataset [18]. For slightly blurry RS inputs, although our method
can hallucinate a seemingly plausible continuous video sequence (see even
rows), blurring artifacts are difficult to remove, which needs to be addressed
in a targeted manner in the future.

in Fig. 14. For blurry RS input, although our method can
generate a plausible latent video sequence, eliminating motion
blur artifacts remains challenging. This is a common issue
for current time-specific RS correction [7], [10], [11], [16],
[19] and time-arbitrary RSTSR [8], [9], [24], [76] methods.
We plan to handle this challenge in the future. Furthermore,
how to extend our self-supervised learning framework to
allow more consecutive RS frame inputs, which will bring
better adaptability to non-linear motion like [7], [24], is also
an interesting future research direction. Finally, constructing
datasets with more ground truth GS images, along with
corresponding camera motion parameters, would be valuable
directions for comprehensively validating the quality of the
reconstructed GS video and investigating the impact of different
motion intensities.

V. CONCLUSION

In this paper, we have developed a self-supervised learning
method that enables the recovery of intermediate GS frames
with an arbitrary frame rate from two consecutive RS frames in
the absence of GT RS-GS image pairs. Our approach opens up
the possibility of learning self-supervised RS temporal super-
resolution, while also incorporating advantages such as motion
compensation and context aggregation. Importantly, spatio-
temporal coherence is explored in our unified RS2GS and
GS2RS formulation, ensuring the reuse of the same network
model in RS2GS and GS2RS conversions. On this basis, a
cycle consistency constraint is constructed from a triplet of
consecutive RS frames, where two in-between GS frames are
predicted and then leveraged to reconstruct the original middle
RS frame. Experiments have been conducted to validate the
effectiveness and excellent generalization capability of our
approach on both synthetic and real data. It is hoped that this
study can shed light for future research on self-supervised
video reconstruction of RS cameras.
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