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Abstract. The spike camera continuously records scene radiance with
high-speed, high dynamic range, and low data redundancy properties,
as a promising replacement for frame-based high-speed cameras. Previ-
ous methods for reconstructing color videos from monochromatic spikes
are constrained in capturing full-temporal color information due to their
reliance on compensating colors from low-speed RGB frames. Apply-
ing a Bayer-pattern color filter array to the spike sensor yields mo-
saicked chromatic spikes, which complicates noise distribution in high-
speed conditions. By validating that the noise of short-term frames fol-
lows a zero-mean distribution, we leverage this hypothesis to develop a
self-supervised denoising module trained exclusively on real-world data.
Although noise is reduced in short-term frames, the long-term accumu-
lation of incident photons is still necessary to construct HDR frames.
Therefore, we introduce a progressive warping module to generate pseudo
long-term exposure frames. This approach effectively mitigates motion
blur artifacts in high-speed conditions. Integrating these modules forms a
real-data-driven reconstruction method for mosaicked chromatic spikes.
Extensive experiments conducted on both synthetic and real-world data
demonstrate that our approach is effective in reconstructing 2000FPS
color HDR videos with significantly reduced noise and motion blur com-
pared to existing methods.

Keywords: Spike camera· High-speed video · High dynamic range video
· Color demosaicking · Self-supervised learning

1 Introduction

As a new class of image sensors inspired by the fovea of retina, the spike cam-
era [3, 14, 46] offers attractive characteristics such as high temporal resolution
(20000Hz), high dynamic range (HDR, > 90dB), and low data redundancy [14].
In comparison with conventional digital cameras that capture discrete frames,
# Equal contributions. ∗ Corresponding author.
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Fig. 1: High-speed color HDR video reconstruction from mosaicked chromatic spikes.
(a) Comparison of different chromatic spike reconstruction (recon.) methodologies, in-
cluding the adaptation of bio-inspired [45] and supervised learning [39] monochromatic
methods to chromatic spikes and our proposed method. (b) A high-quality color HDR
video with a frame rate of 2000FPS reconstructed by our method. The corresponding
video is available in the supplementary material.

spike cameras continuously accumulate the photons and trigger a single-bit spike
of 1 when the detected photons reach a predefined threshold [14]. High-speed
readout of spikes provides the spike camera with the potential for photon count-
ing, and the high-dynamic-range ambient light can be estimated through contin-
uous accumulation of spikes in the temporal domain. Therefore, spike cameras
exhibit significant advantages in handling low-level vision tasks in high-speed
conditions, such as video frame interpolation [33], HDR imaging [11] and high-
frame-rate HDR video reconstruction [3].

With the higher demand for visual quality in images and videos, there is
a strong desire that images or videos reconstructed from spike cameras can
reproduce the real world to the greatest extent, with realistic color appear-
ance and extended dynamic range at high frame rate. However, existing ap-
proaches [39, 40, 43, 44, 46] mainly focus on image or video reconstruction with
monochromatic spikes, and cannot yet recover a high-speed color HDR video.
To introduce color, one alternative practice [11] is to build a hybrid spike-RGB
camera system, which exploits the colors captured by the conventional RGB
camera to colorize the image reconstructed from spikes. Unfortunately, the color
information provided by conventional RGB cameras often suffers from under-
exposure and overexposure, which inevitably lead to color deviations from the
real world. Another strategy [3] to alleviate this problem is to replace the con-
ventional RGB camera with an alternate exposure RGB camera to obtain HDR
color, thereby enabling high-speed HDR color video reconstruction. However,
the above methods have limitations in high-speed scenes, as the RGB camera
has a low frame rate (e.g ., 60FPS), which results in the loss of colors during the
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intervals between frames. In addition, the corresponding hybrid camera system
relies on complex temporal synchronization and optical alignment, and the beam
splitter with large space footprints would be detrimental to the construction of
compact devices.

Reconstructing high-speed color HDR videos based only on a single spike
camera not only facilitates the acquisition of full-temporal color information
but also offers the advantage of lightweight equipment. To this end, a tractable
solution is to assemble a Bayer-pattern color filter array (CFA) in the spike
camera, thereby producing mosaicked chromatic spikes. Consequently, a pressing
challenge that arises is how to reconstruct high-speed color HDR videos from this
new data representation. Nevertheless, directly adapting existing monochromatic
spike reconstruction methods [39,40,43,44] to mosaicked chromatic spikes suffers
from many issues, as shown in Fig. 1 (a). On the one hand, methods based on
biology-inspired models [40,43,44] cannot take advantage of deep neural networks
and are susceptible to varying degrees of noise contamination. On the other
hand, supervised learning methods (e.g ., [39]) trained using synthetic datasets
have limited generalization ability when transferring to real-world data, because
of the imperfection of spike noise modeling and simulation. These issues hinder
the development of high-speed color HDR video reconstruction methods based
on chromatic spike cameras and greatly limit the effective deployment of existing
methods in real scenes.

In this paper, we propose a real-data-driven mosaicked chromatic spike re-
construction method to recover high-speed color HDR videos, trained solely on
readily accessible unlabelled spike streams. The mathematical analysis behind
this requires no specific spike noise modeling or calibration, relying only on
insights into the relationship between short-term and long-term frames accumu-
lated from chromatic spikes. We design a deep learning framework that allows
training directly on real-world data, naturally avoiding the influence of imper-
fect spike simulation and generalization gap. Specifically, we first propose a self-
supervised denoising module to suppress the noise in short-term accumulation of
chromatic spikes, which is trained on real-world spike streams without any anno-
tation. Next, considering the limited dynamic range of short-term accumulated
frames, we further present a progressive warping module to simulate a pseudo-
long exposure, which is effective in reconstructing HDR video frames without
motion blur. Finally, we integrate these two modules to achieve higher-quality
color HDR video reconstruction.

In summary, our approach is able to achieve 2000FPS color HDR video re-
construction from mosaicked chromatic spikes with a single device in a real-data-
driven manner, as illustrated in Fig. 1 (b), because of the technical contributions
from these two complementary aspects:

– We design a self-supervised denoising module to eliminate the noise from
short-term accumulation (with high-speed motion cues) without relying on
chromatic spike noise modeling and simulation.
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– We propose a progressive warping module with pseudo long-term exposure
(with expanded dynamic range) to reconstruct HDR frames without intro-
ducing motion blur in dynamic scenes.

2 Related Work

Video reconstruction with monochromatic spikes. To better satisfy hu-
man visual perception and facilitate direct processing by machines, reconstruct-
ing the corresponding video frame from spikes has been widely studied. Prevalent
image reconstruction methods typically employ the temporal statistical prop-
erties of spike cameras [43–46]. Zhu et al . [45] explored the spike generation
principle and proposed estimating the firing frequency or firing interval of each
pixel to reconstruct dynamic scenes, which are known as texture from play-
back (TFP) and texture from inter-spike-intervals (TFI), respectively. Recently,
another line of work has enhanced firing frequency estimates by mimicking hu-
man physiological mechanisms, such as retina-like visual imaging [46] and short-
term plasticity [43, 44]. Although these methods bring better interpretability,
they require careful window selection to balance noise and motion blur, and
the reconstruction effect is not yet satisfactory. The powerful representation
capabilities of deep learning also inject vitality into spike-based image recon-
struction. Spk2ImgNet [39] is the first spike-to-image deep network architecture
based on deformable convolution, achieving impressive results. Further, several
self-supervised methods [5,6] have also been developed to reduce the dependence
on synthetic datasets. However, these methods are tailored for monochromatic
spikes and thus cannot be directly applied to mosaicked chromatic spikes.
Demosaicking and denoising with raw images. The purpose of raw im-
age demosaicking is to recover a full-color image from a sub-sampled mosaicked
image that contains potential noise. To deal with the ill-posedness of image
demosaicking, various image priors have been introduced to regularize the re-
covery process, such as heuristics [2, 24], sparsity [23, 36], total variation [7, 13],
integral gradient [28], self-similarity [22], and residual interpolation [15]. In ad-
dition, researchers designed deep neural networks [16, 29, 30] to automatically
learn the prior knowledge required for image demosaicking. Moreover, consider-
ing the coupling between demosaicking and denoising, some deep learning-based
joint demosaicking and denoising network models [9, 18, 34, 38] have also been
developed to efficiently remove mosaicks from noisy raw images.
HDR video with non-conventional sensors. In recent years, a series of non-
conventional sensors, such as event cameras [17], spike cameras [14], and quanta
image sensors (QIS) [8], have been invented, empowering the ability to capture
HDR information in high-speed motion scenes. QIS-based HDR video recon-
struction methods [10, 19, 20] were developed to accomplish perceptual HDR il-
lumination. Additionally, the intensity image reconstructed by event cameras [35]
or spike cameras [11] can serve as a proxy for enhancing details in low dynamic
range (LDR) images. More recently, a hybrid camera system consisting of a spike
camera and an alternating-exposure RGB camera is constructed in [3] for 1000×
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Fig. 2: Chromatic spike accumulation and firing mechanism. We put a Bayer pattern
CFA in the spike camera to filter incident light before the photons arrive at the sensor.
Each individual pixel corresponds to one of red, green, and blue channels, accumulates
the filtered photons, and triggers a spike signal, then resets when it surpasses the
threshold Eth. Reading out the chromatic spikes forms the chromatic spike planes.

frame rate HDR video reconstruction. Nevertheless, these methods also fall short
when dealing with mosaicked chromatic spikes.

3 Preliminaries

We initially present a concise review of the operational principles of spike cam-
eras, encompassing both monochromatic spike cameras and those equipped with
Color Filter Array (CFA). Subsequently, we discuss the baseline reconstruction
techniques for monochromatic spikes.
Monochromatic spikes. The spike camera persistently accumulates electrons
produced by incoming photons. When the electrons accumulated at a pixel sur-
pass the predefined threshold Eth, it triggers a spike signal, immediately resetting
the accumulator to initiate a new cycle of accumulation:

E(x, t) =

∫
αL(x, t)dt mod Eth, (1)

where α denotes the conversion ratio and L(x, t) denotes the incoming light
intensity of pixel x at time t. Consequently, the spike signal S(x, t) can be
defined as:

S(x, t) =

{
1, if E(x, t) ≥ Eth,

0, otherwise.
(2)

As all the pixels of a spike sensor are arranged in an array, reading out spikes
from the pixel array at each time stamp t yields a spike plane of dimensions h×w,
where h and w are the height and width of the spike data, respectively. Given
the readout frequency of 20000Hz, the spike camera [14] allows for capturing
spike planes at a frame rate of 20000FPS.
Chromatic spikes. To incorporate color information while capturing HDR
scenes with high-speed motion at the same temporal resolution, we can put a
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CFA in front of the sensor of the spike camera. In a similar way as conventional
cameras, the CFA applied to spike sensors presents a Bayer pattern. Each pixel
of the spike camera sensor with CFA corresponds to only one channel among
red, green, and blue, while the firing mechanism of spikes remains unchanged.
As illustrated in Fig. 2, under the influence of the CFA, a spike signal is gener-
ated when the cumulative electrons Ec(x, t) produced by the incident photons of
the corresponding spectral band meets the threshold Eth. The chromatic spike
signal Sc(x, t) can be recorded as:

Sc(x, t) =

{
1, if Ec(x, t) ≥ Eth,

0, otherwise,
(3)

where c ∈ {R,G,B}. Consequently, similar to the firing process of monochro-
matic spikes, we can obtain a mosaicked chromatic spike plane at each time
stamp t.
Baseline for chromatic frame reconstruction. Preliminary chromatic frame
reconstruction can be achieved similarly to [45] by accumulating the spike signals
within a defined temporal window:

Ic(x, t) =
Mc

W
·

t+W/2∑
τ=t−W/2

Sc(x, τ), (4)

where W is the size of the accumulation temporal window, Mc represents the
maximum dynamic range that can be perceived in channel c. Directly apply-
ing Eq. (4) to chromatic spikes as a baseline reconstruction algorithm can only
obtain mosaicked chromatic frames, which is similar to the RAW image of con-
ventional frame-based sensors. Demosaicking the chromatic frame is challenging
since there is a trade-off between noise and superposition of colors. A short-term
temporal window W results in severe noise, whereas a long-term W leads to
the spatial superposition of varying color information. Furthermore, both noise
distribution of chromatic spikes and object motions are more complex, mak-
ing the direct application of off-the-shelf demosaicking methods insufficient for
recovering high-quality color HDR videos.

4 Real-data-driven chromatic spikes to video

Overview. As shown in Fig. 3, we propose a progressive mechanism for high-
speed color HDR video reconstruction. The pipeline starts with the accumula-
tion of mosaicked chromatic spikes to reconstruct short-term frames. While these
short-term frames are free of motion blur, they suffer from significant noise con-
tamination. Consequently, as shown in Fig. 3 (a), we propose the chromatic
spike denoising module (Sec. 4.1) to suppress the noise. The key insight of the
denoising module is that a sufficiently long-term frame (e.g ., W = 10000, corre-
sponding to 0.5s) of chromatic spikes can produce promising reconstructions in
static (or low-speed) scenes, effectively representing the expectations of short-
term frames. Given the limited incident photons in short-term frames, which
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Fig. 3: Illustration of the overall pipeline. For each sequence of mosaicked chromatic
spikes, we split them into four channels according to the RGGB pattern. The four-
channel spikes are fed to our progressive warping module, which aligns multiple short-
term frames to achieve “pseudo-long exposure”. (a) Our chromatic spike denoising mod-
ule utilizes a self-supervised training strategy, which is pretrained on real-world data.
(b) Our progressive warping module consists of L steps of frame warping operations,
iteratively achieving high-quality HDR frames. At each step of the progressive warp-
ing module, we leverage the pretrained chromatic spikes denoising module to facilitate
optical flow estimation. RL is the final output color HDR video with 2000FPS.

lack the HDR characteristic, extending the accumulation time is a feasible strat-
egy for HDR reconstruction. As shown in Fig. 3 (b), we design the progressive
warping module in Sec. 4.2 to establish a pseudo long exposure. At each step
of the warping module, chromatic spikes frames are warped according to the
estimated optical flow, providing pseudo long-term frames with less noise and
higher dynamic range. To leverage a wide range of existing conventional RGB
optical flow estimation approaches, we integrate the denoising module into each
iteration step of the warping module. After L times of iteration, the progressive
warping module produces an HDR color video with a frame rate of 2000FPS.

4.1 Denoising of chromatic spikes

Noise distribution of chromatic spikes noise. The noise in monochromatic
spikes is primarily categorized into two types: diffuse noise and inherent noise.
For the mosaicked chromatic spikes, although the incorporation of a CFA slightly
alters the noise distribution for pixels under different filters, pixels corresponding
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to the same color exhibit similar noise distribution patterns as monochromatic
spikes, except for its expectation and variance. Given the chromatic spikes Sc,
for each c ∈ {R,G,B}, we use Qd to denote the number of diffuse noise photons
arriving at a pixel in a time period of t, and γ to denote the likelihood of Qd

diffuse noise photons. The probability of diffuse noise can be modeled as the
Poisson distribution [41]:

P(Qd|t, γ) =
(γt)Qd

Qd!
exp(−γW ). (5)

Hence, the expected number of diffuse noise spikes in temporal window W is

E[Nd] = (αγW )/Eth. (6)

For inherent noise, which triggers spikes in the absence of light, we use Ti to
indicate the interval between the noise spikes. Then, the interval between such
noise spikes can be represented by a Gaussian model [41]:

N (Ti|µ, σ) =
1

σ
√
2π

· exp(−1

2
· (Ti − µ

σ
)2). (7)

We approximate the expectation of the number of inherent noise spikes in the
temporal window as

E[Ni] =

∫ +∞

1

W

Ti
· 1

σ
√
2π

· exp(−1

2
· (Ti − µ

σ
)2)dTi = CiW, (8)

where Ci denotes the integral after factoring out W from the integral expression.
Combining Eq. (6) and Eq. (8), the expectation of the fraction of noise spikes
can be formulated as:

E[N ]/W = (E[Nd] + E[Ni])/W = αγ/Eth + Ci. (9)

Instead of the actual incoming light intensity, we estimate the expectation of
short-term accumulations E[Ic(x, t)] = L(x, t) + E[N ]/W . Thus, the noise be-
tween short-term frames and their expectations naturally follows a zero-mean
distribution. We demonstrate that the expected fraction of noise spikes is rela-
tively small, especially with sufficient light illumination, and doesn’t disturb the
visual semantic. As shown in Fig. 4 (a), the noise ratio (Ic(x, t)/E[Ic(x, t)]−1) in
the accumulated images (Ic(x, t))gradually decreases as the accumulation win-
dow size W increases. Note that the larger window accumulation is equivalent
to the average of multiple smaller windows. The convergence demonstrates the
existence of expectation and the result faithfully reflects the original light inten-
sity with negligible disturbance. We further validate the zero-mean distribution
hypothesis by collecting a series of static scene spike streams with varying light
illuminations, and visualize the distribution of noise ratio in Fig. 4 (b). The
result shows that the zero-mean assumption holds with sufficient illumination,
which supports our self-supervised learning mechanism.
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Fig. 4: Validation of noise on real-world chromatic spikes. As shown in (a), as the
accumulation window size W increases, the noise ratio in the accumulated images
gradually decreases, making the images more closely resemble the static scene. In (b),
we present the statistical noise fraction distribution across three different color channels
and different illumination levels.

Self-supervised chromatic spike denoising module. Taking the inspiration
of Batson et al . [1] and Wang et al . [31], which do not require paired noise-
contaminated images or clean targets, we design a chromatic spike denoising
module trained on only accessible real-world data with self-supervision learn-
ing strategy. Specifically, our denoising module operates based on the zero-mean
characteristic of short-term frame noise and relies on the blind spot architecture
to prevent the network from learning the identity mapping. Hence, the denois-
ing module transforms the noise-contaminated images to their expectations to
achieve minimal losses, producing desired clean images. Therefore, as shown in
Fig. 3 (a), we begin by extracting the four channels of the chromatic spikes
according to the RGGB pattern of the CFA, and the size of each channel is
h
2 ×

w
2 . For each channel c, we preliminarily reconstruct a chromatic frame Ic by

accumulating the chromatic spikes in a temporal window W . Then, Ic is further
partitioned into h

2hs
× w

2ws
cells, where hs and ws denote height and width of

each cell. We sequentially mask one pixel for each cell following the order from
top to bottom and left to right. Consequently, we obtain a masked volume with
a size of C × (h2 × w

2 ) corresponding to Ic, where C is the channel of the masked
volume that equals hs ×ws. Each channel of the mask volume acts as the blind
spot operation to avoid identity mapping. We then employ a U-Net-inspired
fully-convolutional neural network fθ(·) to denoise each masked frame in this
volume and merge the denoised frames to the clean image:

D(Ic) = Φ(fθ(Ωc,0), fθ(Ωc,1), . . . , fθ(Ωc,C)), (10)

where Ωc,i denotes the i-th masked frame in volume Ωc, Φ(·) represents a func-
tion for mask-aware averaging:

Φ(fθ(Ωc,0), . . .) =
∑
i

Mifθ(Ωc,i)/
∑
i

Mi, (11)

and Mi denotes the mask for Ωc,i(Ωc,i = (1−Mi)Ic). At last, the denoised four-
channel images are recombined to form the final mosaicked chromatic frame. It is
remarkable that the zero-mean hypothesis holds for arbitrary temporal window
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Fig. 5: Progressive warping results. We visualize the intermediate frames from our
progressive warping module. As the iterative step l increases, the noise in the recon-
structed frames is gradually suppressed and the dynamic range is extended.

size W , indicating that our neural network can be trained and applied on varying
chosen W .
Loss function. The chromatic spike denoising module is trained using real-
world data with realistic noise. Similar to Wang et al . [31], we adopt the regu-
larized re-visible loss:

Lr = Lrev + ηLreg = ∥D(Ic) + λfθ(Ic)− (λ+ 1)Ic∥22 + η∥D(Ic)− Ic∥22 (12)

where η is a constant hyper-parameter, and λ is adjusted in the training progress.
We further enhance the denoising module by incorporating an image quality
assignment loss, which encourages the predicted score to be close to 1: Li =
∥1−Giqa(D(Ic))∥22, where Giqa denotes a pre-trained image quality assignment
model [4]. The total training objective combines these losses: L = Lr + λiLi.
Note that the training objectives require no clean frames or human annotations,
but only readily accessible real-world mosaicked chromatic spike streams.

4.2 Color and HDR via progressive warping

Although our chromatic spike denoising module can suppress the noise in frames
reconstructed from short-term temporal windows, the dynamic range of each
short-term frame is still restricted, as the number of photons arriving at the
pixels within an extremely short period (e.g ., W = 10) is limited. Moreover,
though our denoising module can fit arbitrary temporal window W theoretically,
longer-term input frames lead to better output quality. To reconstruct images
with less noise and higher dynamic range, it is necessary to select longer windows
to preserve sufficient photons. However, directly warping the frames over the
longer temporal window (e.g ., W = 100) is challenging since high-speed motions
may span a wide range of pixels. Thus, as illustrated in Fig. 3 (b), we develop the
progressive warping module, which only warps a small number of K chromatic
frames in each step. By progressively applying the warping operation to the
output of the previous step, at the L-th step, each output frame is equivalent to
the weighted accumulation from [(K − 1)× L+ 1]×W aligned chromatic spike
planes. Setting a large value of L for the progressive warping module is equivalent
to creating a pseudo-long exposure. The pseudo-long exposure leverages optical
flow estimation at each step to obtain HDR frames without motion blur.
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As shown in Fig. 3 (b), the progressive warping module involves the ap-
plication of the pretrained chromatic spike denoising module from Sec. 4.1 and
demosaicking for better optical flow estimation. In the initial 0-th step, we split T
chromatic spike planes using a short-term temporal window W and accumulate
the chromatic spikes in each window to form T

W mosaicked frames with Eq. (4).
We denote these initial mosaicked frames as Ic,0(x, t), where c ∈ {R,G,B},
which is contaminated by noise given a small temporal window. Afterward, for
more accurate optical flow estimation, we feed Ic,0(x, t) to the self-supervised de-
noising module and the demosaicking module that employs linear interpolation
to generate intermediate reconstruction frames:

R0(t) = Ψ [D(IR,0(t)), D(IG,0(t)), D(IB,0(t))], (13)

where Ψ denotes linear interpolation demosaicking and x is omitted. We then
estimate the optical flow F0 with off-the-shelf methods from R0 [12]. Note that in
this initial step, Ic,0(x, t) is not warped and is mainly used to estimate a better
initial optical flow F0. Subsequently, F0 is leveraged to warp K×W spike planes
towards the reference frame in the 1-th step, described as:

Ic,1(x, t) =
Mc

KW
·

t+KW/2∑
t′=t−KW/2

Sc(x+ F0(x, t, t
′), t′). (14)

Note that we utilize chromatic spike planes in the first two steps and mo-
saicked frames are warped in the later steps. Specifically, for the l-th iteration
step, we continuously pass the accumulated frame Ic,l−1 to the denoising mod-
ule and the demosaicking module to facilitate the estimation of optical flow Fl−1

from the previously generated frames Rl−1, and warp Ic,l−1 to the reference
time. This operation can further promote noise suppression and dynamic range
extension. In particular, we average K accumulated frames Ic,l−1 obtained in
the (l − 1)-th step, yielding:

Ic,l(x, t) =
1

K
·

K/2∑
i=−K/2

Ic,l−1(x+ Fl−1(x, t, t
′), t′), (15)

where t′ = t + iW . The entire procedure is iteratively repeated for L steps.
In Fig. 5, we show a set of examples to demonstrate the effectiveness of the
progressive warping module. It is evident that as the iteration step l increases,
the details in both highlighted dark regions become clearer.

Finally, we obtain color HDR video frames RL with a frame rate of 20000
W FPS.

Note that W is adjustable, which leads to higher frame rates for smaller values
and lower frame rates for larger values. In our most experiments, we find that
W = 10 offers a good balance between temporal resolution and reconstruction
quality, which ensures 2000FPS high-speed color HDR video reconstruction.
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(b) Real chromatic spike streams and reconstructions(a) Synthetic chromatic spike streams and reconstructions

Fig. 6: Illustration of our real-world collected chromatic spike streams, synthetic data
derived from conventional cameras, and corresponding reconstructions from our pro-
posed method.

Table 1: Quantita-
tive evaluation of the
image reconstruction
quality. The scores
are averaged across
our synthetic dataset.
↑ (↓) means higher
(lower) is better.

Method PSNR ↑ SSIM ↑ LPIPS ↓ HDR-VDP3 ↑ HDR-VQM ↓
TFI [46] 19.215 0.246 0.716 4.645 0.7897

TFP(W=10) [46] 23.253 0.331 0.609 5.778 0.7799
TFP(W=100) [46] 28.791 0.720 0.278 7.545 0.4994

TFSTP [43] 20.945 0.253 0.670 4.587 0.7843
MS23 [21] 28.410 0.635 0.359 7.180 0.5765

Ours 30.780 0.883 0.208 7.991 0.3023

5 Experiment

5.1 Data collection

Synthetic Data. In line with the methodologies of monochromatic spike simula-
tors (e.g ., Zhao et al . [41], SpikeCV [42]), we develop a chromatic spike simulator,
following the same Bayer pattern as the real-world chromatic spike camera. We
leverage the frames in the GoPro dataset [26] and their corresponding synthetic
spike streams to train a supervised learning model and compare it with our self-
supervised learning method, which addresses the superiority of our strategy. We
interpolate the HDR videos collected by Chang et al . [3] as the evaluation data
for quantitative evaluation in our experiments. Some examples of these synthetic
scenes are shown in Fig. 6 (a). For the detailed design of our chromatic spike
simulator, please refer to our supplementary material.
Real-world data. To accomplish real-data-driven self-supervised learning and
validate the effectiveness of our proposed method, we capture a collection of real-
world chromatic spikes using a spike camera equipped with the Bayer pattern.
Our dataset comprises over 100 sets of mosaicked chromatic spikes captured from
30 diverse scenes, characterized by varying degrees of high-speed motion and high
dynamic range, as depicted in Fig. 6 (b). The real-world data inherently contain
the noise characteristics of a real spike camera prototype, posing significant
challenges for denoising and demosaicking algorithms. Our real-world dataset is
available at https://huggingface.co/datasets/YOUSIKI/chromatic-spikes.

https://huggingface.co/datasets/YOUSIKI/chromatic-spikes
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5.2 Quantitative evaluation on synthetic data

We compare our method with existing spike-based video reconstruction meth-
ods, i.e., TFI [46], TFP [46], and TFSTP [43]. We acknowledge that it may not be
entirely fair to compare our method with these approaches, as they are designed
for monochromatic spikes. However, they can serve as baselines to demonstrate
the effectiveness of our denoising and progressive warping modules. Since the
data format of the spike camera and the single photon avalanche diodes (SPAD)
are both single-bit signals, the color video reconstruction method can be adapted
to chromatic spikes, and MS23 [21] is chosen for comparison7. The quantita-
tive evaluation is performed on synthetic data. We select PSNR, SSIM [32],
LPIPS [37], HDR-VDP3 [25], and HDR-VQM [27] as the metrics. The quan-
titative evaluation is shown in Tab. 1. We can see that the proposed method
demonstrated superior performance over the competing techniques across all
metrics.

5.3 Qualitative evaluation on real data

To underscore the advantages of our method, we conduct a qualitative evaluation
on real and synthetic chromatic spike streams. Fig. 7 presents a quadruple com-
parison. Our approach not only reconstructs motion blur free frames and recovers
color information but also achieves the best balance between noise suppression
and detail preservation across diverse scenes. In Fig. 7 (a), we create a colorful
and dynamic environment by placing a high-speed electric fan between our chro-
matic spike camera and a set of toys. The reconstruction from TFP (W = 100)
exhibits noticeable motion blur in the blue bounding box. Conversely, TFI, TFP
(W = 10), TFSTP and MS23 [21] suffer from significant noise. On the con-
trary, our method yields a clean outcome. Fig. 7 (b) showcases flowing water in
glass and a rotating toy duck. As indicated by red bounding boxes, TFI, TFP
(W = 10), TFSTP, and MS23 [21] contain different levels of noise. And TFP
(W = 100) suffers from heavy motion blur in blue bounding box. Meanwhile,
our proposed method produce clean reconstruction without blur. Fig. 7 (c, d)
further demonstrate the denoising advantage of our method on synthetic data.

6 Conclusion

In this paper, we propose a novel real-data-driven approach for high-speed color
HDR video reconstruction from mosaicked chromatic spikes. Through the anal-
ysis on the noise of chromatic spikes, we find the noise in short-term frames
can be regarded as a zero-mean distribution. According to this characteristic,
we design a self-supervised denoising module that can be trained on real-world
chromatic spikes. We further propose a progressive warping module that enables
the reconstruction of HDR frames from a pseudo long exposure. Experiments on
7 As the source code for MS23 [21] is not publicly accessible, we conduct re-

implementation and modification for the evaluation.
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(a)

(b)

(c)

OursMS23TFSTPTFP (𝑊 = 100 )TFI TFP (𝑊 = 10)

(d)

Fig. 7: Visual quality comparison of real (a, b) and synthetic (c, d) data between the
proposed method and compared methods. Please zoom-in electronic versions for better
details, and watch the videos in the supplementary material.

real-world data demonstrate the superiority of our approach for reconstructing
2000FPS color HDR videos.
Limitations and future work. The Bayer-pattern CFA introduces chromatic
information to the spikes but also reduces the intensity of incident light. As a
result, compared to monochromatic spikes, the ability to preserve textures in
low-light regions is relatively compromised in high-speed conditions. In future
research, exploring different types of CFAs to enhance low-light performance
would be worth investigating. And the excessive focus on denoising can result
in over-smooth downsides, which may lead to the loss of fine details. Future
work could involve the development of a more sophisticated denoising module
to balance noise suppression and detail preservation.
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In the supplementary material, we provide chromatic spike camera details,
method implementation details, analysis of the hyperparameters (K, L, and W
in Sec. 4), and additional results. We further provide a supplementary video to
show the high-speed color videos reconstructed from mosaicked chromatic spike
streams.

7 Mosaicked chromatic spike camera

Fig. 8: Mosaicked chromatic spike camera.

We describe more specifics of the mosaicked chromatic spike camera. As we
mentioned in Sec. 3, a color filter array (CFA) is applied to the sensor to capture
mosaicked chromatic spike streams, adhering to the widely used Bayer pattern
(RGGB). The chromatic spike frames are transmitted to the main computer via
optical fiber, and are then stored to solid-state drives.
# Equal contributions. ∗ Corresponding author.
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8 Implementation details

𝑙 = 0 𝑙 = 1

𝑙 = 4 𝑙 = 5

𝑙 = 2 𝑙 = 3

Fig. 9: Additional results of progressive
warping. We visualize the intermediate
frames corresponding to increasing l (from
left to right, from up to down) and enlarge
some regions in red bounding boxes for de-
tailed observation.

In this section, we provide implemen-
tation details about our method.
Chromatic spikes denoising. Dur-
ing the training stage of our chromatic
spike denoiser, we employ a sampling
strategy where a subset of the masked
volume is randomly selected for each
iteration. The loss function remains
nearly the same, except for the re-
placement of mask-aware averaging
with summation. In terms of exper-
imental setup, we configured the pa-
rameters as follows. We set hs = ws =
4 for global-aware masking, η = 1
and λi = 0.05 for loss weighting,
and λ gradually increasing from 2 to
20 aligned with the training progress.
Furthermore, to accommodate a wide
range of signal-to-noise ratios, the ac-
cumulation temporal window size W
is randomly drawn from the range 5
to 200, enhancing the tolerance of the
denoising module to varied noise lev-
els. To address the scarcity of real-
world chromatic spike streams, we
augment our training data with com-
mon means, e.g ., randomly flipping
and cropping accumulated frames. As previously described in Sec. 4.1, our ap-
proach is based on the zero-mean assumption of the noise distribution of chro-
matic spikes. For the chromatic spike denosing module, we modify the U-Net [4]
to restore clean frames from the noise contaminated spike frames. The architec-
ture of our network comprises 5 blocks to extract multi-scale features, and there
are 5 blocks in the decoder, which reversely map the multi-scale features to an
output video frame. To preserve the texture information in low-level features,
we add skip connections between the encoder and decoder. Each block in the
encoder and the decoder consist of 2 convolutional layers, and the output of each
convolutional layer is activated by LeakyReLU [5]. Thus, the denoising module
consists of a total of 25 convolutional layers, including head and tail processing
layers.
Progressive warping. In the progressive warping module, we capitalize on the
existing method’s capacity to align multiple adjacent frames [2]. This approach
offers enhanced robustness against potential noise in frames accumulated over
short durations from chromatic spike streams, in comparison to other optical
flow estimation techniques. The initially accumulated frames, recovered from a
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small window size (e.g ., W = 10), may exhibit some degree of noise even after
denoising, which is detrimental to the alignment of small patches. Consequently,
we employ larger patch sizes for these initial frames, progressively decreasing the
patch size as the frames’ reliability improves. In our experiments, setting L = 3,
W = 10, and K = 3 is proved sufficient for most of the scenes. To achieve robust
progressive warping, we estimate the optical flow from multi-scale maps. At the
first step, we obtain multi-scale maps by downsampling the video frames with
the scales of 1

2 , 1
4 , and 1

8 . Thus, including the original resolution frame, each
group of multi-scale maps contains 4 frames. The process entails progressively
searching for the most suitable match from the pyramid maps to references,
starting from the lowest resolution and ascending to the highest. The culmination
of this process is the identification of the optimal optical flow required to align
K frames with the reference frame, specifically the (K + 1)/2-th frame. This
procedure is elaborated in Sec. 4.2 and represents a singular warping process.
The entire progressive warping pipeline is composed of L such warping steps. It
is noteworthy that the initial step in this sequence operates on spike planes (Sc),
as opposed to intermediate frames (Ic,l).
Spike simulator. Our chromatic spike simulator mainly follows the noise mod-
eling design of existing works (e.g ., [6,7]), including dark-current estimation and
perturbed stimulation threshold, and also introduces the simulation of Bayer-
pattern CFA.
Inference time. Our chromatic spike denoising module requires approximately
10 hours for training. The proposed method currently functions as an off-line
solver for 2000 FPS video reconstruction, with an inference speed of 16.7 FPS,
in the condition of L = 3,W = 10. It is worth noting that the primary time
consumption is optical flow estimation (∼ 65%), which is independent from our
main pipeline and can be independently optimized. We compare the inference
speed of our method with other methods in Tab. 2. All metrics are benchmarked
with an RTX3090 GPU, except SJDD [1], which utilizes an A6000 GPU due to
its higher memory requirements.

Table 2: Comparison of inference speed.

Method Ours TFP TFI TFSTP MS23 SJDD

FPS 16.7 1k 22 13.9 2.5 0.32

9 Analysis of hyperparameters

As discussed in Sec. 8, we empirically found that the set of hyperparameters
L = 3,W = 10,K = 3 is sufficient for our testing scenes. The three hyperparam-
eters jointly determine the pseudo-long exposure, that is, the exposure time is
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𝐾 = 3

𝐾 = 5

𝐾 = 7

𝑊 = 50𝑊 = 20𝑊 = 10𝑊 = 1 𝑊 = 5

Fig. 10: Analysis of hyperparameters (K and W ). We illustrate the reconstruction
results from different combinations of K and W .

Fig. 7 (c) Fig. 7 (d) Fig. 12 (e) Fig. 12 (f) Fig. 12 (g) Fig. 12 (h)

Fig. 11: The ground truth of synthetic scenes.

equivalent to (K−1)×L×W +1. We further conduct an ablation study to ana-
lyze the impact of these hyperparameters on the reconstruction quality, as shown
in Fig. 9 and Fig. 10. We adjust the hyperparameters and evaluate the recon-
struction results qualitatively. With W and K increasing, our proposed method
obtains better performance at static regions, while leading to more potential
blur at motion regions. Specifically, small W (e.g ., W ≤ 5) makes optical flow
estimation almost unpractical, given that the detected photons are extremely
limited. Large W (e.g ., W > 20) introduces motion blur before flow estima-
tion and warping, leading to irretrievable blurry artifacts. We can empirically
conclude that W between 10 and 20 fits most of the cases, both static scenes
and dynamic objects. While the increase of W doesn’t change the computation
time very much (because the dimensions of I remain unchanged), K linearly
affects the computation costs. While greater K accumulates more spike planes
and suppresses noise better, we observe that K between 3 and 5 is sufficient for
most of the cases. As shown in Fig. 5 and Fig. 9, with the increase of L, our
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proposed method can refine the reconstruction results with adjacent frames. In
our experiment, we find that when L = 3, the quality of the reconstructed color
image can converge to a stable value. Note that the hyperparameters are not
totally fixed and can be customized based on user preference.

10 Additional results

Furthermore, additional results on both real and synthetic data are illustrated
in Fig. 12, ground truth images for all synthetic scenes are shown in Fig. 11, and
a comparison video is also uploaded with the supplementary material. Please
refer to the video for a more comprehensive comparison.

11 Compared to supervised learning on synthetic data

One significant challenge in current spike camera research lies in the substan-
tial disparity between synthetic data and real data, which makes models trained
on synthetic data perform poorly in real-world applications. Consequently, we
utilize real spike streams for self-supervised training to avoid the domain gap
issue in this paper. To substantiate this, we employ an identical neural net-
work to conduct supervised training on the GoPro dataset [3], leveraging the
video-to-spike simulators to generate synthetic spike streams. Subsequently, we
compare the performance of the supervised-learning (SL) model trained on syn-
thetic data with that of our self-supervised learning (SSL) model trained on real
data, as shown in Fig. 13. Our proposed method performs significantly better in
evaluation.

12 Compared to concurrent work

As SJDD [1] was published after our submission, it should be treated as concur-
rent work, and we did not include a comparison in our main figures. We compare
our proposed method with SJDD as shown in Fig. 14, which demonstrates the
superiority of our method in terms of noise supervision.
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(a)

(b)

(c)

OursMS23TFSTPTFP (𝑊 = 100)TFI TFP (𝑊 = 10)

(d)

(e)

(f)

(g)

(h)

Fig. 12: Additional reconstruction results for visual equality comparison of real (a-d)
and synthetic (e-h) data between the proposed method and compared methods.
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TFP SL SSLTFP SL SSL

Fig. 13: Comparing the performance of supervised-learning denoiser (SL) and our
self-supervised learning denoiser (SSL). The noise in short-term temporal window ac-
cumulation (TFP) is better removed by our real-data-driven self-supervised learning
denoising module.

SJDD Ours SJDD Ours

SJDD Ours SJDD Ours

Fig. 14: Comparing our method with SJDD [1].
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