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Figure 1. Illustration of PhyS-EdiT’s capabilities in disentangled control over lighting, material properties, and high-level semantics. The
symbols ↑ and ↓ indicate an increase and a decrease in property value, respectively. Rows show variations in lighting environments, while
columns show precise adjustments to individual material properties. The rightmost column presents a semantic edit with the prompt: “The
knight is holding the sword.”

Abstract

Achieving joint control over material properties, light-
ing, and high-level semantics in images is essential for ap-
plications in digital media, advertising, and interactive de-
sign. Existing methods often isolate these properties, lack-
ing a cohesive approach to manipulating them simultane-
ously. We introduce PhyS-EdiT, a novel diffusion-based
model that enables precise control over four critical mate-
rial properties: roughness, metallicity, albedo, and trans-
parency while integrating lighting and semantic adjust-
ments within a single framework. To facilitate this disen-
tangled control, we present PR-TIPS, a large and diverse
synthetic dataset designed to improve the disentanglement
of material and lighting effects. PhyS-EdiT incorporates a
dual-network architecture and robust training strategies to
balance low-level physical realism with high-level seman-
tic coherence, supporting localized and continuous property
adjustments. Extensive experiments demonstrate the superi-
ority of PhyS-EdiT in editing both synthetic and real-world
images, achieving state-of-the-art performance on material,
lighting, and semantic editing tasks.

*Corresponding author.

1. Introduction
Text-based image editing models [3, 10, 28, 34, 51] have
demonstrated significant success in various professional vi-
sual content creation applications, including business de-
sign, advertising, and entertainment. Given a text descrip-
tion to provide the editing instruction, these models can ef-
fectively manipulate high-level image semantics (e.g., cat-
egory, pose, and layout), reducing the time and technical
expertise required by users.

Complementing the high-level “what” and “where” of
the scene, the low-level physical properties (e.g., mate-
rial, and lighting) are essential to realistically render “how”
the visual appearance looks like. Recent research explores
physical-aware image editing using pairwise rendered train-
ing data and incorporating physical principles. These stud-
ies have achieved separate control over material [38, 40] or
lighting [4, 47, 48, 52].

However, despite these advances, two primary chal-
lenges remain: (i) Incomplete material-lighting disen-
tanglement. The complex interplay between material and
lighting often results in incomplete editing when only one
aspect is considered [38, 52], limiting the control capability
needed for precise adjustments and hindering the accurate
rendering of low-level physical properties. (ii) Limited se-



mantic editing. Current physics-aware editing approaches
focus primarily on material and lighting control, overlook-
ing the alignment with high-level image semantics [38, 47].
It is still challenging to balance between physical realism
and semantic consistency.

In this paper, we propose PhyS-EdiT, a unified frame-
work for Physics-aware Semantic image Editing with Text
descriptions that leverages diffusion models for precise ma-
nipulation of material properties, lighting, and high-level
semantics. As demonstrated in Fig. 1, our versatile ap-
proach allows for modifications ranging from varying light-
ing conditions (first column) to adjustments of metallic lev-
els, roughness, transparency, albedo, and semantics (subse-
quent columns), producing consistent and realistic results.
Specifically, for low-level physical properties, our PhyS-
EdiT supports fine-grained disentangled control over light-
ing and material properties. These properties are repre-
sented as a joint feature maps, which guide a conditional
network in injecting such low-level physical knowledge into
the diffusion models. For high-level semantics, our PhyS-
EdiT combines text-based instructions with accurate physi-
cal conditions using a fusion network, maintaining the full
capability of semantic editing.

For effective training and evaluating relevant editing
models, we create and collect the PR-TIPS, a large-scale
dataset of Physical Rendering-based Text and Image Pair
Set. PR-TIPS contains an extensive collection of 3D-
rendered scenes with systematically varied lighting and ma-
terial properties, providing a rich source of paired data for
disentangled control over physical properties. Our contri-
butions can be summarized as follows:
• We propose a unified framework for controllable edit-

ing of both disentangled low-level physical properties and
flexible high-level image semantics.

• We develop a robust training strategy that minimizes the
ambiguity between low-level and high-level editing goals,
achieving versatility without compromising precision.

• We present PR-TIPS, a large-scale dataset tailored for dis-
entangled control over physical properties, providing a
rich source of paired data for training and evaluation.

2. Related work
2.1. Diffusion Models for Image Generation

Diffusion models [18, 39] iteratively denoise a Gaussian
distribution to generate images, learning to reverse the for-
ward process where Gaussian noise is progressively added
to an image. Recent advances have led to their dominance
in image generation, outperforming other generative mod-
els [16, 22]. To further reduce computing cost and gen-
erate high-resolution images, Stable Diffusion [34] is de-
signed. Its success inspires subsequent image generation
works [9, 31], and image editing methods discussed later.

2.2. Text-driven Semantic Image Editing

Text-driven image editing has gained significant research
interest, as text descriptions offer an intuitive and flexi-
ble means to guide image manipulations. Early work [46,
49] focuses on controlling image category via text guid-
ance. Subsequent research [26, 50] explores effective
methods for injecting text features into image generation
models. The emergence of pre-trained text-image mod-
els like CLIP [32] enables the open-vocabulary editing ap-
proaches with promising applications [6, 25]. The large-
scale image-text datasets [36, 37] further motivate the de-
velopment of high-quality, open-source text-to-image mod-
els [35]. Leveraging the generative priors of these mod-
els, recent advancements have been made in super resolu-
tion [15, 41], image colorization [44, 45], and reflection re-
moval [19, 54]. Despite substantial progress in high-level
semantic editing, text-driven methods still struggle to com-
prehend and accurately manipulate low-level physical prop-
erties, such as lighting and material. This limitation often
results in physically unrealistic outputs when precise con-
trol over such properties is needed.

2.3. Physics-aware Image Property Editing

Physics-aware image property editing, which includes ma-
terial editing and lighting editing, confronts the highly ill-
posed challenge of decomposing these elements from a sin-
gle image. Early explorations [8, 12, 13, 29] utilize em-
pirical formulas to approximate the separation of material
and lighting properties. Recent advancements in diffusion
models have demonstrated their potential in effectively sep-
arating material and lighting components. Notably, the re-
cent works [1, 4, 27, 48] have demonstrated the power-
ful capabilities of diffusion models, producing impressive
results in editing physical properties. However, these ap-
proaches typically focus on either lighting [47, 52] or mate-
rial [38, 40], struggling to provide a comprehensive under-
standing of the full spectrum of physical properties inher-
ent in images. The gap between high-level semantic editing
and low-level physics-aware editing highlights the pressing
need for an approach that effectively integrates these prop-
erties into a joint framework.

3. Dataset
Although previous work [38] collects a dataset with basic
material variations (e.g., roughness, metallicity, albedo, and
transparency), it lacks pixel-aligned maps for fine-grained
local editing and pairwise data for disentangled control of
material and lighting. Similarly, DiLightNet [47] provides a
large dataset with diverse lighting conditions, but it does not
support material editing. To address these limitations, we
introduce PR-TIPS, a dataset of Physical Rendering-based
Text and Image Pair Set, designed to scale up the diversity



and scope of scenes and objects. PR-TIPS provides exten-
sive pairwise data, including pixel-aligned images and text-
image pairs with varied instructions, supporting more fine-
grained disentangled control over both material and lighting
adjustments.
Material diversity. We collect 3D assets from a subset
of Objaverse [7], selecting 13K models that possess Prin-
cipled BSDF material properties. To further adjust mate-
rial properties continuously, we integrate three ShaderN-
odeMath nodes, applying random values to properties (e.g.,
Metallic, Roughness, and Transmission Weight). Addition-
ally, we use a ShaderNodeMixRGB node to blend albedo
color variations, supporting fine-grained color transitions.
Rendering is performed in Blender’s Cycles renderer [5],
ensuring precise physical interaction with lighting.
Lighting diversity. To achieve lighting diversity, we uti-
lize over 500 HDRI environment maps from Polyhaven1,
applying random rotations to each to simulate diverse light-
ing conditions. Camera configurations are randomized for
field of view, distance, and position around the scene origin,
allowing a wide range of perspectives. This setup generates
a final dataset, including 300K rendered images to provide
substantial variation in materials, lighting, and viewpoints
to support robust training.
Text annotation process. We employ a refined text an-
notation strategy using GPT-4o [11], a Multi-modal Large
Language Model (MLLM) with Chain of Thought (CoT)
prompting techniques [43]. The model generates detailed
text descriptions for both the original and edited images in
three structured steps: (i) Identify the scene context (e.g.,
day or night, indoor or outdoor) and the object type, (ii) In-
fer the object’s material properties, leveraging knowledge
of common materials and typical lighting effects, and (iii)
Formulate an editing instruction based on the object type,
material attributes, and lighting adjustments.
Dataset statistics. PR-TIPS consists of 300K pairs, with
298K for training and 2K for evaluation. To improve data
diversity and promote model generalization, we apply var-
ious random augmentations to each sample on the fly dur-
ing training. Specifically, we use random rotations within
the range r ∈ [−30◦, 30◦], scaling factors s ∈ [0.9, 1.1],
and shear transformations sh ∈ [−10◦, 10◦]. The trans-
lations are applied in both horizontal and vertical direc-
tions, with the offsets tx and ty drawn from the range
[−0.1, 0.1] × image dimensions. Additionally, horizontal
and vertical flips are applied with a probability of p = 0.5.
These augmentations are intended to improve the robust-
ness and generalization of the model by simulating a wide
range of transformations during training.
Summary. PR-TIPS thus provides an extensive and ver-
satile dataset for physics-aware image editing, supporting
disentangled control over material and lighting properties.

1https://polyhaven.com

4. Methodology
This section begins with an overview of our framework in
Sec. 4.1. Next, we discuss how our model extracts and
injects physical properties in Sec. 4.2. Finally, we inte-
grate physical knowledge to image semantic editing mod-
els in Sec. 4.3, supporting both low-level detail fidelity and
high-level semantic consistency.

4.1. Overview

As illustrated in Fig. 2, we propose PhyS-EdiT, a physics-
based framework to improve text-based image editing with
physical awareness.
Physical embedding. The physical properties, i.e., light-
ing conditions and material conditions, are represented as
condition maps CL and CM , respectively. These structured
condition maps offer spatially aligned hints about the phys-
ical world, providing our model with robust priors for light-
ing and material properties.
Forward process. In the forward process of our diffusion
model [18, 39], the latent variable zt at each timestep t is
represented as a linear combination of the initial latent z0
and Gaussian noise ϵ:

zt =
√
αtz0 +

√
1− αtϵ. (1)

Denoising networks. Our model incorporates a dual-
denoising network design, composed of a low-level editing
network Ulow and a high-level editing network Uhigh. The
low-level editing network Ulow, structured as a U-Net [3],
integrates a new physical condition injection module to
guide fine-grained adjustments based on material and light-
ing conditions. Concurrently, the high-level editing network
Uhigh performs broader semantic modifications. Finally, a
fusion network Ufusion combines the outputs of Ulow and
Uhigh, producing a refined result that balances physical con-
dition editing with global semantic consistency. This dual-
network approach enables the editing of precise physical
conditions without compromising the ability of the model
to make coherent semantic editings.
Backward process. The backward process involves itera-
tive denoising, where the dual networks Ulow and Uhigh grad-
ually refine the latent code. The denoising networks Ulow
and Uhigh first independently process the noisy latent code
ẑt according to their respective roles. At each timestep t,
the fusion network Ufusion then combines the outputs from
Ulow and Uhigh to yield the next-step latent code:

ẑt−1 =
1

√
αt

(
ẑt −

1− αt√
1− ᾱt

Ufusion(ẑt, t)

)
+ σtϵ, (2)

where ᾱt =
∏t

s=1 αs denotes the accumulated noise factor,
and σt is the standard deviation of the noise added at each
step. Through T iterations, the model refines the latent code
to produce ẑ0, achieving a balance between low-level phys-
ical editing and high-level semantic coherence.
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Figure 2. Pipeline of PhyS-EdiT. Given an input image with the desired lighting condition L and material condition M , the model first
uses the input image and L to generate lighting condition maps and, concurrently, the input image and M to generate material maps. These
maps condition the low-level editing network Ulow. Simultaneously, a semantic text prompt modulates the high-level editing network Uhigh.
The outputs from Ulow and Uhigh are then combined through the noise fusion module, resulting in the final edited image.

4.2. Material-lighting Joint Representation

While previous generative models [3, 34] excel at generat-
ing visually appealing images, they often fall short in ad-
hering to real-world physical principles, such as accurate
lighting dynamics and material interactions (e.g., realistic
reflections). This limitation arises from their inability to in-
terpret or integrate physical properties into the generative
process. In this section, we introduce a novel approach that
incorporates physical properties into image editing models,
enabling physics-aware image editing.
Physical property extraction. We categorize physical
properties into two essential components: material and
lighting. Previous approaches often focus on controlling ei-
ther material or lighting independently; however, our goal is
to achieve unified control over both. The primary challenge
involves representing these properties in a format that diffu-
sion models can interpret effectively. Traditional input for-
mats, such as text prompts for material properties or envi-
ronment maps for lighting conditions, often fail to maintain
spatial alignment, thereby complicating the model’s ability
to understand and utilize the physical context effectively.

To address this, we leverage pretrained models [48] to
extract well-aligned physical property maps from the in-
put image I . We define the material condition map CM

as CM = [A,R,M, T ], where A, R, M , and T represent
albedo, roughness, metallicity, and transparency maps, re-
spectively. For the lighting condition map CL, we utilize an
off-the-shelf depth estimator [2] to reconstruct a coarse ge-
ometry of the scene following [47]. This geometry is then
rendered under predefined proxy materials using environ-
ment maps. We define the lighting condition as follows:

CL = flighting(I, E), (3)

where flighting represents the function that determines the
lighting maps based on the input image I and environment

map E. Finally we combine the lighting condition map CL

with the material condition map CM to form the physical
condition map Cphys:

Cphys = CM ⊕ CL, (4)

where ⊕ denotes the channel-wise concatenation. By pro-
viding the model with material-lighting joint inputs Cphys,
we bridge the representation gap between different physical
properties.
Physical embedding injection. With available structured
representations of the material and lighting conditions, the
next step is to inject these conditions into the diffusion
model. We achieve this by encoding the input image I us-
ing an encoder E(·) inspired by the deferred neural relight-
ing architecture [14]. The resulting encoded feature map
F = E(I) captures richer information. To capture interac-
tions between material and lighting, we perform a channel-
wise multiplication between the encoded features and the
combined physical conditions:

Cemb = F ⊙ Cphys, (5)

where ⊙ denotes element-wise multiplication. This oper-
ation allows the model to learn complex relationships be-
tween the physical properties and the visual appearance of
the image. The resulting physical embedding Cemb is then
used as a conditioning input for ControlNet [51], which in-
tegrates this information into the initial feature spaces of the
diffusion model.

ẑt−1 = ControlNet(Ulow, ẑt, t, Cemb). (6)

This injection process effectively captures both local de-
tails and high-level contextual features, culminating in a
compact, physics-aware embedding that meets the condi-
tioning requirements of the diffusion model.



4.3. Bridging Physics to Semantic Image Editing

Effective image editing models should seamlessly integrate
both high-level semantic understanding and detailed phys-
ical property manipulations. Previous training strategies,
such as fine-tuning attention layers [24] and using low-rank
adaptations like LoRA [21], often struggle to preserve the
original capabilities of the pre-trained model while adapting
to new tasks. These methods can inadvertently weaken the
model’s ability to maintain generative priors, leading to sub-
optimal performance in scenarios that require fine-grained
control over image properties, such as material textures and
lighting effects. To address these challenges, we introduce
the following strategies:
Preserving generative priors for semantic consistency.
To maintain the semantic coherence and editing quality
of the pre-trained diffusion model, we initially freeze the
weights of the U-Net architecture, θU-Net, for the first 30K
iterations. This strategy preserves the foundational genera-
tive capabilities of the model during early training. Follow-
ing this phase, we selectively unfreeze the U-Net’s weights,
keeping the decoder frozen, and continue training for an
additional 15K iterations. This controlled fine-tuning im-
proves the model’s capacity to incorporate new condition-
ing inputs effectively while ensuring high-quality semantic
consistency and robust generative performance.
Multitask supervision for learning diverse edits. We
employ a multitask learning framework that leverages
paired datasets for robust training. Our model is trained
on an equal mix of our PR-TIPS synthetic dataset and the
high-level editing dataset from [3], with a 1:1 ratio. To im-
prove stability, we introduce a training augmentation where,
at times, the edited image is identical to the input image,
helping the model learn to preserve stability when no edits
are required.
Sequential training. Our training initiates with material
editing, focusing on mastering material representations un-
der consistent lighting conditions. We quantify the material
editing loss as:

Lmaterial = EI,CM

[
||ϵ− ϵθ (zt, t, CM ) ||22

]
, (7)

where CM denotes material conditioning and zt is derived
from the forward process described in Equation (1). Af-
ter completing 15K training steps, we introduce variability
in lighting conditions by integrating datasets with diverse
lighting scenarios. The loss function then evolves to en-
compass both material and lighting factors:

Lphys = EI,Cphys

[
||ϵ− ϵθ (zt, t, Cphys) ||22

]
. (8)

Following an additional 15K steps, we enable semantic
control by unfreezing Ufusion, incorporating semantic train-
ing data, and continuing the training over another 15K steps
with all conditioning factors activated.

Table 1. Quantitative evaluation of material editing methods.
Throughout the paper, best performances are highlighted in bold-
face, and ↑ (↓) means high (lower) is better. †Evaluation considers
only changes in metallicity and roughness properties.

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
IP2P [3] 20.85 0.69 0.31 40.80
Subias et al. [40]† 23.00 0.80 0.32 44.17
Ours 26.01 0.79 0.15 23.38

This training strategy ensures the model first consol-
idates its skills in material editing before it is exposed
to varying lighting conditions, and subsequently, semantic
variations. This sequential training improves disentangle-
ment and control, allowing for precise manipulation of ma-
terial properties, lighting, and semantics.

5. Experiments
5.1. Implementation Details

We initialize the parameters of PhyS-EdiT from IP2P [3]
and perform image editing at a resolution of 512× 512 pix-
els. The training is conducted over 16 days on 4 NVIDIA
RTX 4090 GPUs with a total batch size of 64. We use the
Adam optimizer [23] with a learning rate of 5× 10−5. Dur-
ing inference, we utilize the DDIM sampling strategy [39]
with 50 sampling steps. For real images lacking ground
truth environment maps, we estimate lighting conditions
using an off-the-shelf lighting estimator [30]. Additional
training details are provided in the supplementary material.

5.2. Evaluation Metrics

We evaluate the performance of each method using five met-
rics: (i) FID[17], which measures the distributional dis-
tance between generated and real images, reflecting quality
and diversity. (ii) SSIM[42], which quantifies the preser-
vation of structural information between edited images and
the ground truth. (iii) PSNR[20], which evaluates the vi-
sual quality of edited regions, with higher values indicating
better fidelity. (iv) CLIP Score[33], which assesses seman-
tic alignment between edited images and text descriptions
in the CLIP embedding space. (v) LPIPS [53], which mea-
sures perceptual similarity between images, focusing on hu-
man visual perception.

5.3. Quantitative Evaluation

Material editing quality. To evaluate the quality of ma-
terial editing, we use a test set of 1K samples. We com-
pare our approach with existing feed-forward-based mate-
rial editing methods [3, 40], using their publicly available
implementations. The results are presented in Tab. 1. Our
method achieves the best PSNR, LPIPS, and FID scores, as
well as the second-best SSIM.
Lighting editing quality. We evaluate the performance
of our lighting editing approach using an additional 1K



Table 2. Quantitative evaluation of lighting editing methods.

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
DilightNet [47] 17.15 0.65 0.39 51.08
Ours 26.96 0.80 0.13 21.59

Table 3. Quantitative evaluation of semantic editing methods.

Method PSNR ↑ SSIM ↑ LPIPS ↓ CLIP ↑ FID ↓
IP2P [3] 15.11 0.57 0.41 0.81 45.14
SD 3 [10] 14.64 0.50 0.47 0.81 52.25
Ours 15.37 0.58 0.39 0.85 47.91

test samples. We compare our results with the existing
diffusion-based lighting editing method [47], which allows
explicit lighting conditions as input. As shown in Tab. 2,
our method achieves the highest scores across all metrics,
demonstrating superior capability in lighting editing.
Semantic editing quality. We further evaluate the seman-
tic editing capabilities of our model against state-of-the-art
methods, with results shown in Tab. 3. Our method achieves
the best PSNR, SSIM, LPIPS, and CLIP scores, and the sec-
ond best FID.

5.4. Qualitative Evaluation

We present a visual comparison of our method against base-
line approaches for lighting, material, and semantic edit-
ing, as shown in Fig. 3. For lighting (red columns), our
method effectively adjusts lighting to match the ground
truth (GT) while preserving material properties, unlike Di-
LightNet [47], which is not material-aware and alters the
material during lighting adjustments. For material (green
columns), our approach produces high-quality images with
material properties closely matching the GT while main-
taining consistent lighting, whereas Subias et al. [40] fails to
modify attributes like albedo and transparency, and IP2P [3]
often misinterprets material commands. Finally, for seman-
tic editing (blue columns), our method retains strong high-
level editing capabilities, achieving results comparable to or
better than IP2P [3] and Stable Diffusion 3 [10].

5.5. User Study

To further assess the perceptual quality and consistency of
our results, we conduct a user study involving 20 partici-
pants. The study is divided into two parts: material editing
and lighting editing. In each part, participants are presented
with input conditions, original images, and candidate im-
ages synthesized by different methods, including our PhyS-
EdiT. They are asked to select the most visually pleasing re-
sult that best matches the input conditions (preference) and
to rate the consistency of the edited images with the original
content (consistency).

As shown in Tab. 4, our method receives the highest pref-
erence and consistency scores in both material and lighting
editing tasks, indicating a strong user preference and better

Table 4. User study results showing the preference and consistency
percentages for each method in material and lighting editing tasks.

Property Metric Method Score (%)

Material

Preference
Ours 68

IP2P [3] 18
Subias et al. [40] 14

Consistency
Ours 61

IP2P [3] 11
Subias et al. [40] 28

Lighting
Preference Ours 60

DiLightNet [47] 40

Consistency Ours 70
DiLightNet [47] 30

Table 5. Ablation study results grouped by low-level and high-
level editing.

Ablation Physical Editing Semantic Editing
PSNR ↑ LPIPS ↓ CLIP ↑ LPIPS ↓

Full Model 26.39 0.36 0.85 0.39
w/o WF 26.00 0.38 0.76 0.35
w/o JT 25.80 0.39 0.83 0.40

content preservation in our edited images.

5.6. Ablation Study

We perform an ablation study to evaluate the impact of dif-
ferent components of our method.
Without weight freezing (WF). We train the entire net-
work without freezing the pretrained weights. This leads to
overfitting and loss of the model’s generative priors, reduc-
ing the quality of the semantic edits.
Without joint training (JT). We train the material and
lighting editing components separately. The lack of joint
training leads to inconsistent results when both material and
lighting need to be edited simultaneously.

The quantitative results of the ablation study are pre-
sented in Tab. 5, highlighting the performance of different
model versions on PSNR, SSIM, LPIPS, and CLIP scores
for low-level (physical) and high-level (semantic) editing
tasks. The model version without weight freezing (w/o WF)
achieves a slightly improved LPIPS score, as not freezing
pretrained weights causes the model to forget its original se-
mantic editing capabilities, producing nearly identical out-
puts regardless of the semantic editing instructions. Con-
sequently, while the unedited image superficially resembles
the edited ground truth, it fails to follow the intended in-
structions, leading to a notably lower CLIP score.

5.7. Discussion

Support of pixel-level editing. Our model encodes light-
ing and material properties as pixel-aligned condition maps,
enabling precise, localized editing. For instance, in Fig. 5,
we applied transparency adjustments to a plate, making it
fully transparent (transparency = 1) except for the “Phys



Figure 3. Visual comparison of our method with baseline approaches. For lighting, we compare with DiLightNet [47]; for material, with
InstructPix2Pix [3] and Subias et al. [40]; and for semantics, with InstructPix2Pix [3] and Stable Diffusion 3 [10]. Our method effectively
disentangles these properties, allowing for the modification of one attribute (e.g., lighting) while preserving others (e.g., material and
semantics) unchanged.

Edit” text region, which remains opaque (transparency = 0).

Support of continuous property control. Our model
provides smooth, continuous control over lighting and ma-
terial properties using a unified map format. By feeding in
maps with gradually changing values, the model generates
outputs that naturally reflect these subtle, progressive ad-

justments. This also underscores the ability of the model to
disentangle different physical conditions, allowing for in-
dependent and precise modifications. As shown in Fig. 4,
row (a) demonstrates a lighting-only change, with the light-
ing condition visualized as a diffuse sphere. The remaining
rows show combined changes in material properties along
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Figure 4. Demonstration of our model’s capability for continuous editing across different attributes: (a) only lighting change, (b) metallicity
increase, (c) roughness increase, (d) albedo increase, and (e) transparency increase. Our model produces consistent and seamless transitions.

Figure 5. Visualization of our model’s capability for pixel-level
editing. By applying customized condition maps to a real image,
we achieve localized editing in specific properties.

with lighting: (b) increased metallicity, (c) increased rough-
ness, (d) increased albedo, and (e) increased transparency.

Impact of multi-property control. Learning lighting and
material control in conjunction improves the consistency
and precision of the model. For example, by accounting
for material properties, the model can adjust the lighting
while keeping the material consistent. Without this mate-
rial awareness, the model must rely on implicit assumptions
about materials, which can lead to varied and inconsistent
results across similar scenes.

Impact of Dataset Scaling. Increasing dataset scale im-
proves performance and generalization to unseen material-
lighting combinations by exposing the model to diverse
lighting and material interactions. A broader dataset en-
ables realistic editing across materials like metal and glass,
while a limited dataset risks overfitting.

6. Conclusion
We introduce PhyS-EdiT, a unified image editing model that
enables simultaneous control over material properties, light-
ing, and high-level semantics. Alongside this, we present
PR-TIPS, a large-scale synthetic dataset designed to im-
prove the disentanglement of lighting and material proper-
ties. Our approach leverages the advantages of the diffusion
model, i.e., disentanglement and controllability, to advance
image editing grounded in physical principles. PhyS-EdiT
effectively edits both synthetic and real images, supporting
both localized and continuous edits.
Limitations. While our model performs precise editing
and understanding of single objects, it is limited in its ability
to generalize to full scene-level editing. Additionally, our
model requires two forward passes for processing, which
makes it slower compared to single-pass approaches. Future
work could enhance scene-level capabilities through richer
datasets and optimized single-pass techniques.
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Miloš Hašan. RGB↔X: Image decomposition and synthesis
using material-and lighting-aware diffusion models. In ACM
SIGGRAPH Conference Papers, 2024. 1, 2, 4

[49] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiao-
gang Wang, Xiaolei Huang, and Dimitris N Metaxas. Stack-
GAN: Text to photo-realistic image synthesis with stacked
generative adversarial networks. In International Conference
on Computer Vision, 2017. 2

[50] Lisai Zhang, Qingcai Chen, Baotian Hu, and Shuoran Jiang.
Text-guided neural image inpainting. In ACM International
Conference on Multimedia, 2020. 2

[51] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In In-
ternational Conference on Computer Vision, 2023. 1, 4

[52] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Scaling
in-the-wild training for diffusion-based illumination harmo-
nization and editing by imposing consistent light transport.
In International Conference on Learning Representations,
2025. 1, 2

[53] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2018. 5

[54] Haofeng Zhong, Yuchen Hong, Shuchen Weng, Jinxiu
Liang, and Boxin Shi. Language-guided image reflection
separation. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2024. 2



PhyS-EdiT: Physics-aware Semantic Image Editing with Text Description
Supplementary Material

Ziqi Cai1,2 Shuchen Weng3 Yifei Xia1,2 Boxin Shi1,2*

1State Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University
2National Engineering Research Center of Visual Technology, School of Computer Science, Peking University

3Beijing Academy of Artificial Intelligence

czq@stu.pku.edu.cn, shuchenweng@pku.edu.cn, yfxia@pku.edu.cn, shiboxin@pku.edu.cn

A. Implementation Details
Denoising networks. We initialize the networks Ulow and
Uhigh with pretrained weights from InstructPix2Pix [1]. Ulow
further incorporates a ControlNet [7], with weights initial-
ized from the baseline U-Net model. Following the protocol
in [6], we employ an auxiliary encoder. The encoded input
image is element-wise multiplied with physical conditions
before being fed into the network to enhance generalization.
Fusion network. The fusion network employs a Convo-
lutional Neural Network (CNN) as its backbone, operat-
ing directly in the latent space. This allows the model
to learn more diverse and disentangled representations for
both physical and semantic editing.
Data rendering. We render images using Blender 4.2 [2]
with the Cycles renderer at a resolution of 1024× 1024 and
a sample count of 64. During training, these images are
resized to 512 × 512. To ensure consistency, we normalize
the scenes such that the object is centered and fully visible.

B. Baseline Configurations
InstructPix2Pix (IP2P) [1]. We employ IP2P [1] as a
baseline for both material and semantic editing. We utilize
the official code release and pretrained weights. For mate-
rial editing, we adhere to the methodology in [4], providing
the following instructions to the model:
• Roughness: Make the {object} more/less shiny.
• Metallicity: Make the {object} more/less metallic.
• Albedo: Make the {object} more/less gray.
• Transparency: Make the {object} more/less transparent.
For semantic editing, we utilize prompts consistent with the
IP2P dataset [1].
Subias et al. [5]. We deploy the official code release and
pretrained weights from this model, which only supports the
adjustment of roughness and metallicity.
DiLightNet [6]. We utilize the official code release and
pretrained weights. The model supports lighting control,
but does not allow material editing, leading to variations in
the editing results based on the appearance seed.

*Corresponding author.

Stable Diffusion 3 [3]. We use the medium inpaint ver-
sion of Stable Diffusion 3 for semantic editing. To guide
the model towards the intended editing effects, we use the
editing instructions as described in IP2P [1].

C. Dataset Visualization
The PR-TIPS dataset includes pairwise images with varying
levels of roughness, metallicity, albedo, and transparency
under diverse lighting setups. To provide an overview of the
diversity and quality of our dataset, we present examples
of image-target pairs used in our experiments. Figure D
illustrates the variety of materials, lighting conditions, and
objects in the dataset.

D. Additional Results
D.1. Generalization

We present additional real-image results in Fig. A to show
our model’s resistance to overfitting.

Roughness↓ Metallic↓ Albedo↑ Transparency↑ Transparency↑ Relighting

In
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t
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Figure A. Real-image results.

D.2. Retraining IP2P

We retrain IP2P [1] on our PR-TIPS dataset for material
editing. The results are shown in Fig. B.

Albedo↑. Metallic↑. Albedo↑.

Transparency↑. Roughness↓.

Input Ours IP2P GT Input Ours IP2P GT

Figure B. Comparison to retrained IP2P.
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D.3. Influence of Pre-trained Models

Pre-trained models are usually reliable but may struggle
in challenging scenarios like translucent objects or dark
scenes, causing minor deviations in physical edits. Exam-
ples of such failures are shown in Fig. C. Despite inaccura-
cies in low-level features, the high-level network maintains
semantic robustness.
Roughness↑. Transparency↑. Relighting. Albedo↑. (Real image, no GT)

N/A

Input Ours GT Input Ours GT Input Ours GT

Figure C. Impact of on pretrained model results.

D.4. Additional Qualitative Results

We present the complete visualization of the Fig. 3 in Fig. E
and Fig. F. Additional comparison results are presented
in Fig. G and Fig. H. As observed, our method consistently
generates high-quality results.
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Transform the 
surface material into 
a highly reflective, 

metallic finish, 
resembling polished 

chrome.

Change the material 
to a plain, matte
ceramic finish, 

removing all metallic 
properties.

Gradually adjust the 
material’s opacity to 
make it see-through, 
revealing the inner 
layers and details.

Make the surface 
appear rougher and 
less smooth, diffusing 
light reflections for a 

more muted 
appearance.

Replace the camera’s 
original materials 

with a neutral, non-
detailed white
material while 
preserving the 

overall geometry.

Modify the material 
to enhance 

reflectivity, making 
the surface shinier
and more metallic.

Introduce a 
translucent quality 
to the surface of the 
sofa, allowing light

to pass through 
partially.

Adjust the material 
to make the football’s 
surface less diffuse, 

resulting in a 
polished and 

reflective finish.
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Figure D. Examples from our dataset, showcasing the editing prompts, input images, and the corresponding output target.

Figure E. The complete visualization for material editing and lighting editing, including input, condition, output, and ground truth.



Figure F. The complete visualization for semantic editing, including input, condition, output, and ground truth.



Figure G. Additional comparison results for material, lighting, and semantic editing (specific conditions omitted for clarity).



Figure H. Additional comparison results for material, lighting, and semantic editing (specific conditions omitted for clarity).
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