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Abstract Continuous-time Global Shutter Video Re-

covery (CGVR) faces a substantial challenge in recov-

ering undistorted high frame-rate Global Shutter (GS)

videos from distorted Rolling Shutter (RS) images. This

problem is severely ill-posed due to the absence of

temporal dynamic information within RS intra-frame

scanlines and inter-frame exposures, particularly when

prior knowledge about camera/object motions is un-

available. Commonly used artificial assumptions on sce-
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nes/motions and data-specific characteristics are prone

to producing sub-optimal solutions in real-world sce-

narios. To address this challenge, we propose an event-

based CGVR network within a self-supervised learning

paradigm, i.e., SelfUnroll, and leverage the extremely

high temporal resolution of event cameras to provide ac-

curate inter/intra-frame dynamic information. Specifi-

cally, an Event-based Inter/intra-frame Compensator

(E-IC) is proposed to predict the per-pixel dynamic

between arbitrary time intervals, including the tempo-

ral transition and spatial translation. Exploring con-

nections in terms of RS-RS, RS-GS, and GS-RS, we ex-

plicitly formulate mutual constraints with the proposed

E-IC, resulting in supervisions without ground-truth

GS images. Extensive evaluations over synthetic and

real datasets demonstrate that the proposed method
achieves state-of-the-art methods and shows remark-

able performance for event-based RS2GS inversion in

real-world scenarios. The dataset and code are avail-

able at https://w3un.github.io/selfunroll/.

Keywords Rolling Shutter Correction · Event

Camera · Self-supervised Learning

1 Introduction

The row-by-row exposure mechanism in the Rolling

Shutter (RS) camera significantly reduces the data

transfer rate, making it an affordable solution for high-

speed imaging (Zhong et al, 2022; Choi et al, 2022;

Sheinin et al, 2022). However, such an approach pro-

duces so-called RS effects, which appear as spatial dis-

tortions in dynamic scenes (e.g., as wobble and skew,

as shown in Fig. 1), especially when high-speed camera-

to-object motions are involved (Baker et al, 2010). Al-

though correcting RS effects is essential for practical

https://w3un.github.io/selfunroll/
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Fig. 1 A challenging example on real-world Gev-RS-Real
dataset (Zhou et al, 2022) of unrolling RS images to GS
video sequences. Frame-based methods, RSSR (Fan and Dai,
2021) and CVR (Fan et al, 2022), face difficulties in handling
the typical non-linear motion. Event-based method EvUn-
roll (Zhou et al, 2022) suffers from “halo” artifacts and blurry
details due to the distribution gap between synthetic training
and real testing data. By contrast, our SelfUnroll achieves vi-
sually pleasant results by directly fitting real-world data dis-
tribution in a self-supervised manner.

applications, it is insufficient to completely capture the

underlying continuous-time GS video. Alternatively, in-

verting the distorted RS observations to an undistorted

continuous-time Global Shutter (GS) video can achieve

the full Continuous-time Global shutter Video Recovery

(CGVR), which, however, is inherently challenging due

to the missing temporal dynamic information in both

RS intra-frame scanlines and inter-frame exposures.

Recovering the GS frame from RS observations

by removing the spatial distortion is highly ill-posed,

especially when there is no supplementary informa-

tion available on camera or object movements. Cur-

rent methods tackle this issue by relying on artificial

assumptions about scenes (Lao and Ait-Aider, 2018;

Purkait and Zach, 2018; Rengarajan et al, 2016) and

motions (Zhuang et al, 2019; Liu et al, 2020; Ren-

garajan et al, 2017) and thus fall short of accurate

GS frame reconstruction. Moreover, these methods can

only generate GS frames at a specific time due to

the lack of temporal dynamic information. The CGVR

task is further complicated by the need to recover

undistorted GS frames for arbitrary timestamps, ne-

cessitating the recovery of lost intra-/inter-frame in-

formation in each moment. Recent methodologies ad-

dress this requirement by assuming motion linearity

on prior assumptions (Fan and Dai, 2021; Fan et al,

2022) or data-specific characteristics learned from spe-

cific datasets (Zhou et al, 2022). However, these arti-

ficial assumptions and data-specific characteristics do

not always hold in real-world scenarios, leading to the

significant performance degradation, as illustrated in

Fig. 1 (a) and (b). Hence, the task of CGVR by invert-

ing RS images to continuous-time GS videos in real-

world scenarios still remains an ongoing and challenging

research area.

In this paper, we propose to leverage inter-/intra-

frame information with the aid of event cameras, a neu-

romorphic sensor that asynchronously emits events in

response to the brightness change at an extremely high

temporal resolution (Brandli et al, 2014; Gallego et al,

2020). While preliminary results have shown the feasi-

bility of using events at the intra-frame time to correct

RS distortions through EvUnroll (Zhou et al, 2022),

the failure to utilize inter-frame information and the

use of the linear motion assumption in the RS2GS flow

module still falls short of achieving accurate CGVR.

Furthermore, the model is trained solely on synthetic

RS datasets, consisting of manually synthesized events

and RS images, which limits its performance in real-

world scenarios due to the “synthetic-to-real” domain

gap caused by discrepancies in data distribution and

modality correspondence (Fig. 1 (c)). The distribution

gap between the synthetic and real datasets exists in

either events or RS images due to the imperfection of

physical cameras, e.g., intrinsic thermal noise and event

threshold variations (Brandli et al, 2014). In addition,

the emission rate of events is confined to the read-out

bandwidth (IniVation, 2020), resulting in temporal dis-

orders of events that are difficult to simulate using event

simulators (Rebecq et al, 2018; Delbruck et al, 2021).

Furthermore, the per-pixel correspondence between the

events and images is relatively simple and can be es-

tablished in network training (Zhang et al, 2022; Pan

et al, 2019; Zhang and Yu, 2022), but the learned cor-

respondence in pre-trained models is fragile and can be

disrupted by variations in the response functions of RS

cameras in real-world scenes (Zhang and Yu, 2022).

Therefore, training with real events and RS im-

ages is essential to ensure optimal CGVR performance

in real-world scenarios. However, collecting RS images

with high frame-rate GS references for training pur-

poses is sophisticated and requires the use of an addi-

tional expensive high-speed camera, such as Phantom

VEO 640 ($ 67,500) used in Gev-RS (Zhou et al, 2022).

And this highlights the need for cost-effective alterna-

tives: Can we learn CGVR from the real-world RS im-

ages without the ground-truth GS images?

The answer is YES. We propose a novel self-

supervised framework that can achieve accurate CGVR

from distorted RS observations without the need for

ground-truth GS images. The proposed framework can
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perform RS to GS (RS2GS) conversion of arbitrary

timestamps using real events and RS images, a sig-

nificant advancement over existing methods. To the

best of our knowledge, this is the first attempt to ap-

ply self-supervised learning to event-based RS2GS con-

version. Specifically, we first develop an Event-based

Inter/intra-frame Compensator (E-IC) to establish a

unified spatial and temporal connection between RS

and GS image domains via flow-based and synthesis-

based techniques. Our E-IC takes flexible segments of

events as inputs and thus can restore latent GS images

at arbitrary timestamps without re-training, benefiting

GS video extraction from a single RS frame. By explor-

ing the cross-domain constraints from spatial and tem-

poral perspectives, we train the E-IC network with real

events and RS frames in a fully self-supervised manner

and we call it SelfUnroll-S.

Taking into account the motion consistency and oc-

clusion, we further propose a Motion and Occlusion

Aware (MOA) module and extend SelfUnroll-S to

SelfUnroll-M, which produces smoother GS videos

even in the presence of occlusions. Finally, we construct

a new dataset composed of real events and RS frames

to facilitate the research of RS2GS conversion in real-

world scenarios.

Overall, our contributions are threefold:

– We propose E-IC that allows for a unified and flexi-

ble transition between two images (RS2GS, GS2RS,

and RS2RS) at arbitrary exposures, thereby en-

abling the continuous reconstruction of GS videos.

– We make the first attempt to approach self-

supervised rolling shutter correction using an event

camera, leveraging its effective perception of tem-

poral dynamic information.

– Our proposed SelfUnroll outperforms state-of-the-

art RS2GS approaches on publicly available bench-

marks. Furthermore, our experiments demonstrate

its proficiency on real-world datasets, including our

newly constructed DRE dataset, which comprises

pixel-aligned RS frames and DAVIS346-captured

event streams. This dataset significantly aids in

real-world event-based RS correction. The dataset

and the corresponding code are readily accessible at

https://w3un.github.io/selfunroll/.

We notice that a parallel investigation (Lu et al,

2023), which adopts a similar self-supervised frame-

work for RS correction, was released approximately two

months after the preprint release of our work1. Com-

pared to (Lu et al, 2023), our self-supervised frame-

work comprises not only the cycle and temporal con-

sistency losses, i.e., GS-RS and RS-RS in (Lu et al,

1 https://arxiv.org/abs/2304.06930

2023), but also the latent consistency loss, which lever-

ages brightness and texture variations between rolling

shutter (RS) images. All three constraints are derived

for the E-IC modules to learn precise transformation

between RS and GS images in the temporal and spatial

domains using texture and motion information embed-

ded in events. Our proposed SelfUnroll excels (Lu et al,

2023) in network design, learning strategy, and recon-

struction accuracy.

2 Related Work

Rolling Shutter Correction. Existing frame-based

rolling shutter correction methods can be roughly cat-

egorized into model-driven approaches and learning-

based approaches. For model-driven methods, Baker

et al (2010) present a constant affine or translational

distortion model to estimate the per-pixel motion vec-

tor from consecutive RS frames and correct the rolling

shutter distortion. Rengarajan et al (2016) propose

the rule “straight line must remain straight” to esti-

mate camera motion by extracting curves. Purkait et al

(2017) leverage geometric properties of the 3D scene

to correct the distortion by estimating the orthogonal

vanishing direction. Zhuang et al (2017) propose an RS-

aware differential SfM algorithm, where the camera mo-

tion and dense depth map are utilized in an RS-aware

warping for image rectification. Albl et al (2020) use

a novel and effective dual-scanning (bottom-to-top and

top-to-bottom) RS camera setup for RS correction. RS

camera motion estimation problem (Grundmann et al,

2012; Liu et al, 2013; Lao and Ait-Aider, 2018; Purkait

and Zach, 2018) can also be addressed with the aid of

RANSAC (Fischler and Bolles, 1981).

Recently, learning-based approaches have been de-

veloped to achieve better RS2GS conversion perfor-

mance. Rengarajan et al (2017) were the first to propose

a CNN model to estimate camera motion parameters

from a single RS image. Zhuang et al (2019) extend

their previous work (Zhuang et al, 2017) and develop

depth- and motion-aware models to predict dense depth

maps and camera motions from a single RS image.

Liu et al (2020) design a differentiable forward warp-

ing module that enables learning RS correction in an

end-to-end manner. Fan et al (2021) leverage symmet-

ric consistency constraint to aggregate the contextual

cues. Zhong et al (2021) build the Joint Correction and

Deblurring (JCD) network using a deformable atten-

tion module to simultaneously achieve RS correction

and motion deblurring. However, most RS correction

methods are designed to restore one GS image at a spe-

cific moment, and thus fail to extract and leverage the

continuous-time GS video.

https://w3un.github.io/selfunroll/
https://arxiv.org/abs/2304.06930


4 Mingyuan Lin et al.

Video Frame Interpolation. Existing Video Frame

Interpolation (VFI) approaches (Bao et al, 2019a,b; Liu

et al, 2017) can be categorized into flow-based and

kernel-based approaches. Flow-based approaches gen-

erally predict intermediate images using bidirectional

optical flow (Jiang et al, 2018; Sun et al, 2018). Never-

theless, most assume uniform motion and linear optical

flow between consecutive frames (Reda et al, 2019; Bao

et al, 2019b), which may be violated in real scenes with

complex and nonlinear motions. Kernel-based meth-

ods usually model the frame interpolation as the lo-

cal convolution with reference frames (Niklaus et al,

2017a,b), which is more robust to brightness changes,

but the scalability of kernel-based approaches is often

limited by the fixed sizes of convolution kernels. Al-

though VFI approaches are able to extract continuous-

time GS videos, existing methods generally assume GS

references and cannot be directly applied to RS inputs.

Event-based RS Correction and VFI. Event cam-

eras are neuromorphic sensors that report asynchronous

event streams in response to brightness changes (Licht-

steiner et al, 2008), which poses a paradigm shift in

visual perception and enables almost continuous obser-

vation of dynamic scenes. Due to the extremely low

latency, events implicitly encode inter/intra-frame in-

formation in terms of motions and textures (Gallego

et al, 2020; Wang et al, 2020; Lin et al, 2020; Xu et al,

2021), which benefits both VFI (Tulyakov et al, 2021,

2022; He et al, 2022; Zhang and Yu, 2022) and RS cor-

rection (Zhou et al, 2022).

For VFI tasks, Timelens (Tulyakov et al, 2021)

and Timelens++ (Tulyakov et al, 2022) are pioneer

works that marry the advantages of warping-based and

synthesis-based interpolation approaches, which can

handle illumination changes and the sudden appear-

ance of new objects between reference frames. Inspired

by (Zhu et al, 2017), He et al (2022) design an un-

supervised learning framework for video interpolation

with event streams using cycle consistency. Zhang and

Yu (2022) jointly solve the deblurring and interpolation

problem by a Learnable Double Integral (LDI) network,

which can generate high frame-rate sharp videos from

consecutive blurry inputs. For RS correction, EvUn-

roll (Zhou et al, 2022) is the first attempt to recover

GS frames during the intra-frame time, which par-

tially achieves CGVR. EvShutter (Erbach et al, 2023)

achieves unconstrained joint RS correction and deblur-

ring without constant speed motion assumptions. How-

ever, the aforementioned event-based approaches focus

on the intra-frame GS frame recovery and do not utilize

the inter-frame events as the input. Hence, they cannot

fully achieve CGVR from RS images.

CGVR from Rolling Shutter Images. CGVR from

rolling shutter images, which is capable of generating

the undistorted GS frames at any given timestamp com-

bines RS correction and VFI, and few works have con-

sidered this challenging situation. Fan and Dai (2021)

were the first to use a network called RSSR to extract

a latent GS video sequence from two consecutive RS

images. Under the assumption of a constant velocity,

they convert the predicted optical flow to RS undis-

tortion flow corresponding to scanlines. Furthermore,

a context-aware architecture CVR (Fan et al, 2022) is

proposed by leveraging a contextual aggregation proce-

dure to alleviate the holes and artifacts caused by oc-

clusions. Zhong et al (2022) propose IFED to merge the

symmetric information of dual reversed rolling shutter

distortion images and reconstruct GS video sequences.

However, due to the limited inter-/intra-frame infor-

mation, the aforementioned methods often struggle to

restore accurate GS results and extract continuous-time

GS video in real-world scenarios with complex motions.

Overall, the existing CGVR methods encounter

challenges in achieving accurate GS results, particularly

when dealing with complex non-linear motion. Besides,

most methods are trained over synthetic datasets and

often suffer from performance degradation in real-world

scenarios due to the “synthetic-to-real” gap. To address

these issues, we propose the E-IC to recover high frame-

rate GS videos from RS frames and events, and develop

a fully self-supervised method to fit real-world data dis-

tribution directly.

3 Method

We first formulate our task in Sec. 3.1 and then design

the Event-based Inter/intra-frame Compensator (E-IC)

in Sec. 3.2 based on a unified transition between pair of

images (i.e., RS2GS, GS2RS, and RS2RS). In Sec. 3.3,

we introduce SelfUnroll-S built upon E-IC and present

a self-supervised learning framework by utilizing the

consistencies between RS and GS domains. We further

develop a Motion and Occlusion Aware (MOA) mod-

ule to handle occlusions by exploiting temporal infor-

mation, which extends SelfUnroll-S to SelfUnroll-M in

Sec. 3.4. Finally, we present the network details and

event representation in Sec. 3.5.

3.1 Problem Formulation

RS and GS. Generally, we can define a continuous

video I : R×Z2 → R+, and I(t,x) parameterized with

time t and pixel location x ≜ (x, y). The key distinction

between GS and RS lies in the exposure mechanism. A



Self-Supervised Shutter Unrolling with Events 5

GS image IG is globally exposed for all pixels, whereas

an RS image IR is exposed line-by-line. To formalize

this, we introduce two location-aware time-shifting op-

erators, T R(x) and T G(x), to define RS and GS images.

A GS image IG is globally exposed for all pixels at

t0. Thus, setting T G
t0 (x) ≜ t0, we have:

IGt0(x) = I(T G
t0 (x),x). (1)

An RS image IR is exposed row-by-row, with the

first row exposed at t0:

IRt0(x) = I(T R
t0 (x),x), (2)

where T R
t0 (x) = t0 + y |T |

H , H is the image height, and

T is the exposure time interval.

RS to GS (RS2GS). The RS2GS transition denotes

the transformation from the RS domain to the GS

domain, aimed at correcting distortions induced by

the row-by-row exposure mechanism. This transition is

mathematically expressed as:

IGts = RS2GS
(
IRt0 , ts

)
. (3)

Drawing on the relationships defined in Eqs. (1)

and (2), we can recast Eq. (3) to signify the transi-

tion between two exposure modes defined by T R(x)

and T G(x), i.e.,

I(T G
ts (x),x) = RS2GS

(
I(T R

t0 (x),x), ts
)
. (4)

However, the transition is severely ill-posed because

of the missing inter/intra-frame information.

RS2GS with events. Event cameras report asyn-

chronous events whenever the brightness exceeds the

event threshold η > 0 in the logarithmic domain (Bran-

dli et al, 2014), i.e.,

log(I(t,x))− log(I(τ,x)) = p · η, (5)

where log(I(t,x)) and log(I(τ,x)) denote the log-scale

pixel brightness of position x at time t and τ , and p ∈
{+1,−1} is the polarity indicating brightness increase

(+1) and decrease (−1). With the aid of events, the

RS2GS transition Eq. (4) can be reformulated as:

I(T G
ts (x),x) = RS2GS

(
I(T R

t0 (x),x), E[T R
t0

,T G
ts

]

)
, (6)

where E[T R
t0

,T G
ts

] denotes the set of events triggered dur-

ing [T R
t0 , T

G
ts ].

Existing RS2GS methods face two limitations: a)

Lack of dynamic information. Frame-based meth-

ods focus primarily on restoring a GS image at the spe-

cific time (Liu et al, 2020; Zhong et al, 2021). However,

the lack of dynamic information prevents these meth-

ods from restoring continuous-time GS frames for arbi-

trary timestamps. b) Data inconsistency. Previous

works (Liu et al, 2020; Zhou et al, 2022) employ well-

labeled synthetic datasets for supervision, which often

leads to the performance drop in real scenes due to the

“synthetic-to-real” data inconsistency.

Instead of solely focusing on restoring the GS im-

age at a single timestamp, e.g., ts = t0 +
T
2 , our work

is dedicated to CGVR, with the goal of restoring the

latent GS video I at any given timestamp ts ∈ R with

the assistance of events. Furthermore, to mitigate the

sub-optimal solutions caused by the data distribution

gap, we propose a self-supervised framework to adapt

to real-world data distributions without the need for

collecting high framerate videos I using an expensive

high-speed camera.

3.2 Event-based Inter/intra-frame Compensator

In this section, we introduce a versatile transitional

function named Event-based Inter/intra-frame Com-

pensator (E-IC), which is not confined to RS2GS but

enables flexible transitions between two images within

three modes: RS2GS, RS2RS, and GS2RS. Given two

different images Is and Id (either in RS or in GS) with

time shifting operators Ts(x) and Td(x), the E-IC can

achieve the transition between Is and Id as:

I(Td(x),x) = E-IC
(
I(Ts(x),x), E[Ts,Td]

)
. (7)

By combing the Eqs. (1), (2) and (7) and setting

Ts = T R
s and Td = T G

d , we can get:

RS2GS: IGd = E-IC(IRs , E[T R
s ,T G

d ]). (8)

By configuring different operators for Ts and Td, we
can also formulate the GS2RS and RS2RS transitions:

GS2RS: IRd = E-IC(IGs , E[T G
s ,T R

d ]),

RS2RS: IRd = E-IC(IRs , E[T R
s ,T R

d ]).
(9)

As shown in Fig. 2, E-ICs can achieve flexible image

transitions between RS and GS domains, i.e., RS2GS

(Fig. 2 (a)), GS2RS (Fig. 2 (b)), and RS2RS (Fig. 2

(c)), and further help us form a self-supervised learning

framework that we will discuss in Sec. 3.3.1.

Inspired by the popular “warp and synthesis” ap-

proach from event-based video interpolation meth-

ods (Tulyakov et al, 2021), we define the E-IC in both

temporal and spatial dimensions.

Temporal Transition. For a given coordinate x, its

temporal intensity transition can be formulated by in-

tegrating events over time,

I(Td,x) = I(Ts,x) · Ĩ
(
E[Ts,Td],x

)
, (10)
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(a) Latent Consistency. (b) Cycle Consistency. (c) Temporal Consistency.

Fig. 2 Illustration of the proposed self-supervised learning framework based on the domain transformation function E-IC. (a)
Latent consistency with RS2GS transition. (b) Cycle consistency with cascaded RS2GS and GS2RS transitions. (c) Temporal
consistency with RS2RS transition.

with Ĩ denoting the brightness change between Ts, Td,

Ĩ
(
E[Ts,Td],x

)
≜ exp

(
η

∫ Td

t=Ts

e(t,x)dt

)
, (11)

where e(t,x) ≜
∑

i piδ(t− ti)δ(x−xi) is the continuous

representation of events and δ(·) denoting the Dirac

function.

Spatial Translation. Besides, benefiting from the low

latency of event cameras, events naturally encode the

motion information of dynamic scenes. Thus, given the

source image, it is also feasible to achieve pixel transla-

tion in the spatial domain by utilizing the motion em-

bedded in events, i.e.,

I(Td,x) = I(Ts,x+ F(E[Ts,Td])), (12)

where F(E[Ts,Td]) denotes the optical flow estimated

from events E[Ts,Td] triggered in the interval [Ts, Td].
However, directly computing the target image by

Eq. (10) or (12) often suffers from the instability of the

event threshold and the disturbance from noisy events,

and thus we propose to employ deep learning-based

methods for better pixel transition performance. In

our approach, multiple Event-based Inter/intra-frame

Compensators (E-ICs) are designed to take advantage

of spatial and temporal compensations. We use two sep-

arate networks in our E-IC, i.e., E-ICT to approximate

Eq. (10) and E-ICS to approximate Eq. (12), and then

fuse the results by a fusion module, which is denoted by

E-ICS+T , to get an combined E-IC output. Finally, the

proposed E-IC can achieve a flexible transition between

two images (in RS or GS) at any exposure time.

3.3 SelfUnroll with a Single RS Frame

The E-IC described in Sec. 3.2 establishes a unified

transformation between images in RS and GS domains

based on events. We implement E-IC for temporal in-

tensity transition with the residual dense network (Jin

et al, 2019) and for spatial pixel translation based on

UNet (Ronneberger et al, 2015), and fuse two E-ICs to

achieve RS correction from both spatial and temporal

perspectives. We refer to this network as SelfUnroll-S

(SelfUnroll with single RS frame) as shown in Fig. 3

(a), and propose a self-supervised learning framework

for training.

3.3.1 Self-supervised Learning Framework

Based on E-ICs that achieve flexible image transitions

between RS and GS domains, we devise the following

three constraints and form a self-supervised learning

framework.

Latent Consistency. Given two consecutive RS im-

ages IR1 and IR2 captured with exposure time T R
1 , T R

2 ,

we define the target GS image with exposure time T G.

Then with event segments E[T R
1 ,T G], E[T R

2 ,T G], one can

invert two RS images to the same latent GS image,

leading to the latent consistency Llc in the GS domain

(Fig. 2 (a)), i.e.,

Llc =
∥∥∥E-IC∗(I

R
1 , E[T R

1 ,T G])− E-IC∗(I
R
2 , E[T R

2 ,T G])
∥∥∥
1
,

(13)

where E-IC∗ is any one of E-ICS ,E-ICT , and E-ICS+T .

Cycle Consistency. We can formulate a cycle consis-

tency Lcc in the RS domain by conducting the RS2GS

process followed by a GS2RS process (Fig. 2 (b)), i.e.,

Lcc =
∥∥E-IC∗

(
E-IC∗(I

R, E[T R,T G]), E[T G,T R])
)
− IR

∥∥
1
.

(14)

Temporal Consistency. Using the events between

two consecutive RS frames, we can establish a temporal



Self-Supervised Shutter Unrolling with Events 7

Fig. 3 The overall pipelines of SelfUnroll-S and SelfUnroll-M. (a) SelfUnroll-S. We establish the connection between the
RS domain and the GS domain in both the spatial and temporal dimensions. And a fusion module is applied to take advantage
of spatial and temporal compensation. (b) SelfUnroll-M. With two separate GS results ÎG1 and ÎG2 , which are provided
by SelfUnroll-S with two consecutive RS images IR1 and IR2 and share the same target exposure time T G, SelfUnroll-M can

reconstruct the final result ÎG with a motion and occlusion aware module.

consistency in the RS domain (Fig. 2 (c)), i.e.,

Ltc =∥E-IC∗(I
R
1 , E[T R

1 ,T R
2 ])− IR2 ∥1

+∥E-IC∗(I
R
2 , E[T R

2 ,T R
1 ])− IR1 ∥1.

(15)

In the self-supervised learning framework, Llc super-

vises the structure of reconstruction by constraining the

same latent GS image restored from different RS inputs.

Using RS2GS and GS2RS conversions, Lcc ensures the

stable brightness for image transitions between the RS

and GS domains. Lastly, drawing on the widely-used

principles of photometric consistency in video interpo-

lation and optical flow estimation (Reda et al, 2019;

Zhu et al, 2018), Ltc leverages information from adja-

cent RS frames, providing robust supervision for learn-

ing inter/intra-frame relationships from events.

3.3.2 Optimization

In addition to the three constraints described in

Sec. 3.3.1, we also employ the Total Variation (TV)

loss to smooth the flow map predicted in E-ICS . Fi-

nally, the total self-supervisions can be summarized as

follows,

L = λ1Llc + λ2Lcc + λ3Ltc + λ4Ltv, (16)

with λ1, λ2, λ3, and λ4 are balancing parameters and

set as {1, 1, 1, 0.01} for network training.

All E-ICs in our SelfUnroll network need to be

trained with the above self-supervision consistencies,

including E-ICS , E-ICT , and E-ICS+T . And the whole

network is trained in an end-to-end manner.

3.4 SelfUnroll with Multiple RS Frames

By exploiting the proposed E-ICs, our SelfUnroll-S

can extract GS images at arbitrary timestamps from

a single RS frame. However, real-world disturbances,

e.g., foreground occlusions and noisy events, might pose

challenges to SelfUnroll-S. On the one hand, foreground

occlusions often violate the brightness constancy as-

sumption in E-ICS . Although E-ICT can predict new

objects in the scene, it tends to produce distorted col-

ors due to the gap between monochrome events and

color RS images. On the other hand, real-world events

are noisy due to the non-ideality of event cameras, and

the accumulation of noisy events often leads to perfor-

mance degradation when inferring the GS images far

from RS inputs. We develop a Motion and Occlusion

Aware (MOA) module to address the above limitations

by leveraging two consecutive RS images and events be-

tween them. Then we extend SelfUnroll-S to SelfUnroll-

M to produce smoother and more accurate GS results.

3.4.1 Motion and Occlusion Aware Module

The proposed MOA module aims to utilize the tempo-

ral motion information from multiple inputs and im-

prove the robustness of SelfUnroll against foreground

occlusions and noisy events. Specifically, given two con-

secutive RS images IR1 , IR2 captured during the expo-

sure time T R
1 , T R

2 and the target GS image IGS with

exposure time T G, we first employ SelfUnroll-S to re-

store two separate GS results ÎG1 , ÎG2 from IR1 , IR2 , i.e.,
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E[T R(x),−0.25T ]

T G = −0.25T

E[T R(x),0.25T ]

T G = 0.25T

E[T R(x),0.5T ]

T G = 0.5T

E[T R(x),0.75T ]

T G = 0.75T

E[T R(x),1.25T ]

T G = 1.25T

Fig. 4 Illustration of event segments E[T R,T G] (1st row) and corresponding event frames (2nd row) for RS2GS inversions

(3rd row) of different latent GS timestamps T G ∈ {−0.25T, 0.25T, 0.5T, 0.75T, 1.25T}. Note that T G = −0.25T or 1.25T
represents the reconstructed GS frames not in the RS exposure time interval [0, T ].

{ÎG1 ,F1,Ĩ1} = SelfUnroll-S(IR1 , E[T R
1 ,T G]),

{ÎG2 ,F2,Ĩ2} = SelfUnroll-S(IR2 , E[T R
2 ,T G]),

(17)

where the definition of F1, F2, Ĩ1, and Ĩ2 can be found

in Eqs. (11) and (12), and the coordinate x is omitted

for readability.

Then we feed the spatial and temporal transition

information outputs from SelfUnroll-S and correspond-

ing events to the MOA module to predict the confidence

map m as:

m ≜ MOA({Ĩ1,F1, E[T R
1 ,T G]}, {Ĩ2,F2, E[T R

2 ,T G]}), (18)

to predict the final reconstruction result ÎG as:

ÎG = mÎG1 + (1−m)ÎG2 . (19)

As shown in Fig. 3 (b), SelfUnroll-M combines a

SelfUnroll-S (or two weight-sharing SelfUnroll-S) and

the MOA module. The SelfUnroll-M is fed with a pair

of inputs, i.e., two consecutive RS frames IR1 , IR2 and

the events between the target GS frame and input RS

frames E[T R
1 ,T ], E[T R

2 ,T ], and outputs the GS frame ÎG.

For clarity, we summarize SelfUnroll-M as:

ÎG = SelfUnroll-M(IR1 , IR2 , E[T R
1 ,T G], E[T R

2 ,T G]). (20)

3.4.2 Optimization

We employ a two-stage training approach for

SelfUnroll-M. Initially, we pre-train SelfUnroll-S us-

ing Eq. (16). Afterward, while keeping the weights of

SelfUnroll-S fixed, we introduce a dual cycle consistency

term Ldcc to train the MOA module self-supervisedly.

Based on Eq. (20), we first employ SelfUnroll-M to re-

store an intermediate GS image ÎG at the exposure time

T G from two RS frames IRS
1 , IR2 and the correspond-

ing events E[T R
1 ,T G], E[T R

2 ,T G]. By exploiting the flexible

conversion ability of SelfUnroll-M between RS and GS

domains, we treat ÎG as one reference image and esti-

mate the original RS inputs,

ÎR1 =SelfUnroll-M
(
ÎG, IR2 , E[T G,T R

1 ], E[T R
2 ,T R

1 ]

)
,

ÎR2 =SelfUnroll-M
(
ÎG, IR1 , E[T G,T R

2 ], E[T R
1 ,T R

2 ]

)
.

(21)

Then, one can formulate the dual cycle consistency loss,

Ldcc =
∥∥∥ÎR1 − IR1

∥∥∥
1
+
∥∥∥ÎR2 − IR2

∥∥∥
1
. (22)

3.5 Network Details and Event Representation

Network Details. We adopt the residual dense net-

work (Jin et al, 2019) as E-ICT . The E-ICS , fusion mod-

ule, and MOA module are implemented based on UNet

(Ronneberger et al, 2015). Note that all the modules in

our network are trained from scratch.

Event Segments. As described in Sec. 3.2, our

proposed E-ICs enable flexible RS2RS, RS2GS, and

GS2RS transformations based on the corresponding

event segment E[T R,T R], E[T R,T G], E[T G,T R]. Here we ex-

plain the principle of event segments using the RS2GS

case. Since the RS image is exposed row by row during
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Table 1 Overview of datasets for event-based RS correction. Data*: including RS frames and events. †: the Gev-RS-Real
dataset is built by two different event cameras with resolutions of 1280×720 and 346×260 respectively.

Datasets Data* Pixel Aligned Resolution Sequences
Fastec-RS (Liu et al, 2020) synthetic ✓ 640×480 75
Gev-RS (Zhou et al, 2022) synthetic ✓ 640×360 29
Gev-RS-Real (Zhou et al, 2022) real ✕ 346×260† 16
DRE (Ours) real ✓ 346×260 100

exposure time interval [0, T ], each row has a row-specific

exposure timestamp determined by the location-aware

time shifting operator T R(x). For the latent GS image,

all pixels are exposed simultaneously at a single and

fixed timestamp t. Thus, we define the event segment

for the RS2GS transformation by E[T R,T G] ≜ E[T R(x),t],

corresponding to the events located at the green faded

regions in Fig. 4. The event segment varies with respect

to the latent GS timestamps and we give five illustrative

examples including three GS images inside the RS expo-

sure time (t = 0.25, 0.5, 0.75T in Fig. 4) and two outside

the RS exposure time (t = −0.25, 1.25T in Fig. 4).

Event Representation. According to E[T R(x),t],

events the different rows have different time intervals,

therefore we stack events in a row-aware manner. For

row y, we evenly divide N temporal bins (N = 16 in

this work) between the latent GS timestamp t and the

RS timestamp T R(x) = y |T |
H with H the image height

and T the RS exposure time interval. To guarantee the

performance of forward (i.e., T R(x) < t) and backward

(i.e., T R(x) > t) conversion, we apply time flip and po-

larity reversal to events using the event pre-processing

operator in (Zhang and Yu, 2022). We then accumu-

late the events inside each temporal bin and form a

2N × 1 × W tensor. The above operation is repeated

for each row, and we finally concatenate them to form

a 2N × H × W event tensor with 2, H,W indicating

event polarity, image height, and width, respectively.

4 Experiment

4.1 Datasets

We evaluate the proposed algorithm on four datasets,

including two synthetic datasets, i.e., Fastec-RS

(Liu et al, 2020) and Gev-RS-Sharp (Zhou et al, 2022),

with simulated events and RS images, and two real-

world datasets, i.e., Gev-RS-Real (Zhou et al, 2022)

and our proposed DAVIS-RS-Event (DRE), where DRE

provides more sequences (100 vs. 16) with a richer di-

versity of scenes than Gev-RS-Real. We summarize the

above datasets in Tab. 1.

Fastec-RS. The Fastec-RS (Liu et al, 2020) dataset

captures multiple 2,400 FPS GS videos by a Fastec TS5

high-speed GS camera at the resolution of 640×480,

(a) Examples of scenes on the DRE dataset

(b) Before calibration
(events in GS exposure)

(c) After calibration
(events in RS exposure)

Fig. 5 Overview of the proposed DAVIS-RS-Event (DRE)
dataset: (a) Indoor (top) and outdoor (bottom) samples cap-
tured under different camera motions and dynamic scenes; (b)
misaligned events and RS image before line delay calibration;
(c) aligned events and RS image after line delay calibration.

and then synthesizes RS images. The corresponding

event streams are synthesized with ESIM (Rebecq et al,

2018) using the high frame-rate GS video. We follow the

same data splitting strategy as DSUN (Liu et al, 2020)

and EvShutter (Erbach et al, 2023), i.e., 54 sequences

for training and 21 for testing.

Gev-RS-Sharp. The original Gev-RS (Zhou et al,

2022) dataset uses a high-speed Phantom VEO 640

camera to collect 5,700 FPS GS videos with the 640×
360 image resolution and then synthesize event streams

and motion blurred RS images. Since our SelfUnroll fo-

cus on the CGVR task and take sharp RS images as

the input, we re-simulate the RS effects by the same

method as Fastec-RS (Liu et al, 2020), where the sharp

RS image is synthesized by sequentially copying a row

of pixels from the high frame-rate GS images. With

officially provided events, we formulate the Gev-RS-

Sharp dataset has 29 paired sequences composed of

3,700 sharp GS-event-RS triplet clips. They are divided

into the training and testing datasets by the same way

as EvUnroll (Zhou et al, 2022).

Gev-RS-Real. The Gev-RS-Real dataset (Zhou et al,

2022) is built with real-world events and RS images cap-
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Fig. 6 Illustration of inter-frame and intra-frame time of
RS video, where T represents the exposure length of RS
frames and t′ denotes the interval time between consecu-
tive RS frames. The output settings of RS2GS approaches
are demonstrated in the shaded regions. DSUN (Liu et al,
2020) and JCD (Zhong et al, 2021) only recover GS frame
at a pre-defined timestamp, and EvUnroll (Zhou et al, 2022)
and EvShutter(Erbach et al, 2023) are dedicated to restoring
the intra-frame GS results. In contrast, RSSR (Fan and Dai,
2021), CVR (Fan et al, 2022), and our proposed SelfUnroll
can achieve CGVR and restore GS frames in both intra-frame
and inter-frame time.

tured by a hybrid camera system consisting of an RS

camera and an event camera. The event streams are col-

lected by two different event cameras, i.e., DAVIS346

and PROPHESEE GEN4.0, for data diversity, and the

ground-truth GS references are not available. Homogra-

phy and a high-precision stopwatch are used for spatial

and temporal synchronization. In total, Gev-RS-Real

has 16 event-RS paired sequences, where we select 9 of

them for training and the other 7 for testing.

DAVIS-RS-Event (DRE). Given that all existing

event-based methods assume pixel alignment between

frames and events, a condition not met in dynamic

scenes for hybrid systems (Cho et al, 2023) like Gev-

RS-Real, we have curated a large-scale, pixel-aligned

real-world dataset, DAVIS-RS-Event (DRE). Utilizing

a single DAVIS346 camera, we simultaneously captured

real-world RS images and their corresponding event

streams. Furthermore, we employed the Kalibr calibra-

tion tool (Oth et al, 2013) to determine the line delay

(approximately 70µs in our calibration) between RS

frames and events, as illustrated in Fig. 5. Our DRE

dataset comprises more sequences (refer to Tab. 1) and

showcases a richer diversity of scenes compared to the

aforementioned datasets. This comprehensive dataset

serves as a more thorough resource for RS2GS evalu-

ation and training for unsupervised methods in real-

world scenarios.

4.2 Implementation Details

Training. We use PyTorch (Paszke et al, 2019) to

implement the proposed network with an NVIDIA

GeForce RTX 3090 GPU. We randomly crop the RS

images to 128 × 128 patches for training. Adam op-

timizer (Kingma and Ba, 2014) and SGDR scheduler

(Loshchilov and Hutter, 2016) are employed with an ini-

tial learning rate set to 1×10−4. Our models are trained

in a two-stage manner: we first train the SelfUnroll-S us-

ing Eq. (16) for 100 epochs and then train SelfUnroll-M

via Eq. (22) for another 100 epochs. Both SelfUnroll-

S and SelfUnroll-M are trained with events and RS

frames, and the ground-truth GS images are only used

for performance evaluation.

Evaluation Metrics. For quantitative evaluation, we

take the Peak Signal-to-Noise Ratio (PSNR), Struc-

tural SIMilarity (SSIM), and Learned Perceptual Image

Patch Similarity (LPIPS). Better reconstruction results

are indicated by high PSNR and SSIM scores, and low

LPIPS scores, i.e., PSNR ↑, SSIM ↑, and LPIPS ↓.

4.3 Comparison on the Synthetic Datasets

Quantitative experiments are conducted on two syn-

thetic datasets with GS references, i.e., Gev-RS-Sharp

(Zhou et al, 2022) and Fastec-RS (Liu et al, 2020).

Our proposed SelfUnrolls are compared against state-

of-the-art RS2GS methods, including four frame-based

approaches, i.e., DSUN (Fan et al, 2021), RSSR (Fan

and Dai, 2021), JCD (Zhong et al, 2021) and CVR

(Fan et al, 2022), as well as three event-based ap-

proach, EvUnroll (Zhou et al, 2022), EvShutter (Erbach

et al, 2023), and NIRE (Zhang et al, 2024). We sum-

marize the details of the abovementioned approaches

in Fig. 6 and apply the same experimental settings

to all methods. Metrics on the Fastec-RS dataset for

RSSR and CVR are extracted from (Fan et al, 2022)

and for the other methods are extracted from (Erbach

et al, 2023). As the code for EvShutter is not publicly

available, we only retrain DSUN, RSSR, JCD, CVR,

and EvUnroll on the Gev-RS-Sharp dataset for a fair

comparison. Metrics on the Gev-RS-Sharp dataset for

NIRE are extracted from its paper. In the subsequent

analysis, we divide CGVR into two subtasks, i.e., the

intra-frame and inter-frame reconstruction tasks as de-

picted in Fig. 6, and present comparisons in Secs. 4.3.1

and 4.3.2, respectively.

4.3.1 Comparison on Intra-frame Reconstruction

Quantitative comparisons on the Fastec-RS and Gev-

RS-Sharp datasets are presented in Tabs. 2 and 3,

demonstrating that event-based RS2GS approaches,

i.e., EvUnroll (Zhou et al, 2022), EvShutter (Erbach

et al, 2023), NIRE (Zhang et al, 2024), and the pro-

posed SelfUnrolls, i.e., SelfUnroll-S and SelfUnroll-

M, outperform frame-based methods by a large mar-



Self-Supervised Shutter Unrolling with Events 11

RS image
(PSNR,SSIM,LPIPS)

CVR
(21.83,0.831,0.1421)

EvUnroll
(21.25,0.813,0.0997)

SelfUnroll-S
(29.81,0.918,0.0505)

SelfUnroll-M
(31.15,0.922,0.0499)

GT
(Inf.,1.000,0.0000)

RS image
(PSNR,SSIM,LPIPS)

CVR
(27.44,0.832,0.0804)

EvUnroll
(29.98,0.885,0.0251)

SelfUnroll-S
(30.66,0.886,0.0240)

SelfUnroll-M
(31.85,0.905,0.0198)

GT
(Inf.,1.000,0.0000)

Fig. 7 Qualitative comparisons of single GS frame reconstruction on the Fastec-RS (top) and Gev-RS-Sharp (bottom) datasets.
Details are zoomed in for a better view.

Table 2 Quantitative comparisons with respect to the single GS frame reconstruction on the Fastec-RS dataset. SSL represents
self-supervised learning. Bold and underlined numbers represent the best and the second-best performance.

Methods Event SSL PSNR↑ SSIM↑ LPIPS↓
DSUN (Liu et al, 2020) × × 26.52 0.79 0.122
JCD (Zhong et al, 2021) × × 24.84 0.78 0.107
RSSR (Fan and Dai, 2021) × × 21.23 0.78 0.142
CVR (Fan et al, 2022) × × 28.72 0.85 0.111
EvUnroll (Zhou et al, 2022) ✓ × 31.32 0.88 0.084
EvShutter (Erbach et al, 2023) ✓ × 32.41 0.91 0.061
SelfUnroll-S (Ours) ✓ ✓ 32.32 0.90 0.066
SelfUnroll-M (Ours) ✓ ✓ 32.86 0.91 0.064

Table 3 Quantitative comparisons of the proposed SelfUnrolls to the state-of-the-art methods on the Gev-RS-Sharp dataset.
Given an RS frame with the exposure time [0, T ], all methods output 9 GS frames at timestamps t ∈ {0.1T, 0.2T, . . . , 0.8T, 0.9T}
in the GS video sequence reconstruction task. In the single-frame reconstruction task, we evaluate the middle frame at the
timestamp t = 0.5T of the whole video. Bold and underlined numbers represent the best and the second-best performance.
The symbol / denotes infeasible to reconstruct GS sequences.

Method
Single GS frame GS video sequence

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
DSUN (Liu et al, 2020) 23.95 0.839 0.0508 / / /
JCD (Zhong et al, 2021) 20.13 0.717 0.0718 / / /
RSSR (Fan and Dai, 2021) 22.21 0.749 0.1011 20.39 0.680 0.1195
CVR (Fan et al, 2022) 23.18 0.766 0.1022 23.52 0.771 0.1076
EvUnroll (Zhou et al, 2022) 31.29 0.914 0.0230 29.41 0.896 0.0383
NIRE (Zhang et al, 2024) 31.75 0.91 / / / /
SelfUnroll-S (Ours) 32.26 0.926 0.0204 31.95 0.923 0.0231
SelfUnroll-M (Ours) 32.62 0.932 0.0200 32.71 0.934 0.0194

gin. This validates the assistance of the inter-/intra-

frame information provided by events for RS correc-

tion. Among the event-based methods, our SelfUnrolls

show favorable performance compared to EvUnroll and

EvShutter. Note that in Tab. 3, the metrics of the re-

trained JCD decrease compared to that reported in

EvUnroll on the Gev-RS-Sharp dataset. This perfor-

mance drop is because JCD was originally designed for

the joint task of motion deblurring and RS correction

while we retrain it on the sharp RS images.

The first row of Fig. 7 presents qualitative com-

parisons on the Fastec-RS dataset. It is observed that
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(a) RSSR (b) CVR (c) EvUnroll (d) SelfUnroll-S (e) SelfUnroll-M

RS frame (previous)

RS frame (next)

GT

(a
)

(b
)

(c
)

(d
)

(e
)

G
T

GS Sequence (From top to bottom: RSSR, CVR, EvUnroll, SelfUnroll-S, SelfUnroll-M, and GT)

Fig. 8 Qualitative comparisons of GS video sequence restoration on the Gev-RS-Sharp dataset.

Table 4 Quantitative comparisons of the proposed SelfUnroll to the state-of-the-art NeRF-based RS correction methods on
three sequences of the Gev-RS-Sharp dataset.

Method
24209 1 13 24209 1 30 24209 1 36

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
USB-NeRF (Li et al, 2024) 21.06 0.549 0.2356 15.85 0.494 0.5618 18.23 0.562 0.3050
RS-NeRF (Niu et al, 2025) 15.04 0.156 0.3051 11.51 0.189 0.7709 15.04 0.235 0.7324
SelfUnroll-S (Ours) 30.63 0.960 0.0387 26.73 0.895 0.0493 33.60 0.983 0.0118

both CVR and EvUnroll can restore the foreground tree

but at the expense of distorting the background build-

ing. Regarding the reconstruction on the Gev-RS-Sharp

dataset in the last row of Fig. 7, note that CVR fails

to accurately estimate the underlying RS geometry, as

demonstrated by the numbers on the car. On the other

hand, although EvUnroll can correct the distortion, it

also introduces artifacts on the edges of restored ob-

jects, as evident in the electric bicycle. In contrast, the

proposed SelfUnrolls can rectify the edges of distorted

objects and recover more realistic results, highlighting

the effectiveness of the proposed algorithms.

Furthermore, we draw attention to the intra-frame

GS video reconstruction task. Quantitative and qual-

itative comparisons are presented in Figs. 8 and 9

and Tab. 3. As shown in Fig. 8 (a) and (b), frame-

based methods, such as RSSR and CVR, are unable to

handle the dynamic scene with fast motion and fail to

restore the shape. With the help of the motion and tex-

ture information that events provide, EvUnroll avoids

the distortion of lines but suffers from severe artifacts

P
S

N
R

(d
B

)

(a) All methods

P
S

N
R

(d
B

)

(b) SelfUnroll-S vs. -M

Fig. 9 Evaluation of Intra-frame GS video reconstruction at
different target exposure times on the Gev-RS-Sharp dataset.

(Fig. 8 (c)). In contrast, SelfUnrolls can reconstruct

intra-frame GS video with high stability and outper-

form other methods. Specifically, SelfUnroll-M can gen-

erate more reliable textures without color distortion,

such as the train windows and the brown railing in

Fig. 8 (e). Besides, the PSNR trend of GS video recon-

struction in Fig. 9 (b) demonstrates that SelfUnroll-M

can not only improve the single GS frame reconstruc-

tion quality, but also stabilize the performance of the

GS video reconstruction. It can improve the reconstruc-
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Table 5 Quantitative comparisons on the inter-frame GS video reconstruction task under the setting of 1- and 3-frame skips
on the Gev-RS-Sharp dataset. Two RS frames with the exposure time [0, T ], [T + t′, 2T + t′] (t′ is the interval between
two consecutive RS frames and is set to 2

3
T ) act as the inputs. For the 1-frame skip task, all methods interpret 1 GS

frame at the timestamp t = T + 0.50t′. For the 3-frame skip task, all methods interpret 3 GS frames at the timestamps
t ∈ {T + 0.25t′, T + 0.50t′, T + 0.75t′}. Bold and underlined numbers represent the best and the second-best performance.

Methods
1 frame skip 3 frames skip

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
RSSR 16.02 0.532 0.2088 16.07 0.555 0.5333
CVR 23.84 0.760 0.1072 23.90 0.763 0.1064
EvUnroll+Timelens 19.17 0.726 0.1473 19.29 0.724 0.1480
EvUnroll+DAIN 19.29 0.688 0.1341 19.18 0.680 0.1479
SelfUnroll-S (Ours) 30.66 0.903 0.0323 30.68 0.903 0.0323
SelfUnroll-M (Ours) 31.73 0.919 0.0315 31.77 0.920 0.0311

RS image
(PSNR,SSIM,LPIPS)

CVR
(16.21,0.511,0.1708)

EvUnroll+Timelens
(16.26,0.500,0.1503)

SelfUnroll-S
(27.99,0.827,0.0522)

SelfUnroll-M
(29.11,0.869,0.0463)

GT
(Inf.,1.000,0.0000)

Fig. 10 Single GS frame reconstruction of inter-frame time on the Gev-RS-Sharp dataset.

tion quality of GS images at edge target time by up to

1.3 dB on PSNR, shows the effectiveness of the MOA

in the information fusion of consecutive frames.

Moreover, we conduct comparisons of our SelfUn-

roll to two NeRF-based RS correction methods, i.e.,

USB-NeRF (Li et al, 2024) and RS-NeRF (Niu et al,

2025), on the Gev-RS-Sharp dataset. Since NeRF-based

methods are based on two assumptions: static scene

(with moving camera) and known camera poses. There-

fore, we first exclude the sequences with moving ob-

jects from the testing set on the Gev-RS-Sharp dataset.

Among the remaining sequences, we select the first

50 RS frames of each sequence for experiments, of

which 40 frames are for training and 10 frames are

for testing. Then, we estimate the camera poses us-

ing COLMAP (Schonberger and Frahm, 2016). Despite

sequences lacking the diversity of camera views, e.g.,

photographing distant buildings, COLMAP only re-

covers the poses of three sequences, i.e., 24209 1 13,

24209 1 30, and 24209 1 36, which are used to initial-

ize USB-NeRF and RS-NeRF. Quantitative results in

Tab. 4 demonstrate that our SelfUnroll is more robust

to real-world scenarios and image capture methods than

NeRF-based methods.

4.3.2 Comparison on Inter-frame Reconstruction

We conduct the experiments on the inter-frame GS

video reconstruction task of the proposed SelfUnrollto

two frame-based methods, i.e., RSSR (Fan and Dai,

2021) and CVR (Fan et al, 2022), and one evnet-bansed

method, i.e., EvUnroll (Zhou et al, 2022), on the Gev-

RS-Sharp dataset. Since EvUnroll is not designed for

the inter-frame GS video recovery task, we combine it

with state-of-the-art video frame interpolation meth-

ods, i.e., Timelens (Tulyakov et al, 2021) and DAIN

(Bao et al, 2019a), denoting as EvUnroll+Timelens and

EvUnroll+DAIN respectively.

Specifically, The RS frames are first corrected to

the GS frames corresponding to the middle scanline

by EvUnroll and then interpolated by Timelens or

DAIN. As depicted in Tab. 5 and Fig. 10, SelfUnroll-

S and SelfUnroll-M outperform the frame-based meth-

ods, RSSR and CVR, by a large margin, highlight-

ing the importance of inter-frame scene dynamic infor-

mation recorded by events. As for EvUnroll+Timelens

and EvUnroll+DAIN, the cascade approaches experi-

ence a significant decline in performance as the RS2GS

errors propagate to the frame interpolation stage. In

contrast, our SelfUnrolls use E-ICs to transition be-

tween input and output images at any arbitrary mo-

ment rather than a specific time period, thereby main-

taining high-quality RS2GS reconstruction during the

inter-frame time. Considering the performance of Sel-

fUnrolls, the advantage of SelfUnroll-M indicates the

importance of consecutive frame information in inter-

frame reconstruction.
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(a) Event frame (b) RS frame (c) CVR (d) EvUnroll (e) SelfUnroll-S (f) SelfUnroll-M

Fig. 11 Qualitative results on the Gev-RS-Real dataset (top two rows) and DRE dataset (bottom two rows). All GS frame
exposure times correspond to the first scanline of the RS image. The red dashed curves (with the same position and shape in
(b)-(f)) indicate the distorted edges in the RS images and event frames represent the correct GS edges as the reference.

Table 6 Ablation study of E-ICs modules on the Gev-RS-
Sharp dataset. Bold numbers denote the best performance.

Spatial Temporal PSNR↑ SSIM↑ LPIPS↓
✓ 28.67 0.877 0.0311

✓ 31.67 0.916 0.0227
✓ ✓ 32.26 0.926 0.0204

Due to the different experimental settings between

this paper and (Lu et al, 2023), whose codes are un-

available, we do not compare the proposed SelfUnroll

with it. Nonetheless, it can be seen from the metrics

provided by (Lu et al, 2023) that our SelfUnroll out-

performs it by a large margin, e.g., at least 6 dB, 0.13,

and 0.06 improvements in terms of PSNR, SSIM, and

LPIPS, on the Fastec-RS and Gev-RS-Sharp datasets.

4.4 Comparison on the Real-world Datasets

We also conduct experiments on real-world datasets,

i.e., Gev-RS-Real (Zhou et al, 2022) and DRE in

Sec. 4.1. Qualitative comparisons are made to the

state-of-the-art frame-based method CVR (Fan et al,

2022) and event-based method EvUnroll (Zhou et al,

2022). Fig. 11 illustrate comparisons on the single frame

restoration, while the performance on the video re-

construction is shown in Figs. 1 and 12 respectively.

We can observe that both CVR and EvUnroll are

trained on synthetic datasets and thus suffer from de-

RS Image CVR EvUnroll SelUnroll-M

C
V
R

E
v
U
n
r
o
ll

S
e
lf
U
n
r
o
ll
-M

E
v
e
n
t

Fig. 12 Qualitative comparison on sequence restoration over
the DRE dataset.

graded performance in real-world scenes due to the

“synthetic-to-real” gap. Specifically, CVR produces in-

accurate rectification and shape distortions due to vio-

lated motion assumptions, while EvUnroll yields obvi-

ous artifacts and blurred details due to the violation of

learned modality correspondence in real-world scenes.

In contrast, SelfUnrolls utilizes self-supervised learning
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RS image
(PSNR,SSIM,LPIPS)

Temporal E-IC
(25.56,0.808,0.0920)

Spatial E-IC
(21.35,0.730,0.0734)

Spatial+Temporal
(27.05,0.852,0.0585)

GT
(Inf.,1.000,0.0000)

Fig. 13 Qualitative ablations of spatial and temporal E-ICs in SelfUnroll.

Table 7 Ablation study of supervisions on the Gev-RS-Sharp dataset. Case #0 represents the model without any supervision,
and the metrics of Case #0 which are calculated between the input RS frame and the GS reference are given as a reference.
Bold and underlined numbers represent the best and the second-best performance.

Case Llc Lcc Ltc Ltv
SelfUnroll-S SelfUnroll-M

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
#0 19.01 0.673 0.0751 19.01 0.673 0.0751
#1 ✓ ✓ 17.30 0.449 0.1110 17.45 0.439 0.1344
#2 ✓ ✓ 19.01 0.670 0.0761 19.48 0.671 0.1102
#3 ✓ ✓ 30.60 0.898 0.0277 30.85 0.905 0.0275
#4 ✓ ✓ ✓ 29.23 0.877 0.0944 29.47 0.882 0.0971
#5 ✓ ✓ ✓ 31.30 0.911 0.0243 31.56 0.915 0.0236
#6 ✓ ✓ ✓ 30.98 0.906 0.0248 31.37 0.914 0.0229
#7 ✓ ✓ ✓ 31.50 0.918 0.0227 32.15 0.925 0.0204
#8 ✓ ✓ ✓ ✓ 32.26 0.926 0.0204 32.62 0.932 0.0200

on real datasets, effectively bridging the “synthetic-

to-real” gap and producing visually satisfying results

without texture and shape distortion. More results on

the real-world datasets can be found at https://w3un.

github.io/selfunroll/.

4.5 Ablation study

In this subsection, we perform a diverse set of ablation

studies to investigate the contribution of each loss in our

self-supervised learning framework and the importance

of each module of the proposed network.

4.5.1 Importance of Spatial & Temporal E-ICs

The overall SelfUnroll-S network is composed of spatial

and temporal E-ICs, i.e., E-ICS and E-ICT. The spa-

tial connection E-ICS achieves RS2GS transformation

by estimating per-pixel motions and thus has brightness

consistency but may suffer from geometric distortions

caused by motion errors from noisy events, as shown in

Fig. 13. On the other hand, the temporal E-ICT module

compensates for brightness change between RS and GS

images and is thus robust to motion distortions but may

suffer from unrealistic artifacts and chromatic aberra-

tions, as shown in Fig. 13. Fusing spatial and temporal

E-ICs gives the best quantitative and qualitative re-

sults, as shown in Fig. 13 and Tab. 6.

RS image
(PSNR,SSIM,LPIPS)

w/o Ltc
(24.99,0.731,0.1151)

w/o Lcc
(27.94,0.815,0.1435)

w/o Llc
(24.83,0.721,0.1357)

w/ all
(29.96,0.883,0.0612)

GT
(Inf.,1.000,0.0000)

Fig. 14 Qualitative ablations of each supervision and their
absolute differences to the ground-truth GS reference.

4.5.2 Importance of Combining Losses

According to Fig. 14, removing either Llc or Ltc leads to

RS distortions, suggesting that both components play

a crucial role in correcting RS. Specifically, Ltc directly

introduces the determined inputs, i.e., two consecutive

RS frames as the strong supervision to guide E-ICs

to learn spatial and temporal transitions, which ulti-

https://w3un.github.io/selfunroll/
https://w3un.github.io/selfunroll/
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RS Image IR1
(16.18,0.599,0.1692)

RS Image IR2
(17.04,0.643,0.1853)

SelfUnroll-S (IR1 )
(30.64,0.917,0.0521)

SelfUnroll-S (IR2 )
(29.49,0.910,0.0597)

SelfUnroll-M
(31.51,0.925,0.0503)

GT
(Inf.,1.000,0.0000)

Fig. 15 Quantitative and qualitative ablations of MOA on
the Fastec-RS dataset. IR1 (previous) and IR2 (next) are two
consecutive RS frames.

mately benefits the RS2GS task. Llc provides the only

constraint in the GS domain and thus is also helpful

in the RS2GS task. However, Llc alone cannot guar-

antee brightness consistency as it does not impose a

constraint between the outputs of E-ICs and the origi-

nal images. Although Lcc does not directly help E-ICs

produce GS images, it contributes to brightness consis-

tency and improves the performance. Overall, Tab. 7

and Fig. 14 show that combining all three losses leads

to the smallest absolute error, validating the necessity

of supervision with Llc, Lcc, and Ltc simultaneously.

4.5.3 Superiority of Multi-frame Fusion

The quantitative and qualitative analyses in Secs. 4.3

and 4.4 have demonstrated that SelfUnroll-M outper-

forms SelfUnroll-S due to the complementarity of the

previous and next frame information. To study how

the MOA module handles the information loss intro-

duced by the occlusion, we compare the performance

of SelfUnroll-S and SelfUnroll-M when facing the large

occlusions, e.g., the orange headlight and the distant

building in Fig. 15. Using a single RS image (IR1 /IR2 )

as input to SelfUnroll-S produces incorrect textures and

colors in an attempt to recover regions occluded by fore-

ground objects in moving scenes, e.g., the disappearing

building in SelfUnroll-S (IR1 ) and the gray headlight

in SelfUnroll-S (IR2 ) in Fig. 15. Our MOA module can

adaptively fuse the GS results generated by SelfUnroll-

S (IR1 /IR2 ) to alleviate the impact of occlusion.

4.6 Evaluation for RS Reconstruction

As detailed in Sec. 3.2, E-IC is designed not only for

RS2GS transition but also encompasses GS2RS and

RS2RS transitions. To comprehensively evaluate the

reconstructive capabilities of E-IC on RS images, we

conduct the GS2RS transition on the Gev-RS-Sharp

dataset and the RS2RS transition on the DRE dataset,

as depicted in Fig. 16. Furthermore, we explore the im-

pact of different line delays (e.g., 1×, 2×, and −1×) to

generate RS images with varying degrees of distortion.

As illustrated in Fig. 16, the RS reconstruction with

2×td exhibits more distortion than 1×td, while the RS

reconstruction with −1× td introduces distortion with

a reversed direction. This experiment validates that our

proposed E-IC can flexibly handle transitions to recon-

struct both RS and GS images by utilizing different

event segments as inputs.

4.7 Runtime and Performance Analysis

We further evaluate the complexity of our proposed ap-

proaches and other RS2GS methods by feeding RS im-

ages with the same spatial resolution 640 × 480 and

executing them on the same NVIDIA GeForce RTX

3090 GPU. The comparison of runtime and perfor-

mance is visualized in Fig. 17. Our SelfUnroll-S can

infer GS prediction with the shortest time (≈ 68 ms)

while SelfUnroll-M performs with increased complexity

since it requires an additional MOA module. SelfUnroll-

M performs better than SelfUnroll-S while both achieve

state-of-the-art RS2GS performance.

Regarding the model size, CVR has the most net-

work parameters and performs best among frame-based

RS2GS methods. Due to the utilization of events, the

event-based methods have smaller model sizes but out-

perform CVR by a large margin. Among the three

event-based methods, our proposed SelfUnroll-S gives

higher GS reconstruction PSNR than EvUnroll even

though they have comparable model sizes. The RS2GS

performance can be further improved by SelfUnroll-M

with increased model sizes and input frames. Overall,

our proposed SelfUnroll-S/-M is highly effective and ef-

ficient in restoring the GS frame and facilitating the

high temporal reconstruction of RS2GS.

5 Limitations and Future Works

Our proposed SelfUnroll method is based on the princi-

ple of estimating the spatial and temporal transforma-

tion between two sharp images. However, it is limited

in its ability to handle motion blur, as shown in the
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GS image
(PSNR,SSIM,LPIPS)

1×td
(29.01,0.861,0.0482)

2×td
(28.23,0.840,0.0513)

-1×td
(27.79,0.826,0.0540)

Overlapped RS images 1×td 2×td -1×td

Fig. 16 Qualitative results of RS reconstruction. The top row illustrates the GS2RS transition using a GS image from the
Gev-RS-Sharp dataset, while the bottom row displays the RS2RS transition utilizing RS images from the DRE dataset. td
denotes the default line delay of RS images in the corresponding dataset, and n× td represents the line delay of reconstructed
RS images. A higher value of n indicates a more pronounced RS effect. The minus sign “-” denotes reverse exposure order,
where the exposure occurs from bottom to top (default RS exposure is from top to bottom in this work).

Time(ms)

P
S

N
R

(d
B

)

DSUN
 3.9M

JCD
7.5M

RSSR
12.0M

SUNet
12.0M

 CVR
42.7M

EvUnroll
  27.5M

SelfUnroll-S
     29.3M

SelfUnroll-M
     33.9M

Fig. 17 PSNR vs. Inference time, size ∝ parameters
on Fastec-RS dataset. The inference time is evaluated on re-
constructing a GS image with a resolution of 640×480. The
size of the blobs is proportional to the number of network pa-
rameters. The top left corner indicates the best performance.

first row of Fig. 18. Additionally, as illustrated in the

second row of Fig. 18, our method is unable to miti-

gate the flicker effect (Lin et al, 2023) caused by the

variation in brightness during RS exposure time. While

we have successfully removed the distortion, the streaks

caused by the flicker effects remain. We plan to address

these issues in the future.

6 Conclusion

In this paper, we propose a novel event-based RS2GS

method, SelfUnroll, to simultaneously achieve the RS

(a) RS image (b) SelfUnroll-M (c) GT

Fig. 18 Failure cases: a blurry RS image showing a train
with large motion (1st row) and an RS image with light flicker
effect (2nd row).

image correction and the high temporal GS video re-

construction. Our method is based on the Event-based

Inter/Intra-frame Compensator (E-IC), which estab-

lishes a unified spatial and temporal connection be-

tween two images with different exposures, thus improv-

ing the RS2GS transformation. Based on E-IC, we first

propose the SelfUnroll-S network to restore GS images

from a single RS image with the aid of events. Then,

we extend SelfUnroll-S to SelfUnroll-M, where the Mo-

tion and Occlusion Aware (MOA) module is designed

to tackle the occlusion problem by fusing the temporal

information. We further propose a self-supervised learn-

ing framework for both SelfUnroll-S and SelfUnroll-M

that allows for learning with real events and RS images,

thereby reducing the cost of collecting ground-truth GS

images and bridging the performance gap between syn-

thetic and real datasets. To validate the effectiveness

of our proposed methods, we develop a real-world RS

image dataset that contains both events and RS frames
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for various indoor and outdoor scenes. Our experimen-

tal results on synthetic and real datasets demonstrate

the superiority of our proposed SelfUnroll methods over

existing state-of-the-art methods.
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