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Abstract

Polarization-based vision algorithms have found uses in vari-
ous applications since polarization provides additional phys-
ical constraints. However, in low-light conditions, their per-
formance would be severely degenerated since the captured
polarized images could be noisy, leading to noticeable degra-
dation in the degree of polarization (DoP) and the angle of
polarization (AoP). Existing low-light image enhancement
methods cannot handle the polarized images well since they
operate in the intensity domain, without effectively exploit-
ing the information provided by polarization. In this paper,
we propose a Stokes-domain enhancement pipeline along
with a dual-branch neural network to handle the problem in
a polarization-aware manner. Two application scenarios (re-
flection removal and shape from polarization) are presented
to show how our enhancement can improve their results.

Introduction
Exploring polarimetric properties of light transport has ben-
efited various vision applications, such as reflection removal
(Lei et al. 2020), shape from polarization (Deschaintre, Lin,
and Ghosh 2021), image dehazing (Zhou et al. 2021), etc.
Since these applications often need to take full advantage
of the physical constraints provided by the unique cues of
polarization, their accuracy is closely related to polarization-
relevant parameters, such as the degree of polarization (DoP)
and the angle of polarization (AoP) of the incoming light to
the sensor. With the development of polarization cameras,
capturing multiple polarized images of the same scene with
different polarizer angles in a snapshot becomes possible,
which brings convenience to the acquisition of the DoP and
AoP. However, when taking photos in low-light conditions
(e.g., capturing with limited illumination or setting a short
exposure time at a high frame rate), the signal-to-noise ratio
(SNR) degenerates due to low photon counts. In such a situ-
ation, since the captured polarized images are noisy, leading
to severely degenerated DoP and AoP, the performance of
corresponding applications is negatively affected (Hu et al.
2020). Therefore, it is of great interest to enhance multiple
polarized low-light images of the same scene for acquiring
the DoP and AoP accurately.
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Recent advances in single image low-light enhancement
(Chen et al. 2018; Jiang et al. 2021; Zheng, Shi, and Shi
2021; Guo et al. 2020) have shown effectiveness in imaging
in low-light conditions. They adopt neural networks to en-
hance the visual quality of images in the intensity domain by
extracting image features and priors from a large amount of
training data. However, when it comes to handling multiple
polarized low-light images of the same scene, they can only
process one of them at a time in a polarization-unaware man-
ner (i.e., without considering the physical constraints among
the polarized images), so that the quality of the acquired DoP
and AoP are rather unreliable. This situation could be re-
lieved by processing multiple polarized low-light images si-
multaneously (e.g., using IPLNet (Hu et al. 2020)), however,
operating in the intensity domain cannot make effective use
of the information provided by polarization.

Based on the fact that the polarization characteristics of
the incoming light to the sensor are fully encoded in the
Stokes parameters, we analyze the average error rates of
polarization-relevant variables (including the polarized im-
ages, AoP, DoP, and Stokes parameters) w.r.t. the image ir-
radiacne reduction factor (caused by decreasing the expo-
sure time or scene radiance) in the polarized low-light im-
age formation model. We observe that the degradation in the
Stokes parameters is less severe than the polarized images in
low-light conditions, and therefore propose a new pipeline
to solve the problem in the Stokes domain instead of the in-
tensity domain. Along this pipeline, we design a dual-branch
neural network based on the specific properties of the Stokes
parameters to perform enhancement in a polarization-aware
manner. We also present two application scenarios, includ-
ing reflection removal (Lei et al. 2020) and shape from po-
larization (Deschaintre, Lin, and Ghosh 2021), to demon-
strate the benefits of enhancing polarized low-light images.
To summarize, this paper makes contributions by propos-
ing: (1) a Stokes-domain enhancement pipeline for polarized
low-light images; (2) a polarization-aware dual-branch net-
work tailored to the pipeline; (3) two applications demon-
strating the benefits of enhancing polarized low-light im-
ages.

Related Work
Generally, low-light image enhancement methods could
be divided into two categories: traditional methods and



learning-based methods. Traditional methods often utilize
histogram equalization (Pizer et al. 1987) and Retinex theory
(Land 1977) to turn the low-light image enhancement prob-
lem into a numerical optimization problem. However, the
methods using histogram equalization may cause the prob-
lem of over- and under-enhancement since they often do not
take the illumination into consideration, and the methods us-
ing Retinex theory often ignore noise removal and may am-
plify the noise. To increase the robustness, learning-based
methods have been proposed. Existing learning-based meth-
ods are mainly based on supervised learning. They use a
large amount of training data to learn the mapping from low-
light images to normal-light images (Lore, Akintayo, and
Sarkar 2017; Ren et al. 2019; Xu et al. 2020; Li et al. 2020;
Lv, Liu, and Lu 2020; Lim and Kim 2020; Wang et al. 2020;
Lu and Zhang 2020; Atoum et al. 2020; Ai and Kwon 2020;
Li, Feng, and Hua 2021; Zheng, Shi, and Shi 2021; Lv, Li,
and Lu 2021), estimate reflectance and illumination maps
(Wei et al. 2018; Li et al. 2018; Wang et al. 2019a; Zhang,
Zhang, and Guo 2019; Wang et al. 2019b; Fan et al. 2020;
Yang et al. 2021b; Zhang et al. 2021b) based on the Retinex
theory (Land 1977), or reconstruct enhanced images from
raw low-light images directly (Chen et al. 2018; Maharjan
et al. 2019; Zhu et al. 2020b; Wei et al. 2020; Lamba and
Mitra 2021). Recently, unsupervised learning (Jiang et al.
2021), semi-supervised learning (Yang et al. 2020, 2021a),
reinforcement learning (Yu et al. 2018), and zero-shot learn-
ing (Zhang et al. 2019; Guo et al. 2020; Zhu et al. 2020a;
Liu et al. 2021; Li, Guo, and Chen 2021; Zhao et al. 2021)
have also been introduced to solve this challenging problem.
To deal with dynamic scenes, learning temporal stability has
been considered in some low-light video enhancement meth-
ods (Lv et al. 2018; Chen et al. 2019; Jiang and Zheng 2019;
Triantafyllidou et al. 2020; Zhang et al. 2021a; Wang et al.
2021). Although these methods have shown effectiveness in
a large variety of scenes, they are not suitable for enhancing
multiple polarized images since they only focus on enhanc-
ing the quality of a single input image and cannot consider
the polarization relationship among multiple polarized im-
ages. To deal with this problem, Hu et al. (2020) proposed a
network, named IPLNet, to enhance multiple polarized low-
light images simultaneously. However, it still tried to handle
the problem in the intensity domain, which cannot make ef-
fective use of the information provided by polarization.

Method
Polarized Low-Light Image Formation Model
In normal-light conditions, assuming the camera response
function is linear (Lyu et al. 2019; Hu et al. 2020; Zhou et al.
2021), the formation of an image can be described as

I = R · t, (1)

where R denotes the original scene radiance, and t is the
sensor exposure time. Note that since in normal-light con-
ditions the SNR of the captured image is sufficiently high,
we ignore the noise term (Chen et al. 2018; Hu et al. 2020).
When placing a polarizer with polarizer angle α in front of
the camera, according to the Malus’ law (Hecht 2012), the

captured polarized image Iα can be calculated as

Iα =
1

2
I · (1− p · cos(2(α− θ))), (2)

where p ∈ [0, 1] and θ ∈ [0, π] denote the DoP and AoP of
the incoming light to the sensor respectively. Reformulating
Eq. (2) into a polynomial form, Iα can be expressed as a
linear combination of three parameters S0,1,2:

Iα =
1

2
S0 −

1

2
cos(2α) · S1 −

1

2
sin(2α) · S2, where

S0 = I, S1 = I · p · cos(2θ), and S2 = I · p · sin(2θ)
(3)

are called the Stokes parameters (Können 1985) of the in-
coming light to the sensor. Once S0,1,2 are available (from
polarized images), p and θ could be easily acquired by

p =

√
S2
1 + S2

2

S0
and θ =

1

2
arctan(

S2

S1
). (4)

A polarization camera can capture four spatially-aligned
and temporally-synchronized polarized images Iα1,2,3,4

with
different polarizer angles α1,2,3,4 = 0◦, 45◦, 90◦, 135◦ in a
snapshot1, which brings convenience to the acquisition of p
and θ (Fig. 1 (a)). This is because according to the physical
meanings of the Stokes parameters2, S0,1,2 can be computed
from Iα1,2,3,4

directly:

S0 =
1

2
(Iα1 + Iα2 + Iα3 + Iα4),

S1 = Iα3
− Iα1

, and S2 = Iα4
− Iα2

.
(5)

However, when it comes to low-light conditions, the SNR of
the captured polarized images degenerates due to low photon
counts, so that the noise term cannot be ignored anymore.
The captured polarized low-light images would be degener-
ated as (we use ·̂ to denote the degenerated variables):

Îαi
=

1

γ
Iαi

+Ni (i = 1, 2, 3, 4), (6)

where γ (γ > 1) is a linear scaling factor denoting the image
irradiacne reduction caused by decreasing the exposure time
or scene radiance, and Ni = N ( 1γ , Iαi

) stands for a noise
term which is mainly affected by 1

γ (Lv, Li, and Lu 2021).
Therefore, the computed Stokes parameters and the acquired
AoP and DoP would be degenerated correspondingly (Fig. 1
(b)).

Error Rate Analysis. To show that the polarized images,
Stokes parameters, DoP, and AoP have different sensitivity
to γ, we analyze the relationships between their average er-
ror rates and γ. Defining the average error rate of a variable
x (x can be a polarized image or a Stokes parameter normal-
ized to [0, 1]) as

Ex =

∑
|γx̂− x|∑

x
, (7)

1We do not consider the non-linearity in this paper since a po-
larization camera usually outputs images with a linear camera re-
sponse function.

2S0 describes the total intensity of the light, and S1 (S2) de-
scribes the difference between the intensity of the vertical (135◦)
and horizontal (45◦) polarized light (Können 1985).



where
∑

denotes the pixel-wise sum. We can see that Ex can
be regarded as the functions of γ given a specific scene (i.e.,
Iα1,2,3,4

). Combining Eq. (6) and Eq. (7), the relationship
between EIavg (Iavg =

∑4
i=1 Iαi

/4) and γ can be written as

EIavg =
γ
∑

|Navg|∑
Iavg

= γ · K0(γ), where

Navg =

∑4
i=1 Ni

4
and K0(γ) =

∑
|Navg|∑
Iavg

.

(8)

Similarly, combining Eq. (5) and Eq. (7), we obtain the re-
lationship between ESi and γ:

ES0 =
γ
∑

|2Navg|∑
2Iavg

= EIavg = γ · K0(γ),

ES1
= γ · K1(γ), and ES2

= γ · K2(γ), where

K1(γ) =

∑
|N3 −N1|∑

S1
and K2(γ) =

∑
|N4 −N2|∑

S2
.

(9)
Since K1(γ) and K2(γ) have similar formulations (the nu-
merator is the difference between two noise terms following
the same distribution, and the denominator is the difference
(normalized to [0, 1]) between the intensity of two polarized
images), and the numerators of K1(γ) and K2(γ) are close
to zero, we could approximately derive K1(γ) ≈ K2(γ) <
K0(γ), which means

EIavg = ES0 > ES1 ≈ ES2 . (10)

Similar to Eq. (7), we define the average error rates of the
DoP and AoP (also normalized to [0, 1]) as Ep =

∑
|p̂−p|∑

p

and Eθ =
∑

|θ̂−θ|∑
θ respectively3. According to Eq. (4), the

relationship between Ep (or Eθ) and γ could be quite com-
plicated. We therefore suspect the DoP and AoP are more
sensitive to γ than the polarized images and the Stokes pa-
rameters. To verify it, we perform simulation on 6000 syn-
thetic scenes to quantitatively obtain the relationships be-
tween the average error rates (EIavg , ES0,1,2 , Ep, Eθ) and γ,
as show in Fig. 1 (c)4. We can see that in low-light condi-
tions the degradation in the DoP and AoP is quite noticeable,
which can lead to degenerated performance of applications
of polarization-based vision (Lei et al. 2020; Deschaintre,
Lin, and Ghosh 2021).

Stokes-Domain Enhancement Pipeline
We aim to enhance multiple polarized images captured by
a polarization camera in low-light conditions to acquire the
DoP and AoP with high accuracy. Directly denoising p̂ and
θ̂ seems a straightforward way to achieve our goal. How-
ever, the methods designed for image denoising cannot han-
dle this problem since the noise distributions of the DoP and

3Note that there is no need to multiply γ to p̂ or θ̂ like Eq. (7),
since according to Eq. (4) 1

γ
will be canceled in the division oper-

ation.
4Details of this simulation experiment can be found in the sup-

plementary material.
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Figure 1: (a) Normal-light polarized images with the com-
puted DoP and AoP. (b) Low-light polarized images with
the degenerated DoP and AoP. (c) Relationships between the
average error rates (EIavg , ES0,1,2

, Ep, Eθ) and the linear scal-
ing factor γ. We visualize the DoP and AoP (normalized to
[0, 1]) using color maps after averaging their RGB channels
(as Hu et al. (2020) do) throughout this paper.

AoP are inherently different from those in the image inten-
sity domain (Hu et al. 2020). According to Eq. (5), a pos-
sible solution could be adopting single-image low-light en-
hancement methods (Jiang et al. 2021; Zheng, Shi, and Shi
2021; Guo et al. 2020) to reconstruct Iα1,2,3,4 from Îα1,2,3,4 .
However, these methods cannot consider the polarization re-
lationship among the polarized images and can only process
them in a frame-by-frame manner, leaving the acquired DoP
and AoP unreliable. Another solution is implicitly consid-
ering the physical constraints of polarization by enhancing
Îα1,2,3,4

simultaneously (Hu et al. 2020). However, the in-
formation provided by polarization cannot be effectively ex-
ploited since it still operates in the intensity domain.

From Eq. (3) we could know that the polarization charac-
teristics of the incoming light to the sensor are fully encoded
in the Stokes parameters S0,1,2, i.e., one can render a po-
larized image with an arbitrary polarizer angle from them.
Besides, from Eq. (10) and Fig. 1 (c) we can see that the
level of degradation in S0 is similar to the polarized images,
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Figure 2: We design a network tailored to our Stokes-domain enhancement pipeline, which recovers the Stokes parameters
S0,1,2 from their degenerated counterparts Ŝ0,1,2. It consists of two branches for enhancing Ŝ0 and Ŝ1,2 respectively based on
their different properties. Then, the DoP p and AoP θ with high accuracy can be computed from S0,1,2 using Eq. (4).

while S1,2 are less degenerated, which suggests that enhanc-
ing the Stokes parameters may have chance to provide more
reliable results. Therefore, we propose to enhance Ŝ0,1,2 in-
stead of enhancing Îα1,2,3,4

directly. Here, it is not wise to
process Ŝ0,1,2 simultaneously since the properties of S0 and
S1,2 are essentially different: (1) S0 is the unpolarized im-
age (Eq. (3)); (2) S1,2 are two similar “differential signals”,
which can be expressed as the differences between two po-
larized images (Eq. (5)). It might be a better idea to deal with
Ŝ0 and Ŝ1,2 separately based on their different properties.

Therefore, we propose a Stokes-domain enhancement
pipeline, which adopts two network branches to perform en-
hancement on Ŝ0 and Ŝ1,2 independently:

S0 = funpol(Ŝ0) and S1,2 = fdiff(Ŝ1,2), (11)

where funpol denotes the unpolarized branch for enhancing
the unpolarized image Ŝ0 and fdiff denotes the differential
branch for enhancing the “differential signals” Ŝ1,2, which
will be detailed in the next subsection. As S0,1,2 become
available, the DoP p and AoP θ with high accuracy can be
calculated using Eq. (4), and the polarized images Iα1,2,3,4

can be calculated using Eq. (3).

Polarization-Aware Dual-Branch Network
Tailored to our Stokes-domain enhancement pipeline, we de-
sign a dual-branch network to enhance Ŝ0 and Ŝ1,2 indepen-

dently in a polarization-aware manner based on their differ-
ent properties, as shown in Fig. 2.

Unpolarized Branch. As shown in the upper branch of
Fig. 2, it consists of a feature extraction block (Fa) to ex-
tract high-level features in the latent space, and a backbone
network (g1) to perform blind noise suppression and detail
enhancement on the pre-amplified input γŜ0. By adopting
Tanh as the output activation, it learns the residual between
γŜ0 and S0, which can be described as

S0 = funpol(Ŝ0) = g1(Fa(γŜ0)) + γŜ0. (12)

Differential Branch. We observe that despite most re-
gions in γŜ1,2 are degenerated by noise, their edges are less
affected, which could provide abundant structure informa-
tion. So, we propose to explicitly extract their edges (de-
noted as E1,2) using Laplace kernels as priors. As shown
in the lower branch of Fig. 2, it consists of two feature ex-
traction blocks (Fb and Fc) to extract features from γŜ1,2

and their edges respectively and a backbone network (g2) to
complete the reconstruction. This branch can be described
as (i = 1, 2)

Si = fdiff(Ŝi) = g2(concat(Fb(γŜi),Fc(Ei))) + γŜi.
(13)

Layer Details. The feature extraction blocks Fa and Fb

consist of several convolution layers, which are quite sim-
ple since they only extract features directly from inputs. Fc

consists of a convolution layer, a dense block (Huang et al.
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Figure 3: Qualitative evaluation results on the PLIE dataset among our method, IPLNet (Hu et al. 2020), EnlightenGAN (Jiang
et al. 2021), UTVNet (Zheng, Shi, and Shi 2021), and Zero-DCE (Guo et al. 2020). Quantitative results evaluated using PSNR
(P) and SSIM (S) are displayed below each image. Please zoom-in for better details.

2017), and a non-local block (Wang et al. 2018) since it
extracts features from sparse edges, which requires large
receptive fields and long-range dependencies. As for the
backbone network gi (i = 1, 2), we design it as a mod-
ified autoencoder architecture (Hinton and Salakhutdinov
2006), by virtue of its excellent context generalization abil-
ity for enriching detail contents. We set the number of down-
sampling/upsampling blocks to 2 for multi-scale observa-
tions, embed 3 dense blocks (Huang et al. 2017) in the
coarsest layer for more fine-grained contextual information,
and add skip-connections to make full use of the shallow
features. The downsampling block is a residual bottleneck
block (He et al. 2016) enhanced with channel shuffle opera-
tions (Zhang et al. 2018) to help the information flow across
feature channels. The upsampling block is similar to the cor-
responding one in Attention U-Net architecture (Oktay et al.
2018). Note that we add an instance normalization (Ulyanov,
Vedaldi, and Lempitsky 2016) layer and a ReLU activation
function after each convolution layer.

Loss Function and Training Strategy. The total loss
function of our network is defined as L(S0,1,2) = λ1 ·
L1(S0,1,2) + λ2 · L2(S0,1,2) + λ3 · Ltv(S0,1,2) + λ4 ·
Lgrad(S1,2), where L1 is the ℓ1 loss, L2 is the ℓ2 loss, Ltv

is the total variation loss to enforce smoothness, and Lgrad is
the gradient loss (ℓ2 loss in the gradient domain) to ensure
the structure invariance of S1,2. λi (i = 1, 2, 3, 4) are empir-
ically set to be 10.0, 100.0, 1.0, 100.0 respectively. We im-
plement the network using PyTorch on an NVIDIA 2080Ti
GPU, and train it for 400 epochs using ADAM optimizer
(Kingma and Ba 2014) with a batch size of 8. The learning
rate is set to 0.01.

Experiments
Comparisons with Existing Methods
There is no public dataset for such a polarization-aware
low-light image enhancement task. Besides, existing single-
image low-light enhancement benchmark datasets (e.g., (Lv,
Li, and Lu 2021; Chen et al. 2018)) do not contain any po-
larization information, which cannot be used to generate po-
larized images. Therefore, we propose to build a real-world
dataset, named PLIE (Polarization-aware Low-light Image
Enhancement) dataset5, which contains pairwise low- and
normal-light polarized images to train our network and test
it quantitatively and qualitatively.

5More information can be found in the supplementary material.



PSNR-p SSIM-p PSNR-θ SSIM-θ PSNR-S0 SSIM-S0

Ours 27.15 0.765 16.42 0.336 39.19 0.977
IPLNet (Hu et al. 2020) 25.32 0.715 16.21 0.276 22.84 0.930
EnlightenGAN (Jiang et al. 2021) 24.55 0.652 13.55 0.190 22.14 0.887
UTVNet (Zheng, Shi, and Shi 2021) 24.14 0.636 12.18 0.271 18.45 0.821
Zero-DCE (Guo et al. 2020) 19.34 0.527 12.09 0.134 17.48 0.815

Table 1: Quantitative evaluation results on the PLIE dataset among our method, IPLNet (Hu et al. 2020), EnlightenGAN (Jiang
et al. 2021), UTVNet (Zheng, Shi, and Shi 2021), and Zero-DCE (Guo et al. 2020). Bold font indicates the best performance.

PSNR-p SSIM-p PSNR-θ SSIM-θ PSNR-S0 SSIM-S0

Intensity-domain enhancement 24.98 0.702 16.38 0.286 38.00 0.972
Single-branch network 26.34 0.756 15.87 0.328 37.19 0.928
Without edge priors 26.13 0.751 16.26 0.330 39.17 0.975
Without gradient loss 20.63 0.485 14.67 0.181 37.36 0.973
Without total variation loss 15.70 0.576 14.35 0.250 37.40 0.970
Our complete model 27.15 0.765 16.42 0.336 39.19 0.977

Table 2: Quantitative evaluation results of ablation study.

We compare our method to IPLNet6 (Hu et al. 2020) (the
only existing method designed for enhancing polarized low-
light images as far as we know), and three state-of-the-art
single-image low-light enhancement methods including En-
lightenGAN (Jiang et al. 2021), UTVNet (Zheng, Shi, and
Shi 2021), and Zero-DCE (Guo et al. 2020) on the PLIE
dataset. We do not compare to image denoising methods in
this paper since IPLNet (Hu et al. 2020) has made such com-
parisons with Polarization-BM3D (Tibbs et al. 2018) (the
state-of-the-art polarized image denoising method). Note
that comparing with single-image low-light enhancement
methods might be a bit unfair because of the difference in
the way of processing the input data, and we just attempt to
show the significance of polarization-awareness.

As Hu et al. (2020) do, we not only evaluate the accu-
racy of the enhanced DoP p and AoP θ, but also evaluate
the quality of the enhanced unpolarized image S0, since one
can render a polarized image with an arbitrary polarizer an-
gle using Eq. (3) when p, θ, and S0 are available. Note
that we only re-train IPLNet (Hu et al. 2020) on the PLIE
dataset, while directly adopting the pre-trained models for
those single-image low-light enhancement methods (Jiang
et al. 2021; Zheng, Shi, and Shi 2021; Guo et al. 2020), since
the performance of those single-image methods degenerates
after re-training. This is because those methods rely strongly
on the semantic information they extracted for enhancement;
when training on the PLIE dataset (which is not as large as
the dataset used for obtaining the pre-trained models) the
semantic information is limited.

Visual quality comparisons are shown in Fig. 37. As for p
and θ, our method achieves much better performance than
other methods, thanks to our polarization-aware network.

6The code of IPLNet (Hu et al. 2020) is not available and the
demonstrated results are based on our own implementation accord-
ing to the descriptions in the paper.

7Additional results can be found in the supplementary material.

Taking the left box of p as an example, the results of single-
image low-light enhancement methods (Jiang et al. 2021;
Zheng, Shi, and Shi 2021; Guo et al. 2020) suffer severely
from artifacts, and IPLNet (Hu et al. 2020) tends to generate
over-smooth results. This is because the single-image low-
light enhancement methods (Jiang et al. 2021; Zheng, Shi,
and Shi 2021; Guo et al. 2020) process the polarized images
in a frame-by-frame manner so that they are not aware of the
polarization relationship among the polarized images, while
IPLNet (Hu et al. 2020) still handles the problem in the in-
tensity domain so that the information provided by polariza-
tion cannot be effectively exploited. As for S0, our results
resemble the ground truth more closely with less color dis-
tortion. This is because the methods operating in the inten-
sity domain (Hu et al. 2020; Jiang et al. 2021; Zheng, Shi,
and Shi 2021; Guo et al. 2020) need to compute S0 from
Iα1,2,3,4

, while our unpolarized branch focuses on enhanc-
ing S0 directly, which can avoid error accumulation during
the computation. To evaluate the results quantitatively, as Hu
et al. (2020) do, we adopt two frequently-used metrics in-
cluding PSNR and SSIM. Results are shown in Tab. 1 (also
below corresponding examples in Fig. 3). Our model consis-
tently outperforms the compared methods on all metrics.

Ablation Study
We conduct a series of ablation studies and show compar-
isons in Tab. 2. We first show the contribution of our Stokes-
domain enhancement pipeline by comparing with a model
that performs enhancement in the intensity domain. We find
that our Stokes-domain pipeline is better since it can make
effective use of the information provided by polarization. We
further verify the effectiveness of our dual-branch network
structure (Fig. 2) by comparing with a model that uses only a
single branch to estimate S0,1,2 simultaneously. From the re-
sults we can see that our network design is more reasonable
and robust. Then, we demonstrate the necessity of extracting
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Figure 4: Results of reflection removal (using PRRPAW (Lei et al. 2020)) before and after enhancement by our method and
IPLNet (Hu et al. 2020). Quantitative results evaluated using PSNR (P) and SSIM (S) are displayed in each image.
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Figure 5: Results of shape from polarization (using DP3I (Deschaintre, Lin, and Ghosh 2021)) before and after enhancement
by our method and IPLNet (Hu et al. 2020). Quantitative results evaluated using mean angle error (MAE) are displayed in each
image (lower means better).

the edges of S1,2 as priors by removing them, and validate
the significance of adopting gradient loss and total variation
loss by removing them respectively. These results show that
our complete model achieves the first performance with the
proposed specific designs.

Applications

To demonstrate the benefits of enhancing polarized low-light
images, we choose two typical applications including reflec-
tion removal (Lei et al. 2020) and shape from polarization
(Deschaintre, Lin, and Ghosh 2021) and show that the en-
hancement can improve their performance. Note that at this
point we only compare to IPLNet (Hu et al. 2020) due to
the inferior performance of single-image low-light enhance-
ment methods (Jiang et al. 2021; Zheng, Shi, and Shi 2021;
Guo et al. 2020) on the PLIE dataset according to Tab. 1.

Reflection Removal. We choose the state-of-the-art
polarization-based reflection removal method PRRPAW
(Lei et al. 2020) for validation. First, we use a Lucid
Vision Phoenix polarization camera to capture reflection-
contaminated polarized low-light images behind a piece of
glass with a short exposure time tshort and adopt our method
and IPLNet (Hu et al. 2020) to enhance them respectively.
Then, we take the enhanced images (converted to grayscale)
as the input of PRRPAW (Lei et al. 2020) to obtain the re-
flection removed results. For reference, we also capture the
reflection-free ground truth images with a long exposure
time tlong = 10tshort by removing the glass. Comparisons
of the reflection-removed grayscale unpolarized images8 are

8PRRPAW (Lei et al. 2020) takes polarized images as input and
outputs unpolarized results in grayscale.

shown in Fig. 49. We can see that PRRPAW (Lei et al. 2020)
cannot remove the reflection adequately in low-light condi-
tions, and our method can improve its performance by pro-
viding the enhanced polarized images, DoP, and AoP as its
input. Our method outperforms IPLNet (Hu et al. 2020) both
quantitatively and qualitatively.

Shape from Polarization. We choose the state-of-the-art
shape from polarization method DP3I (Deschaintre, Lin, and
Ghosh 2021) for validation. We directly capture the polar-
ized low-light images as the input of our method and IPLNet
(Hu et al. 2020). Comparisons of the estimated normal maps
are shown in Fig. 510 (the ground truth normal map is com-
puted analytically according to the contour of the sphere).
We can see that our method could improve the performance
of DP3I (Deschaintre, Lin, and Ghosh 2021) by a large mar-
gin, while IPLNet (Hu et al. 2020) brings negative effects
since it generates over-smooth DoP and AoP, providing un-
reliable physical constraints for such an application.

Conclusion
We presented a learning-based solution to enhance multi-
ple polarized low-light images for enhancing the accuracy
of the DoP and AoP. To make effective use of the informa-
tion provided by polarization, we proposed a Stokes-domain
enhancement pipeline along with a dual-branch neural net-
work, handling the problem in a polarization-aware man-
ner. We also demonstrated that our method can improve the
performance of applications of polarization-based vision in
low-light conditions, including reflection removal and shape
from polarization.

9Additional results can be found in the supplementary material.
10Additional results can be found in the supplementary material.
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Können, G. 1985. Polarized light in nature. CUP Archive.
Lamba, M.; and Mitra, K. 2021. Restoring extremely dark
images in real time. In Proc. of Computer Vision and Pattern
Recognition.

Land, E. H. 1977. The retinex theory of color vision. Scien-
tific American, 237(6): 108–129.
Lei, C.; Huang, X.; Zhang, M.; Yan, Q.; Sun, W.; and Chen,
Q. 2020. Polarized reflection removal with perfect align-
ment in the wild. In Proc. of Computer Vision and Pattern
Recognition.
Li, C.; Guo, C.; and Chen, C. L. 2021. Learning to enhance
low-light image via zero-reference deep curve estimation.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence.
Li, C.; Guo, J.; Porikli, F.; and Pang, Y. 2018. LightenNet: A
convolutional neural network for weakly illuminated image
enhancement. Pattern Recognition Letters, 104: 15–22.
Li, J.; Feng, X.; and Hua, Z. 2021. Low-light image en-
hancement via progressive-recursive network. IEEE Trans-
actions on Circuits and Systems for Video Technology,
31(11): 4227–4240.
Li, J.; Li, J.; Fang, F.; Li, F.; and Zhang, G. 2020.
Luminance-aware pyramid network for low-light image en-
hancement. IEEE Transactions on Multimedia, 23: 3153–
3165.
Lim, S.; and Kim, W. 2020. DSLR: Deep stacked laplacian
restorer for low-light image enhancement. IEEE Transac-
tions on Multimedia, 23: 4272–4284.
Liu, R.; Ma, L.; Zhang, J.; Fan, X.; and Luo, Z. 2021.
Retinex-inspired unrolling with cooperative prior architec-
ture search for low-light image enhancement. In Proc. of
Computer Vision and Pattern Recognition.
Lore, K. G.; Akintayo, A.; and Sarkar, S. 2017. LLNet: A
deep autoencoder approach to natural low-light image en-
hancement. Pattern Recognition, 61: 650–662.
Lu, K.; and Zhang, L. 2020. TBEFN: A two-branch
exposure-fusion network for low-light image enhancement.
IEEE Transactions on Multimedia, 23: 4093–4105.
Lv, F.; Li, Y.; and Lu, F. 2021. Attention guided low-light
image enhancement with a large scale low-light simulation
dataset. International Journal of Computer Vision, 129(7):
2175–2193.
Lv, F.; Liu, B.; and Lu, F. 2020. Fast enhancement for non-
uniform illumination images using light-weight CNNs. In
Proc. of ACM MM.
Lv, F.; Lu, F.; Wu, J.; and Lim, C. 2018. MBLLEN: Low-
light image/video enhancement using CNNs. In Proc. of
British Machine Vision.
Lyu, Y.; Cui, Z.; Li, S.; Pollefeys, M.; and Shi, B. 2019. Re-
flection separation using a pair of unpolarized and polarized
images. In Proc. of Advances in Neural Information Pro-
cessing Systems.
Maharjan, P.; Li, L.; Li, Z.; Xu, N.; Ma, C.; and Li, Y. 2019.
Improving extreme low-light image denoising via residual
learning. In Proc. of International Conference on Multime-
dia and Expo.
Oktay, O.; Schlemper, J.; Folgoc, L. L.; Lee, M.; Hein-
rich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla,
N. Y.; Kainz, B.; Glocker, B.; and Rueckert, D. 2018. At-
tention U-Net: Learning where to look for the pancreas.
arXiv:1804.03999.



Pizer, S. M.; Amburn, E. P.; Austin, J. D.; Cromartie, R.;
Geselowitz, A.; Greer, T.; ter Haar Romeny, B.; Zimmer-
man, J. B.; and Zuiderveld, K. 1987. Adaptive histogram
equalization and its variations. Computer vision, Graphics,
and Image Processing, 39(3): 355–368.
Ren, W.; Liu, S.; Ma, L.; Xu, Q.; Xu, X.; Cao, X.; Du, J.; and
Yang, M.-H. 2019. Low-light image enhancement via a deep
hybrid network. IEEE Transactions on Image Processing,
28(9): 4364–4375.
Tibbs, A. B.; Daly, I. M.; Roberts, N. W.; and Bull, D. R.
2018. Denoising imaging polarimetry by adapted BM3D
method. Journal of the Optical Society of America, 35(4):
690–701.
Triantafyllidou, D.; Moran, S.; McDonagh, S.; Parisot, S.;
and Slabaugh, G. 2020. Low light video enhancement using
synthetic data produced with an intermediate domain map-
ping. In Proc. of European Conference on Computer Vision.
Ulyanov, D.; Vedaldi, A.; and Lempitsky, V. 2016. Instance
normalization: The missing ingredient for fast stylization.
arXiv:1607.08022.
Wang, L.-W.; Liu, Z.-S.; Siu, W.-C.; and Lun, D. P. 2020.
Lightening network for low-light image enhancement. IEEE
Transactions on Image Processing, 29: 7984–7996.
Wang, R.; Xu, X.; Fu, C.-W.; Lu, J.; Yu, B.; and Jia, J.
2021. Seeing dynamic scene in the dark: A high-quality
video dataset with mechatronic alignment. In Proc. of Inter-
national Conference on Computer Vision.
Wang, R.; Zhang, Q.; Fu, C.-W.; Shen, X.; Zheng, W.-S.;
and Jia, J. 2019a. Underexposed photo enhancement using
deep illumination estimation. In Proc. of Computer Vision
and Pattern Recognition.
Wang, X.; Girshick, R.; Gupta, A.; and He, K. 2018. Non-
local neural networks. In Proc. of Computer Vision and Pat-
tern Recognition.
Wang, Y.; Cao, Y.; Zha, Z.-J.; Zhang, J.; Xiong, Z.; Zhang,
W.; and Wu, F. 2019b. Progressive retinex: Mutually rein-
forced illumination-noise perception network for low-light
image enhancement. In Proc. of ACM MM.
Wei, C.; Wang, W.; Yang, W.; and Liu, J. 2018. Deep
retinex decomposition for low-light enhancement. In Proc.
of British Machine Vision.
Wei, K.; Fu, Y.; Yang, J.; and Huang, H. 2020. A physics-
based noise formation model for extreme low-light raw de-
noising. In Proc. of Computer Vision and Pattern Recogni-
tion.
Xu, K.; Yang, X.; Yin, B.; and Lau, R. W. 2020. Learn-
ing to restore low-light images via decomposition-and-
enhancement. In Proc. of Computer Vision and Pattern
Recognition.
Yang, W.; Wang, S.; Fang, Y.; Wang, Y.; and Liu, J. 2020.
From fidelity to perceptual quality: A semi-supervised ap-
proach for low-light image enhancement. In Proc. of Com-
puter Vision and Pattern Recognition.
Yang, W.; Wang, S.; Fang, Y.; Wang, Y.; and Liu, J. 2021a.
Band representation-based semi-supervised low-light image
enhancement: Bridging the gap between signal fidelity and

perceptual quality. IEEE Transactions on Image Processing,
30: 3461–3473.
Yang, W.; Wang, W.; Huang, H.; Wang, S.; and Liu, J.
2021b. Sparse gradient regularized deep retinex network for
robust low-light image enhancement. IEEE Transactions on
Image Processing, 30: 2072–2086.
Yu, R.; Liu, W.; Zhang, Y.; Qu, Z.; Zhao, D.; and Zhang,
B. 2018. DeepExposure: Learning to expose photos with
asynchronously reinforced adversarial learning. In Proc. of
Advances in Neural Information Processing Systems.
Zhang, F.; Li, Y.; You, S.; and Fu, Y. 2021a. Learning tempo-
ral consistency for low light video enhancement from single
images. In Proc. of Computer Vision and Pattern Recogni-
tion.
Zhang, L.; Zhang, L.; Liu, X.; Shen, Y.; Zhang, S.; and Zhao,
S. 2019. Zero-shot restoration of back-lit images using deep
internal learning. In Proc. of ACM MM.
Zhang, X.; Zhou, X.; Lin, M.; and Sun, J. 2018. Shuf-
fleNet: An extremely efficient convolutional neural network
for mobile devices. In Proc. of Computer Vision and Pattern
Recognition.
Zhang, Y.; Guo, X.; Ma, J.; Liu, W.; and Zhang, J. 2021b.
Beyond brightening low-light images. International Journal
of Computer Vision, 129(4): 1013–1037.
Zhang, Y.; Zhang, J.; and Guo, X. 2019. Kindling the dark-
ness: A practical low-light image enhancer. In Proc. of ACM
MM.
Zhao, Z.; Xiong, B.; Wang, L.; Ou, Q.; Yu, L.; and Kuang,
F. 2021. RetinexDIP: A unified deep framework for low-
light image enhancement. IEEE Transactions on Circuits
and Systems for Video Technology, 32(3): 1076–1088.
Zheng, C.; Shi, D.; and Shi, W. 2021. Adaptive unfolding
total variation network for low-light image enhancement. In
Proc. of International Conference on Computer Vision.
Zhou, C.; Teng, M.; Han, Y.; Xu, C.; and Shi, B. 2021.
Learning to dehaze with polarization. In Proc. of Advances
in Neural Information Processing Systems.
Zhu, A.; Zhang, L.; Shen, Y.; Ma, Y.; Zhao, S.; and Zhou,
Y. 2020a. Zero-shot restoration of underexposed images via
robust retinex decomposition. In Proc. of International Con-
ference on Multimedia and Expo.
Zhu, M.; Pan, P.; Chen, W.; and Yang, Y. 2020b. EEMEFN:
Low-light image enhancement via edge-enhanced multi-
exposure fusion network. In Proc. of the AAAI Conference
on Artificial Intelligence.



Supplementary Material
Polarization-Aware Low-Light Image Enhancement

Chu Zhou1, Minggui Teng2, Youwei Lyu3, Si Li3, Chao Xu1, Boxin Shi2*

1Key Laboratory of Machine Perception (MOE), School of Intelligence Science and Technology, Peking University
2National Engineering Research Center of Visual Technology, School of Computer Science, Peking University

3School of Artificial Intelligence, Beijing University of Posts and Telecommunications

Details of the Simulation Experiment about
the Average Error Rates

In this section, we provide details of the simulation exper-
iment about the average error rates, corresponding to Foot-
note 4 of the paper.

First, we take the polarized images captured with a long
exposure time in the PLIE dataset as the ground truth
normal-light images Iα1,2,3,4 . Then, according to Eq. (6) of
the paper, we simulate the process of generating the corre-
sponding low-light images Îα1,2,3,4

(γ) using

Îαi
(γ) =

{
1
γ Iαi

+Ni if γ > 1

Iαi
if γ = 1

(i = 1, 2, 3, 4),

where γ is a linear scaling factor denoting the image irra-
diacne reduction caused by decreasing the exposure time or
scene radiance, and Ni = N ( 1γ Iαi

) is a noise term (we
adopt the same settings as Lv, Li, and Lu (2021)). We gen-
erate Îαi

(γ) with 10 different γ (γ ∈ [1, 10] and γ ∈ Z+),
and compute the average error rates of the polarized images,
AoP, DoP, and Stokes parameters for each γ. Finally, we get
the relationships between the average error rates and γ, as
shown in Fig. 1 (c) of the paper.

More Information about the PLIE Dataset
In this section, we provide more information about the PLIE
dataset, corresponding to Footnote 5 of the paper.

First, we use a Lucid Vision Phoenix polarization cam-
era to capture 130 different indoor scenes with variant ob-
jects, materials, and scene depths as the data source to make
the PLIE dataset (some of the source images are shown
in Fig. 6). Each scene is captured twice, with a short ex-
posure time tshort (as the low-light one) and a long expo-
sure time tlong = 10tshort (as the normal-light one). Note
that we should not choose a very large linear scaling fac-
tor (e.g., γ = 30) like other single-image low-light en-
hancement datasets, since the DoP and AoP could be al-
ready significantly degenerated when γ = 10; and if γ is
too large, the polarization information could be too lacking.
In each capture, the camera outputs four spatially-aligned

*Corresponding author: shiboxin@pku.edu.cn
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 6: A gallery showing some example scenes of the
PLIE dataset.

and temporally-synchronized polarized images with differ-
ent polarizer angles α1,2,3,4 = 0◦, 45◦, 90◦, 135◦. For keep-
ing the camera untouched to avoid misalignment caused by
camera motion during the capturing procedure, we place the
camera on a sturdy tripod and use software to change the ex-
posure time. The original spatial resolution of the captured
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Figure 7: Additional visual quality comparisons (part 1) on the PLIE dataset among our method, IPLNet (Hu et al. 2020),
EnlightenGAN (Jiang et al. 2021), UTVNet (Zheng, Shi, and Shi 2021), and Zero-DCE (Guo et al. 2020). Quantitative results
evaluated using PSNR (P) and SSIM (S) are displayed below each image.

PSNR-p SSIM-p PSNR-θ SSIM-θ PSNR-S0 SSIM-S0

Ours 5.41 0.11 2.44 0.08 2.81 0.01
IPLNet (Hu et al. 2020) 4.31 0.08 2.63 0.10 6.35 0.04
EnlightenGAN (Jiang et al. 2021) 4.73 0.11 1.65 0.04 4.85 0.04
UTVNet (Zheng, Shi, and Shi 2021) 4.97 0.11 2.78 0.09 4.02 0.09
Zero-DCE (Guo et al. 2020) 5.47 0.15 1.31 0.03 4.39 0.04

Table 3: The standard deviations of the quantitative evaluation results on the PLIE dataset among our method, IPLNet (Hu et al.
2020), EnlightenGAN (Jiang et al. 2021), UTVNet (Zheng, Shi, and Shi 2021), and Zero-DCE (Guo et al. 2020).

polarized images is 1224 × 1024, and we crop the images
in the middle to discard dark corners caused by vignetting
effect so that the spatial resolution becomes 1024× 1024.

Then, we randomly split the data source into two parts
that contain 100 and 30 scenes for making the training and
test sets respectively. When making the training set, we crop
each 1024× 1024 source image in the middle to obtain four
512 × 512 images, and perform data augmentation (e.g.,
random cropping, flipping, and rotating) on them, so that
we have 6000 different 256 × 256 images for training. The
process of making the test set is similar to the one of mak-
ing the training set, while in which we do not perform data
augmentation so that the spatial resolution of test images is
512× 512.

Additional Visual Quality Comparisons on the
PLIE Dataset

In this section, we provide additional visual quality com-
parisons on the PLIE dataset among our method, IPLNet

(Hu et al. 2020), (the only existing method designed for
enhancing polarized low-light images as far as we know),
and three state-of-the-art single-image low-light enhance-
ment methods including EnlightenGAN (Jiang et al. 2021),
UTVNet (Zheng, Shi, and Shi 2021), and Zero-DCE (Guo
et al. 2020), as shown in Fig. 7 and Fig. 8, corresponding to
Footnote 7 of the paper.

The Standard Deviations
In this section, we provide the standard deviations of the
quantitative evaluation results on the PLIE dataset among
our method, IPLNet (Hu et al. 2020), EnlightenGAN (Jiang
et al. 2021), UTVNet (Zheng, Shi, and Shi 2021), and Zero-
DCE (Guo et al. 2020), as shown in Tab. 3.

Additional Results of the Applications of
Polarization-Based Vision

In this section, we provide additional results of the appli-
cations of polarization-based vision, including reflection re-
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Figure 8: Additional visual quality comparisons (part 2) on the PLIE dataset among our method, IPLNet (Hu et al. 2020),
EnlightenGAN (Jiang et al. 2021), UTVNet (Zheng, Shi, and Shi 2021), and Zero-DCE (Guo et al. 2020). Quantitative results
evaluated using PSNR (P) and SSIM (S) are displayed below each image.

moval (using PRRPAW (Lei et al. 2020)) and shape from po-
larization (using DP3I (Deschaintre, Lin, and Ghosh 2021)),
as shown in Fig. 9 and Fig. 10 respectively, corresponding
to Footnote 9 and Footnote 10 of the paper respectively.
Note that for shape from polarization, we do not have the
ground truth normal maps for these two objects, instead we
provide the normal maps estimated from normal-light po-
larized images as references without computing quantitative
metrics. From Fig. 9 we can see that our method can im-

prove the performance of reflection removal both quantita-
tively and qualitatively, and outperforms IPLNet (Hu et al.
2020) consistently. Although from Fig. 10 we cannot quanti-
tatively tell how many degrees of mean angular error (MAE)
the enhanced normal maps decrease, it is obvious that the
estimated normal maps after enhancement are cleaner and
smoother by a large margin (note that these two objects
both have smooth surfaces), while IPLNet (Hu et al. 2020)
brings negative effects since it generates over-smooth DoP
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Figure 9: Additional results of reflection removal (using PRRPAW (Lei et al. 2020)) before and after enhancement by our
method and IPLNet (Hu et al. 2020). Quantitative results evaluated using PSNR (P) and SSIM (S) are displayed below each
image. Please zoom-in for better details.
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Figure 10: Additional results of shape from polarization (using DP3I (Deschaintre, Lin, and Ghosh 2021)) before and after
enhancement by our method and IPLNet (Hu et al. 2020). Please zoom-in for better details.

and AoP, leading to degenerated normal maps.
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