
SpecTRe-GS: Modeling Highly Specular Surfaces with Reflected Nearby Objects

by Tracing Rays in 3D Gaussian Splatting

Jiajun Tang1,2 Fan Fei1,2 Zhihao Li3 Xiao Tang3 Shiyong Liu3

Youyu Chen4 Binxiao Huang5 Zhenyu Chen3 Xiaofei Wu3 Boxin Shi1,2#

1State Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University
2National Engineering Research Center of Visual Technology, School of Computer Science, Peking University

3Huawei Noah’s Ark Lab 4Harbin Institute of Technology 5University of Hong Kong

Ground Truth Ours 3DGS-DR GShader 3iGS GOF 3DGS

PSNR: 23.36 PSNR: 20.90 PSNR: 20.65 PSNR: 21.41 PSNR: 20.87 PSNR: 21.13

Figure 1. Our SpecTRe-GS effectively captures the appearance of reflectors with highly specular surfaces, even in the presence of nearby

objects. In the real-world scene shown above, it performs favorably against previous methods [13, 15, 30, 39, 42], both visually (as the

highlighted reflections within the insets) and quantitatively (with PSNR values within the reflective region annotated in the corners).

Abstract

3D Gaussian Splatting (3DGS), a recently emerged multi-

view 3D reconstruction technique, has shown significant

advantages in real-time rendering and explicit editing.

However, 3DGS encounters challenges in the accurate mod-

eling of both high-frequency view-dependent appearances

and global illumination effects, including inter-reflection.

This paper introduces SpecTRe-GS, which addresses these

challenges and models highly Specular surfaces that re-

flect nearby objects through Tracing Rays in 3D Gaussian

Splatting. SpecTRe-GS separately models reflections from

highly specular and rough surfaces to leverage the distinc-

tions between their reflective properties and integrates an

efficient ray tracer within the 3DGS framework for querying

secondary rays, thus achieving fast and accurate rendering.

Also, it incorporates normal prior guidance and joint geom-

etry optimization at various stages of the training process

to enhance geometry reconstruction for undistorted reflec-

tions. Experiments on both synthetic and real-world scenes

demonstrate the superiority of SpecTRe-GS compared to ex-

isting 3DGS-based methods in capturing highly specular

inter-reflections and also showcase its editing applications.

The work was done during an internship in Huawei.
#Corresponding author. E-mail: shiboxin@pku.edu.cn.

1. Introduction

Recently, 3D Gaussian Splatting (3DGS) [15] has emerged

as an innovative paradigm for multi-view 3D recon-

struction. Unlike its predecessor, neural radiance fields

(NeRF) [23], 3DGS adopts an explicit point-based scene

representation with tile-based rasterization rather than re-

lying on ray casting through an implicit neural field for

rendering. This transition endows 3DGS with significant

advantages in terms of real-time rendering speed and al-

lows for convenient post-reconstruction editing. Neverthe-

less, challenges arise when the scene to be reconstructed

includes highly specular (i.e., mirror-like) surfaces which

exhibit strong and high-frequency view-dependent appear-

ances. The original 3DGS struggles to accurately model

such high-frequency reflections, as it utilizes per-Gaussian

third-order spherical harmonics (SH) to represent view-

dependent appearances. This approach is restricted to low-

frequency radiance variations in angular space and is sus-

ceptible to overfitting when the training views that observe

the Gaussian are not sufficiently dense [17, 37].

To address this issue, a natural strategy is to adopt

a physically-based shading model and optimize reflective

properties for each Gaussian [2, 7, 8, 10, 11, 13, 18, 29, 35,

36, 39, 40, 43, 47], rather than merely recording the out-



going radiance. This strategy enables the computation of

reflected radiance by evaluating the physically constrained

rendering equation [14], taking into account local scene

components including geometry, material properties, and

incident lighting, thereby yielding more accurate, realistic,

and reliable view-dependent effects. Among the three lo-

cal scene components, addressing local incident lighting is

perhaps the most intricate. Adopting a suboptimal approach

to addressing local incident lighting may undermine global

illumination effects such as inter-reflections, resulting in an

unrealistic scene appearance. Notably, this issue is particu-

larly pronounced in scenes characterized by highly specular

surfaces; for instance, the absence of reflections of nearby

objects would be especially noticeable. Therefore, it is cru-

cial for methods aimed at modeling such high-frequency

view-dependent appearances through the rendering equa-

tion to carefully address local incident lighting.

Unfortunately, effectively acquiring local incident light-

ing poses a substantial challenge for 3DGS-based methods.

The advantages of 3DGS come with a trade-off: The exclu-

sive reliance on the tile-based rasterizer limits its ability to

efficiently render secondary rays emanating from vastly dif-

ferent origins towards arbitrary directions, which is essen-

tial for querying local incident lighting. As a compromise, a

majority of methods neglect secondary effects [36, 39, 47]

or periodically bake secondary effects including local oc-

clusions [8, 40] and incident radiance [18, 29] as low-order

SH stored in Gaussians or probes. However, low-order

SH can only capture low-frequency variations in incident

lighting, and the requirement of baking not only incurs ad-

ditional storage costs but also hinders post-reconstruction

editing, such as inserting or deleting nearby objects or re-

lighting. Employing screen space ray tracing (SSRT) [2]

produces high-frequency but incomplete inter-reflections as

SSRT struggles to trace out-of-screen and occluded rays.

We propose SpecTRe-GS to model highly Specular sur-

faces with reflected nearby objects through Tracing Rays

in the 3D space within the Gaussian Splatting framework,

overcoming the aforementioned challenges. We first made

the observation that, although highly specular surfaces ex-

hibit reflections that can be extremely high-frequency and

thus hard to capture using SH color or neural network, they

are also favorable for modeling in the sense that the specular

lobe of their bidirectional reflectance distribution functions

(BRDF) are highly concentrated. This fact facilitates the

evaluation of the rendering equation [14] on these surfaces

because tracing only a few secondary rays already suffices,

in contrast to rougher surfaces with more scattered specular

lobes. To make use of this fact, we separately model highly

specular and rough surfaces, ray-tracing the appearance of

the former while retaining the low-order SH color to well-

approximate the latter, significantly reducing the amount

of secondary rays to trace. To further speed up the time-

consuming ray tracing process, we implement a ray tracer

within the 3DGS framework, inspired by the recent pro-

gresses [24, 42]. We also propose a training strategy to

enhance the scene geometry reconstruction, the quality of

which directly decides the quality of the reconstructed re-

flection. To summarize, our contributions are as follows:

• proposing a shading model tailored for indirect mirror re-

flections combined with an efficient ray tracer for fast and

accurate rendering;

• designing a training strategy to enhance geometry recon-

struction for precise incident direction computing; and

• achieving state-of-the-art novel view synthesis results on

scenes with highly specular reflections (shown in Fig. 1).

2. Related Work

Improving view-dependent appearances in 3DGS. The

original 3DGS [15] uses low-order SH color that captures

only low-frequency angular variations, a limitation that

many follow-up methods were trying to address (see Tab. 1).

While a few methods [30, 35] (row 2) adopt neural net-

works to decode local features, the majority [2, 8, 10, 13,

18, 29, 36, 39, 40, 47] (rows 3-8) employ the physically-

based rendering equation [14]. This equation offers the

most accurate approach for modeling view-dependent ap-

pearances but requires explicit modeling of surface nor-

mals, BRDFs, and the most demanding component – in-

cident lighting. The rendering equation can accommo-

date all-frequency BRDFs; thus, the frequency of the re-

flected radiance is now bounded by that of the modeled

incident lighting. While an environment map suffices to

model direct lighting, it is significantly more challenging to

model indirect lighting responsible for global illumination

effects including occlusions and inter-reflections. Some

methods circumvent this issue by ignoring secondary ef-

fects [36] (row 3) or by using a residual color [13] (row 4).

For methods that explicitly model indirect lighting, a com-

mon strategy is to periodically bake occlusions [8] or inter-

reflections [18, 29] into low-order SH, thereby limiting their

incident radiance to low-frequency variations (rows 5-7).

GI-GS [2] (row 8) uses screen space ray tracing to simu-

late high-frequency inter-reflections; however, it only mod-

els those whose sources are directly visible in the viewport.

There are also specialized methods for plane mirrors that

reflect the point cloud or camera about the plane [19, 22].

Our SpecTRe-GS traces the incident lighting in 3D space,

thus is able to render high-frequency and complete inter-

reflections for highly specular surfaces with convex shapes.

Ray-based 3D Gaussian rendering. It is noteworthy that

tracing secondary rays for incoming local lighting has al-

most become a common practice in recent NeRF-based

methods that explicitly model specular reflections or inter-

reflections [9, 20, 32, 33, 45]. However, it is challenging

to achieve this in 3DGS-based frameworks. 3DGRT [24]



Table 1. We summarize works improving the view-dependent appearances upon 3DGS [15] based on: How do they model the view-

dependent appearances (i.e., the outgoing radiance) and the supported frequency in angular space; how do they accommodate the global

illumination effects (i.e., the local incident lighting) including occlusions and inter-reflections and the supported frequency in angular

space; and whether is it feasible to edit the scene appearance under (in)direct lighting after reconstruction without any re-baking.

Method
View-dependent Appearance Global Illumination Effect Editable

AppearanceModeling Frequency Occlusion Inter-reflection Frequency

(1) 3DGS [15] Low-order SH Low Jointly baked in outgoing SH color Low None

(2) 3iGS [30]; [35] Neural network Net.-bounded Jointly baked in the neural feature Net.-bounded None

(3) DeferredGS [36]

Physically-
based

rendering
equation [14]

Arbitrary,
thus

bounded
by the

frequency
of

incident
lighting

Ignored None

Direct

(4) GShader [13]; [39] Jointly baked in outgoing SH residual

Low
(5) GS-ID [8]; [40]

Baked as SH
Ignored

(6) GS-IR [18]; [10] Baked as SH

(7) GIR [29] Ray-traced in 3D space Baked as SH

(8) GI-GS [2] Ray-traced in screen space, incomplete High (In)direct

(9) Ours Ray-traced in 3D space High (In)direct

first demonstrates efficient ray tracing in 3D Gaussians,

enabling ray-based lighting effects such as non-projective

views. RayGauss [1] and EVER [21] employ ray sampling

in 3D Gaussians, mitigating common artifacts in 3DGS,

such as aliasing [41], popping artifacts [27] and projection

errors [12]. Yang et al. [46] adopt path tracing to simulate

global illumination with Gaussian primitives. Meanwhile,

Jorge et al. [4] utilizes ray sampling to simulate volumetric

scattering and emissive media. Our SpecTRe-GS integrates

ray tracing techniques to evaluate accurate incident radiance

in the 3DGS framework at an affordable cost.

3. Proposed Method

Our method is specifically designed to accurately model

the high-frequency reflections of highly specular surfaces.

We build upon the recent advancements in 3DGS (Sec. 3.1)

and adapt the reflection model to efficiently handle scenes

comprising both highly specular objects and rougher ob-

jects (Sec. 3.2). To precisely and reliably query the inci-

dent radiance necessary for rendering both direct and indi-

rect highly specular reflections, we incorporate ray tracing

within the 3DGS framework (Sec. 3.3). We employ a dedi-

cated training strategy to enhance geometry reconstruction,

which is crucial for rendering undistorted and realistic re-

flections (Sec. 3.4). Our pipeline is outlined in Fig. 2.

3.1. Preliminary

The seminal work of 3DGS [15] represents the scene as

a translucent Gaussian point cloud, where each 3D Gaus-

sian is described with central point µ ∈ R
3, scales s ∈

R
3, rotation quaternion q ∈ R

4, and opacity σ ∈ [0, 1].
The distribution of each Gaussian in 3D space is given

by G(x) = e−
1

2
(x−µ)⊤Σ

−1(x−µ), where the covariance

Σ = RSS
⊤
R

⊤ is compactly parameterized as s and q.

By performing local affine transformation [48], 3D Gaus-

sians are projected as 2D Gaussians on the image plane for

rasterization. Then for each ray corresponding to an image

pixel, the contributing 2D Gaussians are accumulated from

front to back for volumetric rendering:

I(ωo) =
∑

i ci(ωo)αi

∏i−1
j=1(1− αj), (1)

where αi = σiGi and the view-dependent color ci(ωo) ∈
R

3 is modeled by third-order SH coefficients φi ∈ R
48.

Besides the view-dependent color ci, many other opti-

mizable attributes including surface normal, diffuse albedo,

or occlusion information, can be attached to each Gaussian.

These attributes can be used locally in each Gaussian, or be

accumulated to a map in the same way as Eq. (1) for later

applications such as deferred shading [39].

3.2. Highly Specular Reflection Modeling

To model high-frequency reflections, we follow the con-

vention to incorporate the physically-based rendering equa-

tion [14]. As commonly observed phenomena in real-

world life, the inter-reflections from the nearby objects on

highly specular surfaces should be modeled for a photore-

alistic scene appearance. The common practice with dis-

tant environment maps [13] ignores such inter-reflections

and does not suffice for this task, thus we employ ray-

tracing (detailed in Sec. 3.3) in 3D space for a complete

and high-frequency inter-reflection. However, we found

that performing ray tracing on the entire scene, including

highly specular surfaces and rougher surfaces, is highly

time-consuming. Evaluating the rendering equation [14] on

rougher surfaces typically needs larger samples of the inci-

dent lighting even with multiple importance sampling [31],

thus heavily increases the computational cost. Fortunately,

previous works [15] have proven that rough surfaces can

be well-captured by directly optimizing the outgoing color.

Therefore, we propose the following reflection model that

treats highly specular surfaces and rougher surfaces sepa-
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Figure 2. Overview of the SpecTRe-GS pipeline. The scene is represented as a Gaussian point cloud, where each Gaussian is associated

with geometry and shading attributes used to render the depth map D, normal map N , diffuse reflection Idiff , specular reflectance Aspec,

and rough surface reflection Irs through splatting (Sec. 3.1). Highly specular surface reflection Iss is formulated as the sum of the diffuse

reflection Idiff and the specular reflection computed from the incident radiance Ii and specular reflectance Aspec (Sec. 3.2). The incident

radiance Ii is determined along reflected secondary rays given by the scene geometry D and N , with the indirect component Iind and

visibility Vi evaluated via efficient ray tracing within the Gaussian point cloud, and the direct component Idir modeled by an optimizable

environment map (Sec. 3.3). The scene geometry is enhanced using normal prior guidance, numerical gradients from ray-traced incident

radiance, and other training signals to achieve undistorted reflections (Sec. 3.4).

rately to enhance the specular reflections while maintaining

the rendering speed. Also, we follow deferred shading [5] to

shade for each pixel instead of each Gaussian, as it reduces

the computation and gives sharp surface normals [47].

Modeling highly specular surfaces. To model surfaces

that may exhibit both highly specular and diffuse reflec-

tions, such as polished marble, we define the reflection Iss
for these highly specular surfaces at surface point x, ob-

served from view direction ωo as follows:

Iss(x,ωo) = Idiff(x) + Ispec(x,ωo). (2)

While the diffuse reflection Idiff is the view-independent

outgoing radiance directly optimized as d in each Gaussian,

the specular reflection Ispec is approximated with an ideal

mirror reflection:

Ispec(x,ωo) = Aspec(x,ωr)Ii(x,ωr), (3)

where the reflected incident direction ωr is given by ωo −
2ω⊤

o n ·n in which n denotes the local surface normal, and

Aspec is the specular reflectance considering Fresnel effects

through Schlick’s approximation [28]1:

Aspec(x,ωr) = F0(x) + (1− F0(x))(1− n⊤ωr)
5. (4)

Here, F0 is the specular reflectance at normal incidence op-

timized as f0 in each Gaussian and is 3-channel to support

metallic materials. The incident radiance Ii in ωr originates

1We omit the distribution and mask-shadowing term in the microfacet

model as we assume ideal mirror reflection.

from both direct and indirect sources:

Ii(x,ωr) = Vi(x,ωr)Idir(ωr) + (1− Vi(x,ωr))Iind(x,ωr),

(5)

where Vi ∈ [0, 1] quantifies the proportion of the incident

lighting occluded by the scene itself, Idir is the direct inci-

dent lighting from a distant environment map, and Iind is

the indirect incident radiance from the scene.

Defining depth and surface normal of Gaussians. It is

essential to accurately acquire the depth and surface normal

of each Gaussian in our method, as they directly determine

the origin and direction of the reflection. However, they

are ambiguous because the Gaussians are translucent ellip-

soids in 3D space. Instead of treating the depth of the pro-

jected center and the shortest axis direction facing the cam-

era as the depth and normal of each Gaussian [13, 17, 39],

we adopt the formulation in GOF [42] to calculate for each

Gaussian the “intersection point” along the ray achieving

the maximum response, using its depth and normal of the

intersection plane. This formulation gives a better and more

consistent geometry reconstruction with 3D Gaussians.

Modeling the whole image. We model the part of the scene

containing highly specular surfaces using Eq. (2). For the

other part which exhibits only low-frequency view depen-

dencies, we follow GOF [42] to model the appearance Irs
of the rougher surfaces using per-Gaussian SH coefficients

φ. We combine Iss and Irs using a binary mask M (which

can be handily acquired through pre-trained segmentation

models such as SAM [16]) specifying the highly specular



surfaces within the scene (⊙ is pixel-wise multiplication):

I(ωo) = Iss(ωo)⊙M + Irs(ωo)⊙ (1−M). (6)

3.3. Efficient Ray Tracing for Incident Radiance

To accurately compute the reflection from highly specular

surfaces, it is crucial to obtain the incident radiance at the

reflected view direction as modeled by Eq. (5), which in-

corporates both direct and indirect lighting. However, due

to the incoherent origins and directions of these secondary

rays, the incident radiance cannot be efficiently rendered us-

ing the rasterizer from the original 3DGS [15], as it relies on

the locality of the rays, nor can it be computed merely us-

ing an environment map, which considers only direct light-

ing [13]. Inspired by the recent work 3DGRT [24], we im-

plement an efficient ray tracer within the 3DGS framework

to compute the radiance of secondary rays, thus achieving

high-frequency and accurate reflections.

Geometry acceleration structure (GAS). For fast scene

traversal, we construct a GAS within the OptiX program-

ming interface [25], which uses ray tracing hardware to ac-

celerate ray-primitive intersection tests and is several times

faster than BVH [3] in CUDA. Instead of using axis-aligned

bounding boxes which inefficiently encapsulate irregular

Gaussians and lead to false positives, we adopt stretched

icosahedrons as proxy meshes for more efficient ray inter-

section [24]. The vertex j of the icosahedron approximating

Gaussian i is given by:

vi,j =
√

2 log (σi/αmin)R
⊤

i S
⊤

i v
unit
j + µi, (7)

where vunit
j is the vertex of an inscribed icosahedron in a

unit sphere. Here, αmin serves as a threshold that adaptively

scales each icosahedron by dictating the minimal contribu-

tion of the Gaussian at the transformed vertices, thereby re-

ducing the computational overhead during intersection and

radiance evaluation. We regularly update the GAS after

each densification operation [15] and every nup step as the

Gaussian point cloud changes along the training.

Ray queries with GAS. To evaluate the incident radiance

Iind(x0,ωr), secondary rays x(t) = x0 + tωr are traced

against proxy meshes within the GAS. Upon tracing each

ray, we first collect the k closest valid hits, each correspond-

ing to a Gaussian with αi ≥ αmin. The depth of the “true”

intersection point for each Gaussian is defined as:

tmax,i =
(µi − x0)

⊤
Σ

−1
i ωr

ω⊤
r Σ

−1
i ωr

, (8)

which maximizes the Gaussian’s contribution σiGi(x0 +
tmax,iωr). We then sort the Gaussians by their depth and

update the ray depth Dind, visibility (i.e., transmittance) Vi,

and color Iind (using the Gaussians’ outgoing SH colors as-

suming that they model rough surfaces), following Eq. (1).

The above process is repeated after advancing the ray ori-

gin until no more valid hits remain or the ray transmittance

drops below a threshold. For the transmittance that remains

unoccluded by the reconstructed scene itself, we adopt an

optimizable environment map for calculating the direct in-

cident radiance Idir(ω). According to Eq. (5), the final in-

cident radiance Ii(x,ωr) combines direct and indirect com-

ponents, weighted by visibility Vi(x,ω).
Thanks to the efficient and hardware-accelerated ray

tracing techniques elaborated above, as well as our separate

modeling of highly specular and rough surfaces, the average

rendering time of our method is only 50% to 100% slower

than that of a pure rasterizer on each of our test scenes. This

varies according to the density of objects in the scene and

the proportion of highly specular surfaces.

3.4. Training

We propose a training strategy that especially focuses on

enhancing the geometry reconstruction, as unfaithful scene

geometry induces inaccurate secondary rays and results in

distorted reflections. We optimize our model from an initial

sparse point cloud using the following loss terms:

L = Lc+λdLd+λdnLdn+λsmLsm+λnLn+λrLr, (9)

where Lc is a color reconstruction loss [15] differentiable

to the geometry, Ld and Ldn are the distortion and depth-

normal consistency loss used in GOF [42], Lsm is an edge-

aware smoothness term for the normal and specular re-

flectance for the highly specular surfaces, Ln is a normal

prior term to employ data-driven clues, and Lr is a residual-

suppressing term for progressive learning. This section de-

scribes these terms and more details are in the supplement.

Normal prior guidance. To tackle the challenging prob-

lem of reconstructing geometry for highly specular objects,

we employ StableNormal [38] to provide monocular normal

priors N̂ , offering initial geometric constraints:

Ln = 1/|N |
∑

||(N̂ −N)⊙M ||1. (10)

Joint geometry optimization. Recognizing potential in-

accuracies and inconsistencies across views in the normal

prior, we concurrently optimize the scene geometry during

training. This is achieved by differentiating the incident ra-

diance Ii, which relates to the final image through Eq. (2)

and Eq. (3), with respect to the scene geometry. Computing

the gradient of the direct incident radiance Idir is straight-

forward. To compute the gradient of the indirect incident

radiance Iind concerning the local surface normal n, we

adopt a simple yet effective finite difference method to nu-

merically evaluate the gradient of Iind with respect to the

reflected direction ω that depends on n:

∂Iind
∂ωi

∣

∣

∣

∣

ω0

≈
Iind(x,ω0 +∆i

ω
)− Iind(x,ω0 −∆i

ω
)

2∆i
ω

, (11)

where ∆i
ω

denotes the perturbation of the i-th dimension in

ω. Considering that using the same perturbation for sec-



Table 2. Quantitative comparisons of novel view synthesis results with state-of-the-art methods on both synthetic and real-world scenes.

We report the scores of PSNR, SSIM [34], and LPIPS [44] for entire images and within reflective regions. ↑ (↓) means higher (lower) is

better. We mark the best and the second best results in each column.

Data Synthetic (entire image) Synthetic (reflective) Real-world (entire image) Real-world (reflective)

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

3DGS [15] 27.71 0.910 0.131 21.51 0.940 0.078 24.82 0.823 0.227 21.31 0.965 0.047

GOF [42] 27.97 0.917 0.117 21.38 0.940 0.076 24.86 0.826 0.219 21.25 0.963 0.047

GOF* [42] 27.57 0.913 0.125 20.67 0.936 0.085 24.69 0.825 0.223 20.44 0.962 0.051

3iGS [30] 28.58 0.912 0.125 21.98 0.939 0.076 24.37 0.809 0.233 21.22 0.963 0.048

GShader [13] 26.65 0.888 0.160 20.79 0.935 0.086 23.93 0.810 0.255 20.23 0.963 0.053

GShader* [13] 27.14 0.894 0.153 21.22 0.938 0.084 24.03 0.812 0.253 20.36 0.964 0.053

3DGS-DR [39] 27.62 0.890 0.173 21.57 0.938 0.085 24.79 0.824 0.243 21.18 0.965 0.050

3DGS-DR* [39] 26.97 0.883 0.182 21.18 0.936 0.088 24.60 0.823 0.251 20.38 0.964 0.055

Ours 29.41 0.922 0.109 23.28 0.949 0.062 25.11 0.828 0.213 22.77 0.967 0.035

ondary rays with different depths Dind leads to different

amounts of intersection movements, making the numerical

gradient less accurate, we use a depth-aware ray perturba-

tion that adjusts to Dind for more informative gradients:

∆i
ω
= θd max(min(Dind/D0, σ

max
d ), σmin

d ), (12)

where θd and D0 define a reference angular perturbation

and σmin
d and σmax

d ensure numerical stability. For com-

putational efficiency, we disregard the gradient with respect

to the point position p, as we find reflections are distorted

mainly due to normal errors. We detach visibility Vind and

depth Dind because the sparsity of the visibility gradient

and abrupt changes in depth damage numerical stability.

Progressive learning. As training progresses, monocular

normal priors may hinder the accurate geometry reconstruc-

tion, thus we gradually decay the weight of normal prior

guidance λn, letting gradients from physics-based rendering

take over the fine-tuning of scene geometry. Besides, for

smoother training and consequently better reconstruction

within the reflective regions, we replace the hard mask M
used in Eq. (6) with a relaxed version 1 − Ir rendered with

another per-Gaussian attribute r ∈ [0, 1] using Eq. (1). We

encourage the reflective region to be modeled with highly

specular reflections by suppressing the residual within M :

Lr = 1/|M |
∑

||Ir ⊙M ||1. (13)

4. Experiments

In this section, we compare our method on both synthetic

and real-world scenes (Sec. 4.2) against state-of-the-art

methods (Sec. 4.3). We also perform ablation studies to val-

idate the key components of our method (Sec. 4.4) and ex-

plore applications in scene editing (Sec. 4.5). Please check

the supplementary material for more implementation de-

tails, data creation details, and experimental results.

4.1. Implementation Details

We implement our method in PyTorch [26] with CUDA ker-

nels for rasterization based on GOF [42] and custom OptiX

programs for ray tracing. We conduct all experiments on a

GPU with 24 GB VRAM, 83 shader core TFLOPS, and 191

ray tracing core TFLOPS. We set λsm = 0.5, λr = 1.0, and

λn = 0.5, exponentially decaying to 0.0025 from 4k to 10k

iterations. We use r = 0.9 as the initialization. For other

hyperparameters, we use the settings in GOF [42].

4.2. Datasets

Synthetic scenes. We build 6 synthetic scenes, each con-

taining multiple surrounding objects and a highly specu-

lar surface with distinctive properties: HELMET, MAR-

BLETABLE, VASE, POT, TOASTER, and MIRROR. For each

scene, we use the Blender Cycles engine [6] to render about

300 images of resolution 1024 × 1024, of which 2/3 are

used for training and the rest are left for testing.

Real-world scenes. For real-world validation, we capture

two scenes: REALBOWL and REALPOT, consisting of 138

and 139 images of resolution 1440 × 1080 respectively,

with every eighth image reserved in the test set.

4.3. Comparison

Comparing methods. We compare our method with

5 open-source state-of-the-art methods: the original

3DGS [15]; GOF [42] which focus on geometry recon-

struction with 3D Gaussians; 3iGS [30] which improves

view-dependent effects through neural features; and 3DGS-

DR [39] and GShader [13] which are adapted for specu-

lar reflection employing physically-based rendering (PBR).

For a fair comparison, we provide GOF [42], 3DGS-

DR [39], and GShader [13] with the normal prior guidance,

and indicate these versions by “ ∗ ” throughout this paper.

Evaluation protocol. We report peak signal-to-noise ratio

(PSNR), structural similarity index measure (SSIM) [34],

and learned perceptual image patch similarity (LPIPS) [44]

measured on both entire images and reflective regions.

Quantitative evaluation. As shown in Tab. 2, our method

outperforms comparing methods on both synthetic and real-

world scenes, especially in reflective regions. It is worth

noting that using normal prior guidance usually leads to

degradation of GOF [42] which relies solely on SH color, as

it suppresses the ability to simulate high-frequency appear-
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Figure 3. Novel view synthesis comparison on synthetic scenes. We evaluate SpecTRe-GS against relevant 3DGS-based methods modeling

view-dependent appearances: 3DGS-DR [39], GShader [13], 3iGS [30], GOF [42], and 3DGS [15]. The insets highlight the improvement

of SpecTRe-GS in rendering high-frequency specular reflections, showcasing the precise positioning of reflected content and sharp details.
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Figure 4. Novel view synthesis and image decomposition results on synthetic scenes, comparing our SpecTRe-GS with 3DGS-DR [39]

and GShader [13]. SpecTRe-GS better distinguishes diffuse and specular components in reflective regions, with the least baked-in view-

dependent appearance in diffuse components. The masks of reflective regions are shown as insets in the reference image.

ances through false geometry. In contrast, the influence of

this guidance on 3DGS-DR [39] and GShader [13] is two-

fold: It facilitates the reconstruction of appearance under

direct lighting, but also prevents these methods from imitat-

ing specular inter-reflections by faking geometry.

Qualitative evaluation. In visual comparisons, we show

results of GOF [42], GShader* [13], and 3DGS-DR [39] as

they are variants with higher qualities. As shown in Fig. 3,

our method performs better than the baseline methods for

both planar reflectors (rows 1-2) and curved reflectors (row

3), capturing clean, accurate, and high-frequency specular

reflections. Our method also surpasses baseline methods in

real-world scenes, as shown in Fig. 1. By visualizing the

separate components of PBR-based methods in Fig. 4, we

find that incident radiance modeling for both direct and indi-

rect sources is vital for physically meaningful scene appear-

ance decomposition. Otherwise, to fit the overall color in

training images, indirect incident radiance is heavily baked

into the diffuse component (row 1 for 3DGS-DR [39] and

row 3 for GShader [13]). The baked-in incident radiance

loses high-frequency details and prevents realistic scene

editing in a physically-accurate manner. It should be noted
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Figure 5. Our reconstruction results on two real-world scenes.

SpecTRe-GS accurately reconstructs the geometry of highly spec-

ular surfaces alongside the reflection of nearby objects.

that 3DGS-DR [39] performs better than GShader [13] in

reconstructing the direct part of incident radiance from the

environment, showing the superiority of surface-based de-

ferred shading over volumetric rendering in PBR model-

ing of high-frequency reflections. Our method, with well-

optimized geometry and consequent accurate incident ra-

diance modeling, achieves satisfactory novel view synthe-

sis of specular reflection on both synthetic and real-world

scenes, as also indicated in Fig. 5.

4.4. Ablation Study

On a subset of our synthetic scenes, we validate the fol-

lowing key component of our method: (1) Normal prior

guidance; (2) Joint geometry optimization from incident

lighting; (3) ray-traced Indirect incident radiance; (4)

Progressive learning; and (5) Depth-aware ray perturbation.

The results are shown in Tab. 3. Our full method (Ours)

achieves the highest scores, confirming the effectiveness of

our method designs. Without the initial normal prior guid-

ance (Ours w/o N.), the optimization process is prone to be

trapped into local minima far away from the true underneath

geometry of the reflective region. On the other hand, only

relying on normal priors without further joint optimiza-

tion for fine-tuning geometry (Ours w/o J.) also fails in re-

constructing accurate geometry for physically-based high-

frequency reflections. As discussed above, using only direct

incident lighting modeling (Ours w/o I.) leads to baked-in

indirect incident lighting and damages the quality of high-

frequency components. The progressive learning scheme

(Ours w/o P.) and depth-aware ray perturbation (Ours w/o

D.) also further helps to faithfully reconstruct the scene.

4.5. Applications

Our Gaussian point cloud representation with explicit ge-

ometry, material, and incident lighting facilitates various

Table 3. Ablation study with variants of our proposed method

excluding: Normal prior guidance, Joint geometry optimization,

Indirect incident lighting modeling, Progressive learning, and

Depth-aware ray perturbation. ↑ (↓) means higher (lower) is better.

Method

Entire Image Reflective Region

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Ours w/o N. 26.70 0.885 0.149 19.80 0.913 0.094

Ours w/o J. 26.37 0.878 0.154 19.52 0.907 0.100

Ours w/o I. 28.49 0.905 0.130 22.19 0.935 0.074

Ours w/o P. 29.26 0.910 0.118 23.16 0.940 0.062

Ours w/o D. 29.75 0.914 0.114 23.88 0.944 0.056

Ours 29.90 0.914 0.112 24.05 0.944 0.056

Object InsertionObject DeletionRelighting Material Editing

Figure 6. Our explicit representation of geometry, material, and

incident lighting in the Gaussian point cloud enables various edit-

ing applications. Insets have been brightened for clarity.

editing applications. As illustrated in Fig. 6, specular ob-

jects of interest can be faithfully captured as assets in the

presence of unwanted reflections from nearby objects, en-

abling further usages such as relighting (column 1) and ma-

terial editing (column 4). We can also manipulate the scene

geometry such as deletion (column 2) and insertion (column

3), with specular inter-reflections adjusted accordingly.

5. Conclusion

We introduce SpecTRe-GS to model highly specular sur-

faces with inter-reflections, distinguished by its separate

modeling of specular and rough surfaces, the efficient ray

tracer, and a geometry-enhancing training strategy for fast

and accurate specular inter-reflection rendering.

Limitations. We only model specular inter-reflections from

rough surfaces to avoid multi-bounce path tracing, and we

only trace one secondary ray for each pixel in the reflective

region, approximating the specular reflection with an ideal

mirror. Also, the monocular normal prior may fail in the ex-

istence of strong semantic ambiguity (such as mirrors with

hidden borders), making our geometry fail to initialize.
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In this supplementary material, we provide additional

implementation details for SpecTRe-GS (Sec. 6), the cre-

ation details of synthetic and real-world data (Sec. 7),

and further qualitative/quantitative results and experimental

analyses (Sec. 8). The videos on the project page1 showcase

qualitative view interpolation and scene editing results.

6. Additional Implementation Details

6.1. Implementation of Ray Tracing

The ray tracer described in Sec. 3.3 in the main paper is

implemented in OptiX 7 [7] and integrated into the 3DGS

framework with the PyOptiX package as the Python bind-

ings for the OptiX host API. According to the OptiX 7 spec-

ification, the OptiX pipeline consists of user-programmable

entry points (programs) for different stages in ray tracing,

we implement ray tracing in the Gaussians point cloud with

custom ray-gen and any-hit programs:

• we initialize ray origin and direction, set and read the per-

ray payloads, evaluate responses of Gaussians, and aggre-

gate the volumetric radiance in the ray-gen program;

• we calculate the precise hit point of the mesh-bounded

Gaussians and store the hit information into the per-ray

buffer in the any-hit program.

The programs are described in Proc. 1 and Proc. 2. In our

implementation, we construct a max heap of size k = 256
to store the closest hits with the complexity of O(N log k),
where N is the total number of hits.

6.2. Alignment of Rasteriazion and Ray Tracing

We align the radiance aggregation process of our ray tracer

to that of the rasterizer. We use the rasterizer in GOF [14] as

GOF calculates the maximum response of Gaussians along

the rays. However, GOF still uses projected center depths

to sort Gaussians in volumetric rendering. Therefore, we

deliberately calculate projected depths as thit,i in our ray

tracer and use thit,i instead of tmax,i for the ordering in

Eq. (1). We also use the same ray termination threshold

The work was done during an internship in Huawei.
#Corresponding author. E-mail: shiboxin@pku.edu.cn.

1https://spectre-gs.github.io/

of remaining transmittance Tmin = 0.001 and max num-

ber of contributing Gaussians Kmax = 256 for our raster-

izer and ray tracer. This reduces the discrepancy between

the rendered appearances of the same Gaussian point cloud

by these two renderers, which would cause the inconsis-

tency between the directly observed appearance of objects

and their appearance through a highly specular surface.

Procedure 1: Ray-gen Program

Input: ray origin o, ray direction d, GAS handleH,

Gaussians {Gi}, min transmittance Tmin,

min contribution αmin, hit buffer size k, min

ray distance tnear, max ray distance tfar
Output: ray incident radiance Iind, ray visibility Vi,

ray depth Dind

1 Iind ← (0, 0, 0);
2 Vi ← 1;

3 Dind ← 0;

4 tcurr ← tnear;
5 while tcurr < tfar and Vi > Tmin do

6 c← 0;

7 B ← buffer(k);
8 setPayload(B, c);
9 traceRay(H,o+ tcurrd,d, k);

10 B, c← getPayload();
11 if c = 0 then

12 terminateRay();
13 end

14 B ← sort(B);
15 for (thit, i) in B do

16 tmax, αhit ← response(µi, si, qi,o,d);
17 if αhit > αmin then

18 ci = SH(φi,d);
19 Iind ← Iind + αhitVici;

20 Dind ← Dind + αhitVitmax;

21 Vi ← (1− αhit)Vi;

22 end

23 tcurr ← thit;

24 end

25 end

https://spectre-gs.github.io/


Procedure 2: Any-hit Program

Input: ray origin o, ray direction d, Gaussians

{Gi}, hitted primitive index i, hit buffer B,

hit buffer size k, hit count c
Output: in-place modified hit buffer B, hit count c

1 thit ← projectDepth(µi,o,d);
2 h← (thit, i);
3 if c = k then

4 hmax ← B.popMax();
5 else

6 hmax ← (+∞,−1));
7 c← c+ 1;

8 end

9 hnew ← findCloser(hmax, h);
10 B.insert(hnew);

6.3. Training Details

During training, we use the same color reconstruction loss

as commonly adopted in 3DGS-based methods [5]:

Lc = 0.8 ·
1

|IGT|

∑

||IGT − I||1 − 0.2 · SSIM(IGT, I),

(14)

and we also apply this loss to Iss in later training steps

(>15k iterations) to encourage physics-based modeling of

highly reflective regions.

We follow Eq. (1) to compute the mean depth of con-

tributing Gaussians as the surface depth, instead of the

depth of the “median” Gaussian in GOF [14], which we

find is generally more noisy and inefficient in utilizing gra-

dient signals. In the first 4k steps, we only rely on SH color

modeling to quickly get a rough geometry initialization and

low-frequency view-dependent radiance modeling.

Since the Fresnel reflectance is calculated from approx-

imation (Eq. (4)), we detach ∂Aspec/∂n and clip Aspec as

min(Aspec, 10F0) to ensure numerical stability.

We only run StableNormal [12] once for all scenes and

save the estimated normals as monocular normal priors.

6.4. Tone Mapping

Our method operates in linear color space as required

by physically-based rendering. We assume the gamma-

corrected sRGB space of γ = 2.2 is usually used in the in-

put images, which is closer to human perception. Thus, we

can convert the images into linear color space by inversely

applying the gamma correction. We convert our results back

to the commonly adopted gamma-corrected sRGB space

with γ = 2.2 prior to visualization or the computation of

photometric losses and error metrics.

7. Data Creation Details

7.1. Synthetic Scenes

We collect 6 synthetic scenes using the Blender Cy-

cles engine [3]: HELMET, MARBLETABLE, VASE, POT,

TOASTER, and MIRROR, as described in Sec. 4.2 in the

main paper. We show example images of each scene in

Tab. 4 and Tab. 5 of this document.

7.2. Real-world Scenes

For real-world scenes, we use a hand-held iPhone 15 Pro

and the “ProCam” app to take raw images with a linear

camera response. We fix the white balance, focal length,

exposure time, and ISO for all images in the same scene.

We register the camera poses using COLMAP [8, 9] with

SuperPoint [2] for feature extraction and LightGlue [6] for

matching. After obtaining the captured raw images of the

scene, we use a custom image signal processor (ISP) to pro-

cess the raw image by, e.g., demosaicking, white balancing,

transforming color space, and most importantly, applying a

tone mapping with γ = 2.2 to let the processed images sat-

isfy our assumption of availability of linear space images.

We resize the images to 1440 × 1080 and remove the out-

of-focus background regions. The highly reflective regions

are manually marked. By doing so, we collect 2 real-world

scenes: REALBOWL and REALPOT. We show example im-

ages of each scene in Tab. 5 of this document.

8. Additional Results

8.1. Results with Varying Roughness

Our method is designed for perfect mirror reflections. Nev-

ertheless, the inclusion of a low-frequency component gives

it the ability to model rougher surfaces to some extent.

Fig. 7 shows its results on the HELMET scene with vary-

ing roughness, from highly smooth (ρ = 0.05) to medium

rough (ρ = 0.3). For each roughness value, we show

the rendered image and the ground truth image in a test

view, alongside the decomposition of specular component

AspecIi ⊙ (1 − Ir) and low-frequency component Idiff ⊙
(1 − Ir) + Irs ⊙ Ir, expanded according to the modeling

in Sec. 3.2 and soft mask Ir in Sec. 3.4. As the roughness

increases, while direct specular reflections can be approx-

imated by blurred environment maps, indirect specular re-

flections in the lower half of the helmet are mimicked by

brighter Irs with lower Aspec values.

8.2. Geometry Representation

As shown in Fig. 8, our method can better capture the pla-

nar surface in MARBLETABLE scene with most points well

aligned to the object, benefitting from our normal prior

guidance and joint optimization of incident radiance and ge-

ometry. Without accurate geometry optimization and inci-
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Figure 7. As surface roughness increases, our method attributes more proportion of the scene appearance to low-frequency reflection

instead of perfect mirror reflection.

dent radiance reconstruction, other methods tend to fit high-

frequency view-dependent specular reflection with high-

frequency floaters.

8.3. Qualitative Ablation Results

Fig. 9 shows the results of the ablated variants of our

method mentioned in Sec. 4.4 in the same view as Fig. 4.

When the monocular normal prior guidance is absent dur-

ing early training stages (Ours w/o N.), the training loss

terms tend to overemphasize color reconstruction fidelity

in observed images, causing the scene representation to

converge to local minima with geometry deviating from

ground truth in highly specular regions (as shown by the

translucent artifacts on the left side of the helmet in col-

umn 1, indicating incomplete underlying geometric recon-

struction). Conversely, when relying solely on monocular

normal priors without subsequent joint optimization to re-

fine scene geometry (Ours w/o J.), the inherent inaccuracies

and multi-view inconsistencies in monocular normal pre-

dictions prevent the reconstruction of precise geometry re-

quired for physics-based high-frequency reflection model-

ing (evidenced by the missing high-frequency details in the

reflections on the helmet surface, as depicted in column 2).

As previously discussed regarding physics-based rendering

approaches, modeling only direct illumination (Ours w/o

I.) leads to indirect lighting effects being baked into either

SH color representations or diffuse albedo, thereby com-

promising high-frequency component quality (manifested

as missing high-frequency details and ghosting artifacts in

the lower helmet region due to inter-reflections, shown in

column 3). The progressive learning scheme (Ours w/o

P.) and depth-aware ray perturbation (Ours w/o D.) also

significantly contribute to faithful reconstruction of view-

dependent high-frequency specular reflections.

8.4. Alignment of Rendering Methods

We analyze the consistency of rendering results from our

rasterizer and ray tracer on the STUMP scene of the Mip-

NeRF 360 dataset [1], which is a prerequisite for accurately

evaluating indirect incident radiance. We show the rendered

images and the corresponding PSNR scores of each ren-

derer in Fig. 10, accompanied by the error map visualiza-
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Figure 8. Visualization of the point cloud reconstructed by comparing methods [4, 5, 10, 13, 14]. Ours more faithfully captures the

underlying geometry of reflective regions, while other methods disrupt their geometry to imitate highly specular reflections.
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Figure 9. Qualitative ablation results with variants of our proposed method excluding: Normal prior guidance, Joint geometry optimization,

Indirect incident lighting modeling, Progressive learning, and Depth-aware ray perturbation.
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Figure 10. Rasterized and ray-traced results in our proposed

method are highly consistent, which ensures accurate indirect in-

cident radiance queries from the Gaussian point cloud shared by

our rasterizer and ray tracer.

tion. The rendering results from those two renderers in our

pipeline remain highly consistent, as indicated by the incon-

spicuous visual difference, the close PSNR scores, and the

colors in the error map.

8.5. More Quantitative Results

We show detailed quantitative results on each scene

in Tab. 4 and Tab. 5 of this document. In general,

our SpecTRe-GS consistently outperforms most compared

methods on both synthetic scenes and real-world scenes, es-

pecially within reflective regions.

8.6. More Qualitative Results

We show additional qualitative comparisons with the base-

line methods2 on each scene in Fig. 11-14 of this document.

For each scene, we show comprehensive visual comparison

results from multiple test views.

2We show results of GShader* for all scenes, 3DGS-DR* for HELMET

scene as their better performance indicated by quantitative evaluations.

We provide videos of view interpolation results as at-

tached files on the project page. Compared with baseline

methods, our method gives more view-consistent render-

ings of high-frequency reflection, which better respects the

geometry of the highly reflective surfaces. In addition, we

provide videos of the scene editing results.



Table 4. Quantitative comparison results with state-of-the-art methods on each of the 4 synthetic scenes (HELMET, MARBLETABLE, VASE,

and POT). We show example images and the dataset splits of each scene in the leftmost column. We report the scores of PSNR, SSIM [11],

and LPIPS [15] for entire images and within reflective regions. We mark the best and the second best results in each column. ↑ (↓) means

higher (lower) is better.

Scene Method

Entire Image Reflective Region

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

HELMET 3DGS [5] 27.92 0.881 0.157 21.62 0.918 0.090

(train: 201, test:100) GOF [14] 28.28 0.893 0.130 21.62 0.918 0.086

GOF* [14] 27.15 0.887 0.145 20.28 0.912 0.100

3iGS [10] 28.33 0.883 0.152 22.06 0.919 0.088

GShader [4] 25.80 0.836 0.204 20.72 0.913 0.098

GShader* [4] 26.51 0.846 0.196 21.28 0.915 0.097

3DGS-DR [13] 26.32 0.841 0.233 20.76 0.914 0.098

3DGS-DR* [13] 27.15 0.845 0.226 22.36 0.927 0.083

Ours 29.90 0.914 0.112 24.05 0.944 0.056

MARBLETABLE 3DGS [5] 22.41 0.858 0.197 20.10 0.889 0.142

(train: 233, test:123) GOF [14] 23.59 0.873 0.177 19.77 0.889 0.137

GOF* [14] 24.14 0.870 0.187 19.71 0.884 0.150

3iGS [10] 24.42 0.865 0.184 20.09 0.880 0.145

GShader [4] 24.28 0.856 0.209 20.65 0.878 0.160

GShader* [4] 24.89 0.865 0.198 21.27 0.886 0.152

3DGS-DR [13] 25.37 0.857 0.223 22.02 0.882 0.164

3DGS-DR* [13] 22.51 0.837 0.239 19.63 0.866 0.180

Ours 26.89 0.875 0.183 22.38 0.890 0.142

VASE 3DGS [5] 33.16 0.944 0.093 26.42 0.975 0.042

(train: 201, test:100) GOF [14] 33.28 0.948 0.083 26.36 0.975 0.040

GOF* [14] 32.72 0.945 0.087 25.32 0.973 0.045

3iGS [10] 33.02 0.943 0.091 26.60 0.975 0.042

GShader [4] 30.33 0.912 0.129 25.14 0.973 0.046

GShader* [4] 30.79 0.919 0.121 25.44 0.973 0.046

3DGS-DR [13] 31.35 0.914 0.149 25.86 0.973 0.046

3DGS-DR* [13] 30.94 0.912 0.152 25.10 0.971 0.049

Ours 33.14 0.949 0.076 27.20 0.982 0.027

POT 3DGS [5] 29.88 0.923 0.096 23.50 0.945 0.062

(train: 201, test:100) GOF [14] 29.71 0.921 0.093 23.41 0.943 0.058

GOF* [14] 29.04 0.919 0.105 22.22 0.940 0.071

3iGS [10] 31.13 0.928 0.090 23.88 0.947 0.059

GShader [4] 29.37 0.913 0.116 22.53 0.942 0.068

GShader* [4] 29.53 0.915 0.114 22.86 0.943 0.066

3DGS-DR [13] 30.22 0.917 0.115 23.34 0.944 0.066

3DGS-DR* [13] 28.87 0.909 0.125 22.23 0.940 0.074

Ours 30.30 0.933 0.075 24.79 0.959 0.035



Table 5. Quantitative comparison results with state-of-the-art methods on each of the 2 synthetic scenes (TOASTER and MIRROR) and 2

real-world scenes (REALBOWL, and REALPOT). We show example images and the dataset splits of each scene in the leftmost column.

We report the scores of PSNR, SSIM [11], and LPIPS [15] for entire images and within reflective regions. We mark the best and the

second best results in each column. ↑ (↓) means higher (lower) is better.

Scene Method

Entire Image Reflective Region

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

TOASTER 3DGS [5] 26.26 0.914 0.123 18.77 0.951 0.060

(train: 201, test:100) GOF [14] 26.34 0.924 0.103 18.74 0.951 0.060

GOF* [14] 25.61 0.918 0.115 17.99 0.945 0.070

3iGS [10] 26.71 0.914 0.120 19.34 0.951 0.056

GShader [4] 25.51 0.897 0.146 18.16 0.944 0.070

GShader* [4] 26.07 0.900 0.143 18.77 0.946 0.068

3DGS-DR [13] 25.68 0.885 0.175 18.42 0.949 0.064

3DGS-DR* [13] 25.97 0.871 0.199 18.95 0.947 0.069

Ours 27.73 0.918 0.115 20.39 0.953 0.062

MIRROR 3DGS [5] 26.65 0.938 0.120 18.65 0.963 0.072

(train: 201, test:100) GOF [14] 26.65 0.941 0.112 18.37 0.962 0.074

GOF* [14] 26.74 0.941 0.113 18.52 0.963 0.074

3iGS [10] 27.86 0.939 0.115 19.90 0.964 0.067

GShader [4] 24.61 0.913 0.156 17.52 0.961 0.075

GShader* [4] 25.02 0.917 0.149 17.71 0.962 0.074

3DGS-DR [13] 26.77 0.924 0.145 19.04 0.964 0.069

3DGS-DR* [13] 26.40 0.920 0.152 18.83 0.963 0.075

Ours 28.64 0.938 0.097 20.66 0.963 0.056

REALBOWL 3DGS [5] 25.75 0.832 0.212 20.73 0.967 0.041

(train: 120, test:18) GOF [14] 25.79 0.835 0.202 20.71 0.966 0.039

GOF* [14] 25.59 0.834 0.205 19.81 0.965 0.043

3iGS [10] 25.34 0.819 0.216 20.80 0.967 0.040

GShader [4] 24.76 0.817 0.240 19.68 0.966 0.045

GShader* [4] 24.82 0.819 0.239 19.82 0.966 0.045

3DGS-DR [13] 25.66 0.832 0.227 20.58 0.967 0.042

3DGS-DR* [13] 25.48 0.830 0.236 19.86 0.966 0.045

Ours 26.16 0.839 0.195 22.84 0.973 0.026

REALPOT 3DGS [5] 23.89 0.814 0.245 21.89 0.962 0.056

(train: 121, test:18) GOF [14] 23.94 0.817 0.235 21.78 0.960 0.055

GOF* [14] 23.80 0.816 0.240 21.07 0.959 0.059

3iGS [10] 23.40 0.799 0.249 21.63 0.960 0.055

GShader [4] 23.11 0.802 0.271 20.77 0.960 0.061

GShader* [4] 23.23 0.806 0.267 20.89 0.961 0.060

3DGS-DR [13] 23.91 0.816 0.258 21.78 0.962 0.058

3DGS-DR* [13] 23.71 0.815 0.266 20.90 0.961 0.064

Ours 24.06 0.816 0.230 22.69 0.962 0.044
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Figure 11. Comparison with state-of-the-art methods on two synthetic scenes: HELMET and MARBLETABLE.
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Figure 12. Comparison with state-of-the-art methods on two synthetic scenes: VASE and POT.
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Figure 13. Comparison with state-of-the-art methods on two synthetic scenes: TOASTER and MIRROR.
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Figure 14. Comparison with state-of-the-art methods on two real-world scenes: REALBOWL and REALPOT.
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