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Abstract—Creating an image focal stack requires multiple shots, which captures images at different depths within the same scene.
Such methods are not suitable for scenes undergoing continuous changes. Achieving an all-in-focus image from a single shot poses
significant challenges, due to the highly ill-posed nature of rectifying defocus and deblurring from a single image. In this paper, to
restore an all-in-focus image, we introduce the neuromorphic focal stack, which is defined as neuromorphic signal streams captured by
an event/ a spike camera during a continuous focal sweep, aiming to restore an all-in-focus image. Given an RGB image focused at
any distance, we harness the high temporal resolution of neuromorphic signal streams. From neuromorphic signal streams, we
automatically select refocusing timestamps and reconstruct corresponding refocused images to form a focal stack. Guided by the
neuromorphic signal around the selected timestamps, we can merge the focal stack using proper weights and restore a sharp
all-in-focus image. We test our method on two distinct neuromorphic cameras. Experimental results from both synthetic and real
datasets demonstrate a marked improvement over existing state-of-the-art methods.

Index Terms—Neuromorphic Camera, All-in-focus Imaging, Hybrid Camera System.

1 INTRODUCTION

HE brightness of the image depends on how much

light the camera lens lets in through its aperture. A
larger aperture setting keeps a good balance between signal
and noise even with shorter exposure time. This is crucial
for taking pictures of fast-moving subjects or in low light
scenarios while reducing noise. However, larger aperture
also results in a shallow depth of field (DoF), causing parts
of the image to blur. This selective focus can be artistically
leveraged in instances like portrait photography, highlight-
ing the main subject against a blurry background. Yet, for
purposes like detailed microscopy imaging [30], it is often
desired to have the entire image in focus. An all-in-focus
image also benefits high-end vision tasks, including object
detection [35] and semantic segmentation [13].

Achieving an all-in-focus image by deblurring a de-
focused one is challenging. This is because the defocus
effect, influenced by the aperture shape and scene depth,
often changes across the image and is hard to be estimated
precisely [60]. Traditional methods [11], [17], [44] often work
in two stages. They first estimate the pixel-wise or patch-
wise defocus kernels with image priors and then apply
non-blind image deconvolution to each pixel or patch. A
paradigm shift is noted with contemporary end-to-end deep
learning methodologies [22], [38], [39], [47]. Powered by
large sets of training data, these methods learn from paired
defocused and sharp images and generally outperform the
older two-step methods. However, they have their limita-
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Figure 1: An example result of all-in-focus imaging guided
by neuromorphic signals. From a defocused image (a) and
its corresponding neuromorphic focal stack, our approach
produces an all-in-focus image that is aided with a neuro-
morphic focal stack formed with events (c) or spikes (d),
closely matching the clarity of the ground truth (b). In both
(c) and (d), the upper-left section shows the reconstructed
all-in-focus image, while the lower-right depicts the corre-
sponding event/spike frame.

tions. Sometimes, they still produce images with unwanted
visual effects, like ringing artifacts or lingering blur in high-
frequency zones, particularly when faced with regions that
are both weakly textured and heavily defocused.

To overcome the ill-posedness of estimating the defocus
kernel from a single image, merging a focal stack, i.e.,
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a sequence of images taken at different focus distances,
can generate an all-in-focus image reliably [14], [49], [59].
However, capturing a focal stack requires a static scene
and multiple exposures. Moreover, the selection of focus
distances is a key factor in capturing the focal stack, which
requires elaborate design.

Neuromorphic cameras, cutting-edge sensor innova-
tions, fall into two primary categories: differential-based [¢],
[43] and integral-based [16], distinguished by their signal
correlation with scene radiance. Differential-based, well-
known as event cameras [6], [43], detect brightness fluctua-
tions and initiate an event when the log difference surpasses
a predetermined threshold. Integral-based, well-known as
spike cameras [16], on the other hand, allow pixels to be
continuously exposed, triggering a spike signal once the
intensity accumulation crosses a preset threshold. Despite
their distinct formulations, both types own remarkable tem-
poral resolution, capturing near-continuous intensity varia-
tions of scenes. This enables the generation of high-speed
videos from neuromorphic signal streams [34], [50]-[52],
[55], [61], prompting us to contemplate: Can neuromorphic
streams, forming “focal stacks”, aid all-in-focus imaging?

In our prior work [29], we proposed the event focal stack
(EFS) approach to achieve all-in-focus imaging for the first
time. By implementing a focal sweep with the event camera,
we derived the EFS. Benefiting from the high-temporal
information available, we further enhanced the defocused
RGB image to broaden its DoF. However, an event signal
captures only intensity changes, leading to a lack of texture
information in areas with noticeable changes. As mentioned
above, another type of neuromorphic camera, the spike
camera, allows continuous exposure for each pixel. This
characteristic yields richer texture observations during the
focal sweep, as depicted in Figure 1 (the lower-right sections
of (c) and (d) underscore the superior texture detailing
of spike signals compared to event signals). Information
enhancement solutions for event signals have been success-
fully adapted to spike signals in a unified framework [9].
This revelation underscores the need to modify our original
method [29] to accommodate both neuromorphic camera
variants. The previous focal stack merging network tailored
to event signals [29] also has a limitation which demands a
fixed number of image inputs and subsequently caps the
size of the reconstructed image focal stack. The quantity
of input images also impacts the quality of the all-in-focus
image restoration.

In this paper, we introduce the neuromorphic focal stack
(NFS) concept for all-in-focus imaging, which operates on
both event and spike cameras. It is composed of neuro-
morphic signal (event/spike) streams obtained from a con-
tinuous focal sweep with a neuromorphic camera, which
can be used to reconstruct an image focal stack (given an
RGB image focused at an arbitrary distance) and predict the
merging weights for all-in-focus image recovery, as shown
in Figure 1. This paper extends [29] and makes the following
contributions:

o We reformulate the all-in-focus imaging pipeline to
incorporate neuromorphic cameras, covering both
event and spike cameras from the perspective of im-
age focal stack merging. Building upon this pipeline,
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we introduce a non-learning-based recovery method
by firmly establishing a connection between defo-
cused and all-in-focus images using neuromorphic
signals.

e We improve the previous EvMergeNet which
merged image focal stacks with a fixed number of
inputs, to the updated NeuroMergeNet, which can
manage arbitrary image inputs by forecasting initial
weights for each image, and subsequently convert-
ing these preliminary weights into final merging
weights.

e We propose a unified data-driven framework de-
signed to capitalize high-speed temporal information
within neuromorphic signals (either spike or event)
for mitigating RGB image defocus.

We quantitatively and qualitatively evaluate our method
on both synthetic and real datasets and demonstrate its
superior quality in recovering all-in-focus images over state-
of-the-art methods.

2 RELATED WORK

In this section, we briefly review all-in-focus image recov-
ery methods in two categories: image-based methods and
computational photography methods. The inputs for image-
based methods are obtained using conventional cameras
with a single shot, while computational photography meth-
ods use a specific capture pipeline or unconventional lenses
or sensors. The neuromorphic-based video reconstruction
methods, which are partially related to image focal stack
generation from neuromorphic signals, are also reviewed.

Image-based methods. Conventional defocus deblurring
methods [11], [17], [44] usually contain two steps: estimating
the defocus map and applying non-blind deconvolution
for deblurring. The quality of deblurred results highly de-
pends on the accuracy of the defocus map. To boost the
performance of defocus map estimation, Park ef al. [33]
fused multi-scale image features and hand-crafted features
to improve the accuracy of the defocus map. Lee et al. [21]
proposed a domain adaptation method to transfer features
of a synthetic defocused image to the real blurred one for
reconstructing a more realistic defocus map. Zhao et al. [57]
proposed an adversarial promoting learning framework to
estimate defocus maps in a weakly-supervised manner.

To avoid the reliance on defocus map estimation in
two-step approaches, recent end-to-end defocus deblurring
networks have demonstrated higher robustness and perfor-
mance. Lee et al. [22] proposed an Iterative Filter Adaptive
Network (IFAN) to handle spatially-varying and large de-
focus blur via predicting filters for defocused features. Son
et al. [47] proposed a Kernel-sharing Parallel Atrous Convo-
lutional (KPAC) block to handle defocus blur with slightly
varying shapes, which simulates the varying scales of in-
verse kernels. Ruan et al. [38] proposed a neural network
trained on both light field generated and real defocused
images to enhance the defocus deblurring performance.
However, it is hard to recover the high-frequency regions
from the defocused image, and the artifacts become obvious
when applying deconvolution on a single defocus image.
Thus, it is desirable to obtain all-in-focus images using a
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more robust method, which can record the continuous scene
and depth information.

Computational photography methods. Computational
photography based defocus deblurring methods utilize
specific capture pipelines (e.g., focal stack [14], [59], fo-
cal sweep [20]) or unconventional lens (e.g., coded aper-
ture [23], wavefront coding [8], lattice lens [24]) to relieve
the ill-posedness of defocus deblurring. Recently, Abuolaim
et al. [1], [2] have illustrated that the difference between the
two views of a dual-pixel image is related to the defocus
amount and can be utilized to further improve the defocus
deblurring performance. Although additionally useful cues
for all-in-focus image recovery (than single image-based
methods) have been encoded and decoded via various
computational photography systems, existing methods still
do not use continuous scene depth information, due to
limitations from frame-based cameras.

Neuromorphic-based video reconstruction. Since neuro-
morphic sensors do not directly output image frames, all-in-
focus imaging from neuromorphic cameras requires trans-
lating neuromorphic data to the domain of images. Many
methods aim to reconstruct latent images that produced
by neuromorphic signals for human perception, including
event-based methods and spike-based methods.

Image reconstruction from events is an ill-posed prob-
lem, as events only record differential information of the
scene. Reconstructing intensity frames from events can
be achieved using hand-crafted features and regulariza-
tion [31], [42]. More recent approaches adopt end-to-end
generation methods to make use of prior knowledge. Re-
becq et al. [34] synthesized video frames with a U-Net-like
E2VID model. Weng et al. [53] presented a hybrid CNN-
transformer network for intensity frame reconstruction. Zhu
et al. [62] proposed a bio-inspired SNN to improve the image
reconstruction quality. Gantier Cadena et al. [12] exploited
the sparsity of event data to improve the computational
efficiency of image reconstruction.

The sensors of spike cameras trigger spikes whenever ac-
cumulated photons reach a threshold. Hence, spike streams
encode the scene intensity. Zhu et al. [61] proposed the meth-
ods “Texture From Inter-spike-intervals (TFI)” and “Texture
From Playback (TFP)” to reconstruct intensity images from
spike streams. In these algorithms, the temporal window
sizes for reconstruction need to be carefully selected, as
short windows lead to strong noise, and long windows
cause motion blur. Zhao et al. [55] proposed using a neural
network with hierarchical architecture to exploit the tempo-
ral correlation of the spike streams. Inspired by the short-
term plasticity mechanism of the brain, Zheng et al. [58]
proposed the “Texture From Motion-Dependent Short-Term
Plasticity (TFMDSTP)” algorithm, which distinguishes mov-
ing and stationary regions to improve reconstruction perfor-
mance.

Inspired by the ability of neuromorphic streams to cap-
ture continuous intensity changes and to reconstruct high-
frame-rate videos, this paper explores how to perform focal
sweeps with two types of neuromorphic cameras (either
event or spike cameras) to conquer the bottlenecks of ex-
isting all-in-focus image recovery methods.

3 PROPOSED METHOD

In this section, we first introduce the neuromorphic camera
formation preliminaries in Section 3.1. We then formulate
the neuromorphic focal stack and our model for reconstruct-
ing refocused images in Section 3.2, and propose our general
all-in-focus imaging framework in Section 3.3, and further
introduce the data-driven-based method in Section 3.4 and
Section 3.5. Our implementation details are illustrated in
Section 3.6.

3.1

A neuromorphic camera operates on a fundamentally differ-
ent principle compared to traditional frame-based cameras.
We outline the formation models for both event camera and
spike cameras as follows.

Neuromorphic camera formulation preliminaries

Event formulation. An event signal e = (z,y,t,p) with
polarity p is triggered whenever the log irradiance changes
at pixel (z,y) at time ¢, exceeding a preset threshold c:

‘ log(Izz,y) - log(I:tr,_yAt)l > G,

M
where I, | and I{ 2! represent the pixel irradiance at coor-

dinates (r,y) at times ¢ and t — At, respectively. And the
previous event of pixel (z,y) is triggered at ¢t — At. Polarity
p € {1, —1} indicates whether the intensity changes increase
or decrease. Equation (1) applies to each pixel (z,y) inde-
pendently, so pixel indices are omitted in the subsequent
discussion. Given that the event signal detects intensity
changes, most events predominantly manifest along object
boundaries, as illustrated in the fourth row of Figure 2.

As events record continuous intensity changes, given
two instantaneous latent images I and I?2, assume there
are N, events occurring between t; and ¢3, denoted as
{er}pe,. According to the physical model of the event
camera shown in Equation (1), we can bridge I'* and I2
with corresponding events in log domain as:

N,

logI? = logI'* 4 Z Ck * Dk,
k=1

@)

where ¢; denotes the spatial-temporal variant threshold,
related to the scene condition [15].

Spike formulation. A spike signal s = (x,y,t) is triggered
when the accumulated light intensity exceeds the preset
thresholds ¢:

to

Agy(t)dt = ¢, ®)

t1

in which A, , () represents the incoming light intensity at
pixel location (z,y) in the time interval [t1,?2]. Upon the
triggering of a spike signal, the accumulated intensity is
reset. Equation (3) is also applicable to each pixel (z,y)
independently; therefore pixel indices are omitted hence-
forth. As illustrated in the fifth row of Figure 2, there
is a clear proportionality between the number of spikes
and scene radiance, consistent with Equation (3). Besides,
spike cameras trigger denser signals than event cameras,
particularly in areas with few texture changes.
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Figure 2: An illustration (from top to bottom rows) of image
focal stack [59], focal sweep [20], and neuromorphic focal
stack. When focus distance sweeps from near to far, each
method captures information at different depths, as shown
below the scene. Note that NFS (event/spike) continuously
records the intensity changes and encodes texture informa-
tion from all depths to which the camera focuses.

For latent image reconstruction, assume there are IV
spike occurring between t; and ty, denoted as {si}n",.
According the image formation model in Equation (3), the
latent image I, can be reconstructed with an exposure time
f at any timestamp ¢ € [t1, to] as follows [61]:

> P,

te€[Ie+f/2,1:—f/2]

I = (4)

where ¢}, denotes the spatial-temporal variant threshold like
the event camera.

Both events and spikes detect and record scene infor-
mation using discrete signal streams, offering the potential
to reconstruct images at high frame rates. Compared with
frame-based cameras, neuromorphic cameras can capture
more continuous scene information with a higher frame
rate. This allows for neuromorphic camera applications in
high-speed photography, such as motion deblurring and
high-frame-rate video generation. As mentioned before,
capturing a focal stack demands a high-speed camera, and
it further drives our motivation to utilize neuromorphic
cameras for this purpose.

3.2 Neuromorphic focal stack

As the Thin Lens Law 1/f = 1/u + 1/v shows (f is the
focal length of the lens, u is the sensor-lens distance, and v
is the object distance), we can change u or v to move the
focal plane. Conventional image focal stack methods [14],
[59] capture a set of images {I%}"¢ with different focus
distances (shown in second row of Figure 2) and then
merge them with proper weights W to obtain an all-in-focus
image, i.e.,

Ng
= S W, e T, 6

4

To generate an all-in-focus image, every object must have
a corresponding in-focus image within the focal stack. As
illustrated in the second row of Figure 2, the blue cuboid
is not focused in any image of the captured focal stack,
and further leads to defocus blur in the restored image.
To avoid losing scene focus information in the desired
depth range, the focal sweep technique [20] changes the
sensor-lens distance in the exposure time, and captures an
integrated defocused image, which can be seen as an all-
in-focus image convolved with an integrated Point Spread
Function (PSF), denoted as IPSF:
T
IPSF(r, u) = / PSE(r, u, v(t))dt, ®)
0

in which r represents the distance of an image point from
the center of the PSF, v(¢) denotes the sensor-lens distance as
a function of time, and T is the exposure time. Kuthirummal
et al. [20] have proved that IPSF(r, u) is invariant to scene
depth and image location to simplify the problem analysis.
As the final output is a single defocused image (shown in
third row of Figure 2), they also need to estimate the blur
kernel and then deconvolve images, which is still an ill-
posed problem.

Due to the exposure interval of conventional cameras,
they cannot record high-speed changes in a scene with high
fidelity, something at which neuromorphic cameras excel.
Therefore, this observation inspired us to apply focal sweep
to a neuromorphic camera. In fact, applying the focal sweep
technique to a neuromorphic camera is quite simple. We
just need to rotate the focusing ring of its lens.' Since the
neuromorphic camera owns high temporal resolution, it
outputs high-frame-rate event/spike streams that capture
the pixel radiance changes as the focal plane sweeps through
the scene. We call the event/spike streams during the focal
sweep process as a neuromorphic focal stack (NFS), denoted

Ne
Uuylentrs, (event),

as \V:
N = )
{ Uu(t){sk}llc\[:sl (spike),

where u(t) € (0,00) denotes the focused object distance
as a function of time that transforms from nearly 0 to
infinity. NFS has two important advantages over image-
based focal stack (fourth and fifth row of Figure 2): 1) It
continuously records the intensity changes with respect to
focus distance compared with a discrete set of images [59];
2) texture information at different depths is distinguished
by the neuromorphic signal timestamps, while focal sweep
method integrates the depth information [20] and only
outputs a single image.

@)

Given an image I% focused at an arbitrary distance d;,
as Equation (2) and Equation (4) show, a refocused image
I% can be reconstructed by corresponding events/spikes.
For the event-based method, we can rewrite Equation (2) to
connect the refocused images as:

u(ty)€(d;,di)
= C(I7 - RO T),

) d. d;
1% = C(I;7 - exp( k), Ig)
8)

1. Focal sweep setup can be found in the supplementary material.
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Figure 3: An illustration of our general neuromorphic-guided all-in-focus imaging pipeline. We propose the neuromorphic
focal stack composed of event/spike streams, which can be used to reconstruct an image focal stack and predict the merging
weights for all-in-focus image recovery. Our pipeline consists of three steps: (a) selecting the refocusing timestamps, (b)
reconstructing the corresponding image focal stack, and (c) merging the stack into an all-in-focus image with weights
predicted from the images and adjacent neuromorphic signals.

in which I denote the refocused images, whose focused
object distances are d;, and R% i is the intensity resid-
ual computed from event summation in exponential space.
Igj and Igﬁ denotes the image intensity and image color
channels, respectively, while C(-) is the color compensation
operator. And for the spike-based method, we can rewrite
Equation (4) to generate refocused images as:

> oIy
u(tr)€eU(d;)
= C(Gdt’ Iab )’

I% = C(

)

where G represents spike integration within the focal dis-
tance in the neighbourhood of d;, i.e., U(d;) = (d; —0,d; +9).

By iteratively applying Equation (8) or Equation (9), we
can obtain the image focal stack {I%}4, consisting of Ny
refocused images. As shown in Equation (5), combining the
image focal stack with proper weights, an all-in-focus image
can be recovered from the refocused image focal stack; thus
we can obtain an all-in-focus image from the NFS and an
arbitrarily focused image as inputs. Thus, the critical com-
ponents of all-in-focus image restoration involve estimating
the refocused timestamp and determining precise weights
of Equation (5). These aspects will be elaborated in the
subsequent sections.

3.3 All-in-focus imaging from NFS

The general pipeline of our method is shown in Figure 3.
We first select a set of refocusing timestamps guided by
reconstructed sharpness. Then we compute event-based in-
tensity residual or spiked-based integration, which is used
to reconstruct refocused images. After that, we use event or
spike streams to predict merging weights and finally obtain
an all-in-focus result.

Refocusing time selection. As shown in the second row of
Figure 2, traditional focal stack methods [14], [59] capture a
set of images with uniform time intervals. To ensure that all
objects are focused in the final results, it is important that
each object have a corresponding in-focus image within the

focal stack, that requires a specific-designed device [59] or
careful selection of refocusing distances.

According to Section 3.2, neuromorphic signals repre-
sent the scene information changes, that naturally encode
the temporal gradient changes [10]. For the event-based
method, assuming local events are triggered by the same
edge with uniform motion, the event triggering rate is
proportional to the spatial gradient. Based on such an obser-
vation, Lin et al. [26] designed an auto-focus algorithm for
event cameras to find the maximum event triggering rate
timestamp as the refocusing timestamp. However, the ma-
jority of events in the NFS are triggered by the focal sweep,
instead of object motion. Thus, the event triggering rate is
not suitable as a metric for refocusing timestamp selection.
While for spike-based methods, there is no existing auto-
focus algorithm.

To obtain an accurate refocusing timestamp in both
event-based and spike-based methods, we do not search it
in the neuromorphic signal domain. Inspired by the image-
based auto-focus method [49], we use reconstructed image
sharpness as a focus metric. We fuse the NFS with a given
RGB image to reconstruct refocused images by Equation (8)
or Equation (9), and then utilize the variance of recon-
structed image intensity value D(I) to evaluate the image
sharpness. We assume that the time ¢, with the maximum
variance value is the refocusing timestamp we want to find.
We adopt the golden-section search method in [18] to NFS
for searching the time ¢, with maximal image sharpness, as
summarized in Algorithm 1.

The depths of objects in a scene are different, leading to
the different refocusing time. Therefore, we split the image
into N x N spatially non-overlapping patches {Iﬁj PN,
with corresponding NFS patches {&,}V*. We apply the
aforementioned Algorithm 1 to each of patches to find their
refocusing times, resulting in a set of N x N refocusing
timestamp, i.e.,

{t, 3N =TSN, I), (10)
p

where TS denotes refocusing time selection with NFS using
the golden-section search method [18].
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Algorithm 1 Refocusing time selection with NFS

Data: threshold 11, golden ratio ¢ = 1.618
Input: NFS A and an RGB image I¢
Result: Refocusing timestamp ¢,
L+ 0,R+< N
while R — L > ;1 do
titr & R~ (R—L)/o.L+(R—L)/p
Reconstruct 191, 192 with Equation (8)/ Equation (9)
if D(I%) > D(192) then R« ty
else L <+ t;
end if
t, < (L+ R)/2
end while

Refocused image reconstruction. After the refocused times-
tamp is selected, with the guidance of neuromorphic signals,
we can reconstruct a set of refocused images. As depicted
in Equation (8) and Equation (9), the crux of the method
lies in estimating the threshold for neuromorphic cameras.
When it comes to event-based refocused image reconstruc-
tion, estimating the threshold for an event camera poses
a challenge. Drawing inspiration from Pan et al. [32], we
directly reconstruct the refocused images and employ the
subsequent energy function to appraise the reconstructed
refocused images:

&(I) = —a-sobel(I) + 8- Tv(I), (11)

in which & is the energy function, the Sobel loss Sobel(-)
is the average value of image I after using a Sobel filter
[46], and the TV loss [40] TV(-) is the total variation of the
image. The Sobel loss promotes pronounced edges, while
the TV loss advocates for smoothness and noise mitigation.
Minimizing this function allows us to derive the image focal
stack.

For spike-based reconstruction, we employ the “Tex-
ture From Playback” (TFP) approach as presented in [61].
This approach reconstructs the image by aggregating spike
counts over a brief time span. Due to the corruption from
the leaking current, the thresholds of spike cameras are
also not constant. We combine the RGB defocus image with
corresponding spikes to estimate this threshold for each
signal. By using the inferred threshold, we can compute
spike integration to approximate the gray-scale intensity.

Note that both Equation (8) and Equation (9) are applied
to the intensity channel. Thus, we convert the RGB image
into the Lab color space and first process intensity channel
(L). By combining the intensity channel, reconstructed from
event/spike streams, with the respective color channels (ab),
we can produce the refocused images with colors. Thanks
to the continuous information encoded by neuromorphic
signal streams, we can refocus images to any arbitrary time.

All-in-focus image merging. The quality of a merged all-
in-focus image, derived from an image focal stack, is funda-
mentally contingent upon the precise estimation of merging
weights. An approach to merging images within a focal
stack, by harnessing image spatial gradient as a guide,
is discussed by Horn [14]. As described in Equation (1)
and Equation (3), neuromorphic signal streams inherently
capture essential information along edges. These inherent

S

(a) Defocused Image

(c) Events (d) Spikes

Figure 4: An example results of all-in-focus imaging with
the non-learning method. (a) Defocused Image. (b) Ground
Truth. (c) and (d) All-in-focus images recovered using events
and spikes, respectively. Due to the noise effects, this direct
fusion approach often leads to undesirable ringing artifacts
(highlighted in green boxes), and the recovered images still
remain blurry in text-rich regions (highlighted in orange
boxes). Close-up views are provided at the bottom left of
each image.

traits serve as reliable cues for the prediction of merging
weights.

When considering event-based weight computation, it
is discernible that as the focal point traverses through a
point within a scene, the blur kernel subjected to it oscil-
lates from broad to narrow and broadens again—indicating
a symmetric operation. Consequently, the corresponding
pixel value undergoes a symmetric alteration. Thus, every
event precipitated prior to the in-focus moment aligns with
a subsequent event of an opposing polarity post the in-
focus moment. Grounded in this observation, Bao et al. [4]
assessed the distribution of all positive and negative events
chronologically, pinpointing the in-focus time ¢ that yields
symmetry between positive and negative distributions, with
t serving as the axis of symmetry. For computing the in-
focus times at a per-pixel level, we amplify this method.
This amplification is essential since the volume of events
triggered on a lone pixel is insufficient to determine distri-
butions with robustness. To gauge the likelihood of time ¢;
as the in-focus time for a pixel, we introduce the metric f(¢;)
as delineated:

it

) = min(CNT(¢;,0, <), CNT(¢;, 1, >)),
F2(t:) (eNT(t;, 1, <), CNT(t;, 0, >)),
f(ti) = max(f'(t;), f2(t:)),

where CNT(t,p, < / >) signifies the count of events with
triggering times lesser/greater than ¢, contingent upon the
polarity p. To culminate, we deploy a Gaussian filter to
seamlessly smooth f(t) across the image.

For the spike-based weight calculation, spikes encode
relative intensity values via their trigger frequency. Conse-

quently, we can designate the triggering frequency within

min

(12)
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Figure 5: The pipeline of our data-driven method. We first iteratively find a refocusing timestamp according to the
reconstructed sharpness for each image patch. NeuroRefocusNet fuses two modalities of data (RGB image I and NFS

Ndi=di) to reconstruct a refocused image I%. For the event-

based method, NeuroRefocusNet predicts intensity residual,

while for the spike-based method, it merges spike integration and color channels. By applying NeuroRefocusNet on
each timestamp, N refocused images are generated, forming an image focal stack. Then, NeuroMergeNet predicts initial
weights guided by the neuromorphic signals in the related time interval of each refocusing timestamp and concatenates
initial weights. Merging weights are transformed from initial weights by the softmax function. Finally, the reconstructed
image focal stack is merged the with corresponding predicted weights to obtain an all-in-focus result IAF.

a stipulated time window of image exposure time as the
metric, represented as:

f(ti) = Dyeve){skt-

To determine the merging weights, the derived metric value
is normalized and subsequently deployed for the recupera-
tion of an all-in-focus image.

Utilizing this all-in-focus image merging pipeline allows
us to reconstruct all-in-focus images. An illustrative exam-
ple can be seen in Figure 4. As the results show, the fusion
method introduces some unwanted artifacts, leaving the re-
covered images with lingering blurriness, especially in areas
rich in text. As detailed in Equation (2) and Equation (4),
the threshold of a neuromorphic camera is not fixed [15],
[25], [61]. Furthermore, neuromorphic cameras are prone
to current leakage [15], [25], [61], causing noisy signals
that fluctuate based on lighting conditions. The process
of determining merging weights from these neuromorphic
signals can be compromised by this noise, subsequently
affecting the overall quality of the reconstructed images. To
address these challenges, we further introduce data-driven
approaches in subsequent stages.

(13)

3.4 NeuroRefocusNet

Given a refocusing timestamp, attempting a direct recon-
struction of a refocused image using Equation (8) and Equa-

tion (9) with a static threshold results in pronounced arti-
facts. To address the challenges posed by spatial-temporal
variant thresholds, we propose a U-Net architecture net-
work, which we call NeuroRefocusNet. This is designed to
predict the residual between the input defocused image and
the resulting refocused image in a data-driven approach.
For event-based reconstruction, this model captures R as
illustrated in Equation (8), and it also accounts for noise
effects in spike-based reconstructions. With a collection of
refocusing timestamps determined from Algorithm 1, we
derive an image focal stack from an RGB image and the
NFS, expressed as:

(9N = g (1, (N NN g QNN (1)

where I% is a given RGB image focusing at an arbitrary
distance d;, N4 =% denotes corresponding neuromorphic
signals triggering between I% and I%, and f, is an implicit
function modeled by NeuroRefocusNet. As input images
represent scene conditions to some extent (the defocused
regions are blurry), the network can predict residual with
spatial-temporal variant thresholds guided by input images.

The efficacy of the multi-scale architecture in multi-
modal data fusion has been well-documented in [48]. Con-
sequently, we employ the U-Net model for both event-based
and spike-based reconstruction. As depicted in Figure 5, for
event-based reconstruction, we merge the image and NFS
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Figure 6: Visual quality comparison with image-based defocus deblurring methods on synthetic data. (a) Defocused Image.
(b) Events. (c) Spikes. (d) Ground Truth. (e)~(1) All-in-focus results of KPAC [47], LaKDNet [37], IFAN [22], APL [57],
DRBNet [38], Restormer [54], ours (ev) and ours (sp). More results are in the supplementary material.

features at multiple scales using a U-Net backbone®. This
is then formulated through residual learning with global
connections. By superimposing this residual onto the input
RGB image, we can successfully restore the refocused im-
ages. Meanwhile, for spike-based reconstruction, we use the
initial refocused images derived from the TFP methods [61]
as inputs. These are then refined for quality using a U-Net
backbone, effectively eliminating noise and color bleeding.

3.5 NeuroMergeNet

As elaborated in Section 3.3, extracting weights directly
from neuromorphic streams is impeded by signal noise.
Given that the sharpness of each pixel can be directly dis-
cerned from the image focal stack, superior-quality merging
weights are derived from combining the image focal stack
and the NFS.

As depicted in Figure 5, we introduce another U-Net
architecture [36] dubbed NeuroMergeNet, to predict initial
weights for each image, represented as:

{Wdi}init _ fm({Idi}NXN,./\/'di).

In this formula, {W% };; symbolizes the weight matrix set,
each with dimensions H x W, and £, stands for an implicit
function embodied by NeuroMergeNet. Within the initial
weights {W%i},;;, a higher value indicates sharper pixel
intensity. For determining the final merging weights, the
initial weights undergo a transformation via the softmax
function, represented as:

W = softmax(a - {W% }in),

(15)

(16)

where « is a hyper-parameter, its elevated value diminish-
ing the influence of smaller noisy values.

Given that NeuroMergeNet produces initial weights for
each image individually, the set number of the image focal
stack can be unfixed. This flexibility means our NeuroMer-
geNet can accommodate an image focal stack of any size.

2. Detailed network configurations can be found in the supplemen-
tary.

After calculating the initial weights for each image, these
sets of weights are combined to derive the final weights.
Furthermore, to circumvent over-fitting on synthetic data,
we pay more attention to predicting merging weights, rather
than directly restoring an all-in-focus image. Adhering to
the merging procedure outlined in [59], we consistently
apply the same weight map to all three RGB channels and
merge them independently using refocused images.

3.6 Implementation details

Dataset. Since there is no large-scale image focal stack
dataset with event information, we render a synthetic image
focal stack with Blender [5] and simulate corresponding
event/spike streams with the latest simulator. We choose
DVS-Voltmeter [25] and Spikesim [56] for event and spike
simulation, respectively. Our dataset is composed of 200
random scenes. From each scene, we render an image focal
stack with a shallow DoF camera setup (aperture f/1.2, focal
length 100mm), which sweeps its focus distances through
the scene, and an all-in-focus image as ground truth. We
further scale and scatter geometric objects to increase the
diversity. To better match the data distribution to real-world
images, we wrap the surfaces of the objects with images
sampled from the MS-COCO dataset [27] as their textures.
After rendering the image focal stack with 480 frames,
we input them into DVS-Voltmeter [25]/Spikesim [56] to

generate event/spike streams”.

Training details. Both NeuroRefocusNet and NeuroMer-
geNet are trained with the same loss function as:
L= Loere(I° ) + - Lo(I°,T8), 17)

where o = 0.5, 8 = 200, L2 denotes the MSE loss, and Lperc
denotes a perceptual loss calculated from a VGG-19 network
[45] pre-trained on ImageNet [41]. The output image I° is

3. More details about the data generation pipeline can be found in
the supplementary material.
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Figure 7: Quantitative comparison across different focal distances on the LiFF dataset [7]. We input defocused images
spanning a range of focal distances (from near to far) and plot the averaged results for each focal distance across all scenes.
1 (J) indicates that higher (lower) is better. Our method consistently outperforms other methods at all focal distances,

demonstrating stable performance.

Table 1: Quantitative comparisons on the synthetic LiFF
dataset [7]. T (J) indicates the higher (lower), the better
throughout this paper.

PSNRT SSIMT MS-SSIMT  LPIPS]
KPAC [47] 26.00 0.7643 0.8402 0.3778
IFAN [22] 26.97  0.7891 0.8644 0.3435
APL [57] 24.33  0.6753 0.7158 0.5471
DRBNet [38] 27.75  0.7882 0.8583 0.3243
Restormer [54] 2643  0.7210 0.7979 0.3472
LaKDNet [37] 2711  0.7830 0.8629 0.3324
Ours (ev) 3325 09323 0.9611 0.1510
Ours (sp) 34.85 0.9541 0.9768 0.1278

the predicted refocused image or all-in-focus image. The
corresponding ground truth is denoted as I8".

We implement our method with PyTorch on a single
NVIDIA GeForce RTX 3090 Ti GPU. We train both Neu-
roRefocusNet and NeuroMergeNet for 100 epochs, starting
with the learning rate 5 x 10~%, and after the first 50 epochs,
we decrease the learning rate by 1/10 for every 20 epochs.
The ADAM optimizer [19] is used in the training phase. For
event-based NeuroRefocusNet training, we randomly select
two frames from our synthetic dataset, one as input and
the other as ground truth. With corresponding events trig-
gered between them, NeuroRefocusNet can reconstruct re-
focused images. For spike-based NeuroRefocusNet training,
we need to input an image and part of spikes to reconstruct
refocused images. For the input of NeuroMergeNet, we
input all generated refocused images and the corresponding
event/spike streams for guidance.

4 EXPERIMENTAL RESULTS

In this section, we qualitatively and quantitatively compare
our method with state-of-the-art image-based defocus de-
blurring methods on a public synthetic dataset (Section 4.1)
and our real-captured data (Section 4.2). In addition, we
illustrate the advantages and disadvantages of employing
event cameras in comparison to spike cameras for all-in-
focus image recovery (Section 4.3). In Section 4.4, ablation
studies are conducted to validate the effectiveness of each
module of the proposed method.

35.01
34.5 r0.95
34.01 t0.94
33.51
& 10.93 &
7 33.01 Z
= 3 092
32.01 L0.91
3151 £0.90
31.04

2 3 4 5 6 7 8 9
Numbers

10

Figure 8: A quantitative comparison using varying numbers
of images in the focal stack method. The number of images
in the focal stack ranges from 2 to 10 frames. The red curves
represent the results of PSNR, and blue curves for SSIM,
respectively. Capturing more than 10 frames marginally
surpasses our method in terms of the SSIM metric.

4.1

As the majority of existing all-in-focus image datasets do
not contain image focal stacks, we generate image focal
stacks from a light field dataset, the Stanford Multiview
Light Field (LiFF) Dataset [7], which was captured with
hand-held Lytro Illum cameras. We synthesize the im-
age focal stacks from their light field images and cor-
responding paired events/spikes are generated by DVS-
Voltmeter [25]/Spikesim [56]. The first image of each focal
stack is selected as the input defocused image. Among all
the synthetic triplet clips, consisting of defocused images,
all-in-focus images, and corresponding neuromorphic cam-
eras, we select 50 sets that are consistent with the LFDOF
dataset [39] as our testing dataset for a fair comparison with
other methods.

We compare our method with six recent image-based
defocus deblurring methods: DRBNet [38], IFAN [22],
KPAC [47], APL [57], Restormer [54], and LaKDNet [37].
We also denote our method incorporating event cameras as
ours (ev) while ours (sp) for spike cameras. The quantitative
comparisons are shown in Table 1 and qualitative compar-
isons are shown in Figure 6. Our method outperforms other
state-of-the-art methods with more than 15% improvement
on three metrics (PSNR, SSIM, LPIPS) by event cameras,

Quantitative comparison using synthetic data
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Figure 9: Visual quality comparison with image-based defocus deblurring methods on real data. (a) Defocused image. (b)
Event / Spike. (c)~(j) All-in-focus results of Handcraft(ev) / Handcraft (sp), IFAN [22], DRBNet [38], KPAC [47], APL [57],

Restormer [54], LaKDNet [37], and ours (ev) / ours (sp). More results are in the supplementary material.

while more than 20% improvements for spike cameras,
restores more high-frequency details encoded inside the
neuromorphic streams, and recovers an all-in-focus image
with higher quality and fewer artifacts.

Note that this comparison might seem somewhat biased,
as image-based defocus methods rely solely on a single
image input. Our purpose is to show that a significant
performance boost can be achieved when continuous infor-
mation from neuromorphic streams is involved. Addition-
ally, we conduct an experiment to assess the influence of
defocus blur level at varying focal distances, with the results
presented in Figure 7. These results demonstrate that image-
based methods are notably sensitive to changes in focal
distance and struggle to effectively address severe defocus
blur. In contrast, by leveraging the high-temporal resolution
information inherent in the NFS, our approach is capable
of reconstructing an all-in-focus image from any defocused
input while maintaining stable performance.

With image-based focal stack methods. Our method re-
quires only a single exposure time to capture all-in-focus
images. We conduct experiments to explore the comparative
efficiency of using different numbers of images in an image

focal stack. We merge all-in-focus images with varying num-
bers of input images, and the results are shown in Figure 8.
As illustrated in Figure 8, capturing more than 10 frames
slightly surpasses our method in terms of the SSIM metric.

4.2 Qualitative comparison using real data

To verify the effectiveness of our method in real-world
scenarios, we capture real data by building a hybrid camera
system, which consists of a machine vision camera (HIKVI-
SION MV-CA050-12UC) and a neuromorphic camera with
a beam splitter. Within this setup, we selected the PROPH-
ESEE GEN4.0 as our event camera and the Spike Camera-
001T-Gen2 as our spike camera. We synchronously capture
an NFS and an RGB image focused at an arbitrary distance
in both indoor and outdoor scenarios. For calibration, we
use a checkerboard to deal with homography and radial
distortion between two views. Visual quality comparisons
of all-in-focus results are shown in Figure 9. Our method
can recover all-in-focus images with the correct texture in
defocused regions. In comparison, other image-based meth-
ods cannot recover the sharp details well and even introduce
undesired ringing artifacts.
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(a) Defocused Image

(c) Dual-pixel Image (d) DPDNet [1]

Figure 10: Visual quality comparison with a dual-pixel
method. (a) Defocused image captured by machine vision
camera. (b) All-in-focus images recovered by our method.
(c) Dual-pixel image captured by Canon 5D Mark IV. (d)
All-in-focus image recovered by DPDNet [1] using (c).

With dual-pixel methods. Dual-pixel images are validated
as effective inputs to recover an all-in-focus image [1], [2].
These methods also take additional input like our method.
To compare the performance between NFS and dual-pixel
imaging, we capture a real scenario with our hybrid camera
system and a Canon 5D Mark IV DLSR camera. Since the
quantitative results have shown spike cameras have better
reconstruction ability, we choose an event camera for com-
parison in this scenario without loss of generality (the same
as compared with image-based focal stack methods). We
compare with dual-pixel-based defocus deblurring method
DPDNet [1], and the results are shown in Figure 10. We
can see our method outperforms DPDNet [1]. Thanks to
the high temporal resolution information in neuromorphic
streams, our method recovers clearer texture information.
Since the DLSR camera cannot be directly mounted on our
beam splitter and the lenses are also different, we cannot
obtain the NFS and dual-pixel image with perfect spatial
alignment. Thus the field of view and DOF in this example
are somewhat inconsistent, but the levels of details recov-
ered by these two methods are clearly different.

With image-based focal stack methods. Traditional image-
based focal stack methods [3] require capturing multiple
images at different focus distances, which are sensitive to
camera shake. Although Zhou et al. [59] proposed a space-
time refocusing method to stabilize the input images by
selecting corresponding pixels in the focal stack, they still
require that the velocity of focal sweep is constant, which
limits the applicability of their method. Since we rotate the
lens to capture the image/neuromorphic focal stack, leading
to unavoidable camera shake, we show that our method is
robust to such slight motion and produces a sharper all-in-
focus image, shown in Figure 11, while the result of Zhou
et al. [59] shows ringing artifacts. Moreover, all real data are
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(a) Image Focal Stack (b) Zhou et al. [59]

(c) Events

(d) Ours (ev)

Figure 11: Visual quality comparison with an image-based
focal stack method. (a) Image focal stack. (b) All-in-focus
image restored by Zhou et al. [59]. (c) The visualization of
Events. (d) All-in-focus image restored by ours (ev). Please
check the supplementary video for animated results.

captured using the same setup, emphasizing the robustness
of this method to minor camera shakes that occur during
the rotation of the focus ring (e.g., Figure 9).

4.3 Comparison between event and spike cameras

While both event and spike cameras offer valuable assis-
tance in all-in-focus image restoration, spike signals provide
richer texture information than event cameras, as illustrated
in Figure 2. The richer texture information in spike signals
yields better quantitative results than events, as demon-
strated in Table 1. For visual comparison in Figure 6, the
results from spikes reveal more accurately reconstructed
details. Furthermore, spike signals enable the direct recon-
struction of grayscale all-in-focus images, a capability not
present in event signals.

We capture these two types of data under the same
scenario?, and results are shown in Figure 12. The results
demonstrate that the spike camera preserves better fidelity
in textureless regions, so that the recovered images generally
look clearer. The event camera keeps sharper edges, but
contain artifacts in smooth regions. Another observation is
that the results from the event camera seem to have better
color appearance. This is because the spike-based solution
needs to merge with UV channels from defocused RGB
images with color distortion, while event-based solution
avoids this issue by only merging intensity changes from
the defocused RGB images.

Moreover, the data size difference between the two
types of neuromorphic data cannot be ignored. In our test
dataset, event signals average around 21 Megabytes per
scenario, whereas spike signals are around 240 Megabytes.
This difference requires a higher data transfer bandwidth
for spike signals. Additionally, event cameras own a higher
temporal resolution (10~%s versus 10~*s) compared to spike
cameras. Such attributes make event cameras more effective
in dealing with scenes with faster motion but with few
textureless regions.

4. Detailed setup can be found in the supplementary material.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

(d) LaKDNet [37]

(e) Ours (ev) (f) Ours (sp)

Figure 12: Visual comparison of all-in-focus results from
event and spike cameras. (a) Defocused Image. (b) Events.
(c) Spikes. (d)~(f) All-in-focus results of LaKDNet [39], ours
(ev), and ours (sp).

In summary, each camera type has its strengths and
weaknesses for all-in-focus image recovery. In scenarios
with data bandwidth constraints, event cameras outperform
spike cameras. However, spike cameras provide more re-
liable reconstruction quality. The current design strategy
balances these trade-offs for different camera choices. Ex-
ploring methods that effectively utilize both types of neuro-
morphic information remains an area for future work.

4.4 Ablation studies

To verify the effectiveness of our proposed method in cross-
modality data fusion, we present the quantitative results of
hand-crafted methods in Table 2 and qualitative comparison
on Figure 9. Here, “Handcraft (ev)” denotes fusion with
event data, and “Handcraft (sp)” refers to fusion with spike
data. As the results indicate, the hand-crafted method is
unable to fully exploit the high-temporal resolution infor-
mation contained within the neuromorphic signals due to
the presence of noise. Notably, event data exhibit a larger
domain gap with images compared to spike data. Con-
sequently, adopting a data-driven approach to bridge this
domain gap between the two modalities is crucial. Through
this, we can generate high-quality all-in-focus images.

To validate the efficacy of each component of our
methodology, we undertake a series of ablation studies,
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Table 2: Quantitative results of ablation study.

PSNRT SSIMtT  MS-SSIMt  LPIPS|

Handcraft (ev) 23.55  0.7589 0.8022 0.3738
Handcraft (sp) 2640  0.8037 0.8634 0.3415
ET+MNet 12.62  0.3474 0.2169 0.7179
RNet+GDF 32.66  0.9272 0.9556 0.1698
Uniform 32.84 09224 0.9564 0.1605
Ours (ev) 3325  0.9323 0.9611 0.1510
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Figure 13: Failure case: Recovering an all-in-focus image
from a significantly defocused color checkerboard.

with results presented in Table 2. Given that our network
architecture is consistent for both event and spike cameras,
ablation studies are conducted on one type of neuromorphic
camera. For this comparative analysis, we select the event
camera. We show the effectiveness of NeuroRefoucsNet by
replacing it with ET-Net [53], an event-based image recon-
struction method (denoted as “ET+MNet”). We further ver-
ify the contribution of NeruoMergeNet compared with all-
in-focus imaging from gradient domain fusion [59] (denoted
as “RNet+GDEF”). Finally, we demonstrate the necessity of
refocusing time selection by substituting it with uniform
time selection (denoted as “Uniform”). As the results show,
our complete model achieves the best performance.

5 CONCLUSION

In this paper, we propose a novel neuromorphic focal stack
to record intensity changes with respect to focus distance,
which compacts with two types of neuromorphic cameras,
compared to our previous work [29]. With NFS, we intro-
duce a reliable refocusing timestamp selection algorithm,
and further design NeuroRefocusNet and NeuroMergeNet
to recover an all-in-focus image. Thanks to successfully
exploring the continuous focusing related information from
NFS, our method exhibits superior performance over state-
of-the-art methods.

Limitations. In our present hybrid camera system, our
event/spike cameras capture only gray-scale changes in
intensity, thus failing to reflect differences across the RGB
channels. As illustrated in Figure 13, although our method
can restore sharp edges of color checkerboards, but can-
not accurately recover the color space. This discrepancy is
particularly pronounced when the input defocused image
is significantly blurring. Consequently, our network faces
challenges in compensating for a precise color map. In our
current approach, we still obtain an NFS by manually rotat-
ing the lens, which is not enough to capture scenes involving
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rapid object movements. Therefore, our technique is not
well-suited for dynamic scenes. One potential avenue for
improvement involves integrating a rapid focusing mech-

anism, such as a liquid lens [

], to better accommodate

scenes with motion, which is left as our future work.
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Figure 14: An illustration of our synthetic data generation pipeline. We simultaneous render NFS (event) and NFS (spike)

with DVS-Voltmeter [5] and Spikesim [12] respectively.
6 DATASET

6.1 Synthetic dataset

The pipeline for generating the training dataset is shown
in the Figure 14. First, we pick geometric objects, scale
them, and scatter them at different depths in the scene
randomly, forming 200 scenes. Second, to better match the
data distribution to real-world images, we wrap the surfaces
of the objects with images sampled from the MS-COCO
dataset [6] as their textures. The sampled images are from
2017 Val images, a subset of MS-COCO. The final step is to
render 480 images as an image focal stack for each scene
and then to render the ground truth image as an all-in-focus
image with a small aperture.

After rendering the image focal stack, we input them into
DVS-Voltmeter [5]/Spikesim [12] to generate event/spike
streams. Since DVS-Voltmeter owns special parameters re-
lated to the camera type, to improve the generalization of
the model to unknown types of event cameras, we apply the
6 different camera parameters in DVS-Voltmeter randomly.
Each camera parameter (k1 ~ kg) is randomly sampled
from the range [Min, Maz] shown in Table 3. The refer-
ence columns “DVS346” and “DVS240” are the parameters
calibrated on the event camera models DVS346 and DVS240,
provided as DVS-Voltmeter preset configurations [5].

Table 3: Settings of DVS-Voltmeter [5] parameters.

Param range DVS346 DVS240
k1 [4.0, 5.5] 5.3 4.4
ka2 [18, 25] 20 23
ks [65x107%25%x107%] 1x107* 2x107*
ks  [08x1077,12x1077] 1x1077 1x1077
ks [3x107% 8 x 1078 5x107° 5x1078
ks [8 x1076,1.2 x 107°] 1x107% 1x107°

6.2 Real dataset

For real data acquisition, we design two types of hybrid
camera systems. As illustrated in Figure 15, the system
on the left consists of a dual-camera setup simultaneously
capture images and event/spike data. And the right-side
system features a three-camera setup capable of capturing
images, event data, and spike data concurrently, providing
comprehensive comparison of event and spike cameras.

7 ABLATION EXPERIMENT
7.1 Loss function

We ablate different loss functions (£ loss only, perceptual
loss only, £; loss + perceptual loss) from the complete
model (L2 loss + perceptual loss) and evaluate them quan-
titatively in Table 4. Results show that the combination
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Figure 15: An illustration of our hybrid camera systems. Left: The dual-camera system is designed for capturing images
and event/spike data. Note that the neuromorphic camera is the event camera (PROPHESEE GEN4.0) in the figure for
illustrative purposes, which can be substituted with a spike camera (Spike Camera-001T-Gen2). Right: The three-camera

system captures images, event data, and spike data simultaneously for comprehensive event and spike comparison.
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Figure 16: Visual quality comparison of ablation studies on synthetic data.

Table 4: Ablation study on loss functions.

PSNR+ SSIM+ MS-SSIM{ LPIPS |
L5 only 33.04  0.9305 0.9605 0.1547
perc.only 3151  0.8977 0.9567 0.1580
Ly +perc. 3309  0.9300 0.9599 0.1515
Lo +perc. 3325 09323 0.9611 0.1510

of L5 loss and perceptual loss improves the performance
of NeuroRefocusNet and NeuroMergeNet in reconstructing
all-in-focus images. Given that our network architecture is
consistent for both event and spike cameras, ablation studies
are conducted on one type of neuromorphic camera.

7.2 Qualitative comparison

The qualitative comparison among the different ablation
studies is shown in Figure 16. According to the results, our
complete model can produce a sharper, all-in-focus image.
Note that ET-Net [10] only reconstructs gray-scale images,
thus, we only compare the results of “ET+MNet” with the
gray-scale ground truth.

7.3 Analysis

To verify the effectiveness of each module, we conduct
three ablation studies, shown Section 4.4, and the detailed

analysis of each ablation study is listed as follows :

o “ET+MNet”: Our NeuroRefocusNet takes a sin-
gle defocused image with the corresponding event
stream as input, while ET-Net [10] only utilizes the
event stream, resulting in a lack of texture details.

e “RNet+GDEF": Since the event stream provides high-
temporal-resolution edge information, compared
with gradient domain fusion [14], our NeuroMer-
geNet can predict more accurate weights for focal
stack merging.

e “Uniform”: By dynamically selecting refocus dis-
tances with our golden search method instead of
sampling distances uniformly, our method can refo-
cus to objects that would fall between the uniform
samples otherwise, as illustrated in Figure. 2 (the
blue cube is out of focus in all focal stack images).
Our method also avoids refocusing on distances with
no objects, which causes a waste of computation
when distances are sampled uniformly.

8 INPUT QUANTITIES OF FOCAL STACK

In this section, we conduct an experiment with focal
stacks containing different numbers of images. The exper-
iments involve specifically designed sets with quantities of
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Figure 17: Quantitative comparison of different image
quantities in the focal stacks on the LiFF dataset [1].
The sets 1 to 6 contain image quantities ranging from
{30, 25,20, 15,10, 8, 6}, respectively.

Table 5: Quantitative results on the LiFF dataset [1].

PSNR1 SSIM T MS-SSIM 1 LPIPS |
KPAC [9] 27.96 0.8396 0.9115 0.2473
IFAN [4] 29.59 0.8119 0.8679 0.3741
APL [13] 27.14 0.7758 0.8522 0.4060
DRBNet [8] 30.51 0.8639 0.9278 0.2164
Ours (ev) 33.25 0.9323 0.9611 0.1510
Ours (sp) 34.85 0.9541 0.9768 0.1278

{30, 25,20, 15,10, 8, 6}, corresponding to sets 1 to 6, respec-
tively. The results of this experiment are shown in Figure 17.
As the number of images in the focal stack increases, there is
a decrease in the quality of the all-in-focus images produced.
Furthermore, our method identifies the optimal quantity of
the image focal stack beyond which the quality of the output
diminishes.

9 EXPERIMENTS WITH IMAGE-BASED METHODS

To compare with single-image-based methods comprehen-
sively, we feed them with 10 images in the same scene,
which are focused at different focal distances, obtain the
10 defocused deblurring images, and then calculate the
average metric values as the final results. The quantitative
result is shown in Table 5. Based on the results, our method
still outperforms the state-of-the-art image-based methods.

10 SPEED VARIATION ISSUE OF FOCAL PLANE

For convention image focal stack methods [2], [14], the focal
plane must move at a stable speed. However, our NFS is
less affected by this restriction. We take NFS by rotating
the focus ring by hand, which inevitably makes the focal
plane move at a varying speed. With the high temporal
resolution property, the neuromorphic camera can detect
scene radiance changes at the microsecond level. Since our
manual rotation speed is much slower than its temporal
resolution, the performance of our method is robust to such
speed variation. Since the quantitative results have shown
spike cameras have better reconstruction ability, we choose
events camera for comparison in this scenario without loss
of generality. As the example in Figure 18 shows, our
method can restore an all-in-focus image with consistently
high quality, given NFS captured at different speeds. As we
capture NFS manually, we show histograms of the number
of events at each timestamp to partially reflect the speed
variation when rotating the focus ring for NFS capture.

11 NETWORK DETAILS

In this section, we present architecture details of our
NeuroRefocusNet (shown in Table 6) and NeuroMergeNet
(shown in Table 7).

12 IMAGE FOCAL STACK

Our method can restore images refocused at arbitrary focus
distances from a single defocused image and the corre-
sponding NFS. The generated image focal stacks are shown
in our supplementary video.

13 MORE RESULTS ON SYNTHETIC DATASET

In this section, we provide more qualitative compar-
isons among our method (ev/sp), DRBNet [8], IFAN [4],
KPAC [9], APL [13], Restormer [11], and LaKDNet [7] on
synthetic data, shown in Figure 19, and Figure 20.

14 MORE RESULTS ON REAL DATASET

In this section, we provide more qualitative compar-
isons among our method (ev/sp), DRBNet [5], IFAN [4],
KPAC [9], APL [13], Restormer [11], and LaKDNet [7] on
real data, shown in Figure 21 and Figure 22.
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Figure 18: Results of our method given NFS (event) captured at different speeds. Below each image, we show the histograms
of the number of events at each timestamp, to partially reflect the speed variation when rotating the focus ring for NFS

(event) capture.

Table 6: Network details of NeuroRefocusNet. DenseConv modules are densely connected convolutional blocks [3].
ResBlock modules are residual blocks. Deconv modules are transposed convolutional blocks. All modules include batch
normalization and activation functions.

NeuroRefocusNet Input Kernel Size  Stride In Channels  Out Channels Output
Convl Input Image 3 1 3 64 convl
DenseConv1l convl 3 1 64 128 denseconvl
Conv2 denseconvl 2 2 128 128 conv2
DenseConv2 conv2 3 1 128 256 denseconv2
Conv3 denseconv2 2 2 256 256 conv3
DenseConv3 conv3 3 1 256 512 denseconv3
ConvN1 NFS 3 1 64 64 convnl
DenseConvN1 convnl 3 1 64 128 denseconvnl
ConvN2 denseconvnl 2 2 128 128 convn2
DenseConvN2 convn2 3 1 128 256 denseconvn?2
ConvN3 denseconvn2 2 2 256 256 convn3
DenseConvN3 convn3 3 1 256 512 denseconvn3
Deconv2 [denseconv3, denseconvn3] 2 2 1024 256 deconv2
Convb [denseconv2, denseconvn2, deconv2] 1 1 768 128 convb
DenseConvb convb 3 1 128 256 denseconvb
Deconvl denseconv5 2 2 256 128 deconvl
Convé [denseconv1, denseconvnl, deconv1] 1 1 384 64 convéb
ResBlock1 convé 3 1 64 64 resblock1
ResBlock2 resblock1 3 1 64 64 resblock2

PredConv resblock2 3 1 64 3 pred

Table 7: Network details of NeuroMergeNet. DenseConv modules are densely connected convolutional blocks [3]. ResBlock
modules are residual blocks. Deconv modules are transposed convolution blocks. All modules include batch normalization
and activation functions.

NeuroMergeNet Input Kernel Size  Stride In Channels  Out Channels Output
Convl One of Image Stack + NFS 3 1 4 64 convl
DenseConv1 convl 3 1 64 128 denseconvl
Conv2 denseconvl 2 2 128 128 conv2
DenseConv2 conv2 3 1 128 256 denseconv2
Conv3 denseconv?2 2 2 256 256 conv3
DenseConv3 conv3 3 1 256 512 denseconv3
Deconv2 denseconv3 2 2 512 256 deconv2
Convb [denseconv2, deconv2] 1 1 512 128 convb
DenseConv5 convb 3 1 128 256 denseconvb
Deconvl denseconvb 2 2 256 128 deconvl
Conv6 [denseconv1, deconv1] 1 1 256 64 convéb
ResBlock1 convéb 3 1 64 64 resblock1

ResBlock?2 resblockl 3 1 64 1 intial weights
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Figure 19: Visual quality comparison with image-based defocus deblurring methods on synthetic data (Part I). Visual
quality comparison with image-based defocus deblurring methods on real data. (a) Defocused image. (b) Events. (c)
Spikes. (d)~(k) All-in-focus results of DRBNet [8], IFAN [4], KPAC [9], APL [13], Restormer [11], LaKDNet [7], ours (ev),
and ours(sp). (1) Ground Truth.
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Figure 20: Visual quality comparison with image-based defocus deblurring methods on synthetic data (Part II). Visual
quality comparison with image-based defocus deblurring methods on real data. (a) Defocused image. (b) Events. (c)
Spikes. (d)~(k) All-in-focus results of DRBNet [8], IFAN [4], KPAC [9], APL [13], Restormer [11], LaKDNet [7], ours (ev),
and ours(sp). (1) Ground Truth.
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Figure 21: Visual quality comparison with image-based defocus deblurring methods on real data (Part I). (a) Defocused
image. (b) Events. (c)~(i) All-in-focus results of DRBNet [8], IFAN [4], KPAC [9], APL [13], Restormer [11], LaKDNet [7],
and ours (ev).
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Figure 22: Visual quality comparison with image-based defocus deblurring methods on real data (Part II). (a) Defocused
image. (b) Spikes. (c)~(i) All-in-focus results of DRBNet [8], IFAN [4], KPAC [9], APL [13], Restormer [11], LaKDNet [7],
and ours (sp).
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