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Abstract—Deep learning has significantly propelled the development of photometric stereo by handling the challenges posed by
unknown reflectance and global illumination effects. However, how supervised learning-based photometric stereo networks resolve
these challenges remains to be elucidated. In this paper, we aim to reveal how existing methods address these challenges by revisiting
their deep features, deep feature encoding strategies, and network architectures. Based on the insights gained from our analysis, we
propose ESSENCE-Net, which effectively encodes deep shading features with an easy-first-encoding strategy, enhances shading
features with shading supervision, and accurately decodes normal with spatial context-aware attention. The experimental results verify
that the proposed method outperforms state-of-the-art methods on three benchmark datasets, whether with dense or sparse inputs.

The code is available at https:/github.com/wxy-zju/ESSENCE-Net.

Index Terms—Photometric stereo, Deep features, Shading supervision, Easy-first-encoding, Spatial context-aware attention

1 INTRODUCTION

HOTOMETRIC stereo (PS) aims to recover the surface

normal from images captured under varying light direc-
tions at a fixed viewpoint [1]. With the capability to recover
pixel-level fine details, PS holds promising applications in
many fields, such as industrial inspection [2], cultural her-
itage preservation [3], and lunar surface reconstruction [4].
However, classical PS [1] assumes Lambertian surfaces with-
out global illumination effects, deviating from real-world
scenarios. Conventional methods relax the assumption by
modeling surface reflectance explicitly through simplified
analytic models [5], [6], [7], [8] and addressing global il-
lumination effects through outlier rejection [9], [10], [11],
[12]. However, reflectance and global illumination effects are
often unknown and vary across different subjects or even
the same object, which are two main challenges in PS.

In recent years, deep learning has significantly improved
the accuracy of normal estimation [13], [14], [15], [16], [17],
(18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29],
[30], facilitating modeling reflectance of various materials
and even relaxing constraints of physical light models (e.g.,
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universal light [29], [31], [32], sunlight [33], screen light [34]).
Additionally, it enables real-time reconstruction with event
cameras [35] or achieves high accuracy with reinforcement
learning [36] or inverse rendering (with 2 images) [37]. Com-
pared to traditional methods, supervised learning exhibits
superior performance in PS because of its nonlinear fitting
and generalization ability from explicit labels [38], especially
on large datasets according to the scaling law [39]. Conse-
quently, investigating the essence of supervised learning-
based photometric stereo networks (SL-PSNs) in addressing
the main challenges of PS becomes crucial.

Previous SL-PSNs can be categorized into per-pixel [14],
[15], [16], [17], [18], all-pixel [19], [20], [21], [22], [23], [24],
and hybrid methods [25], [26], [27], [28] based on input
types (1D-profile!, 2D-image!, and both, respectively), as
proposed in [41], [42]. Regardless of the inputs, SL-PSNs
consist of three stages: observation-light alignment, light-aware
deep feature encoding, and light-free deep feature decoding due
to the unstructured input (i.e., order-agnostic and arbitrary
number of images) [14], as shown in Fig. 1. In observation-
light alignment, per-pixel methods project 1D-profile onto an
observation map indexed by light directions inefficiently,
while all-pixel and hybrid methods align 2D-image and
light map? through simple concatenation efficiently. Then, in
light-aware deep feature encoder, per-pixel (all-pixel) methods
extract deep features from aligned 1D-profiles (2D-images)
using shared weights CNNs (siamese networks), while hy-
brid methods combine 1D-profiles and 2D-images to facili-
tate deep feature extraction. Finally, in light-free deep feature
decoder, light-aware deep features are fused to eliminate
light information through weighted summation (per-pixel),
max-pooling (all-pixel and hybrid), or transformer decoder

1. 1D-profile is a set of intensity variations at one point under
different lights [40]. 2D-image is the observed image under a specific
light.

2. A light map is formed by replicating the 3-vector light direction to
match the spatial dimension of the observed image.
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Fig. 1. lllustration of two-stage feature extraction for supervised learning-
based photometric stereo networks. Per-pixel, all-pixel, and hybrid meth-
ods are categorized based on input types, as proposed in [41], [42].

(hybrid). Normals are then decoded from light-free deep
features using a multi-layer perceptron (MLP) (per-pixel) or
CNNi s (all-pixel and hybrid).

However, despite the excellent performance of SL-PSNs,
how challenges of unknown reflectance and global illumina-
tion effects are addressed during the network’s feedforward
process remains to be elucidated. Despite some studies [19],
[20] indicating a correlation between deep features and
shading, they lack quantitative studies and fail to leverage
their studies to facilitate resolving these two challenges.

To further investigate how challenges of unknown re-
flectance and global illumination effects are resolved by SL-
PSNs, we revisit SL-PSNs in aspects of deep feature, deep
feature encoding, and network architectures and attempt
to answer the following three fundamental questions. 1)
What is the desired deep feature to be learned during
neural network optimization? 2) How to facilitate resolving
the challenges of PS (i.e., unknown reflectance and global
illumination effects) during deep feature encoding? 3) What
is the desired network architecture that facilitates extracting
desired deep features and resolving PS challenges? The
contributions are summarized as follows:

To answer the first question, we revisit the deep features
learned by conventional SL-PSNs and demonstrate that
these approaches are dedicated to extracting features highly
correlated to shading in the stage of light-aware deep feature
encoding. Based on this observation, we propose shading
supervision loss to facilitate feature extraction during this
stage.

To answer the second question, we reveal that per-
pixel/all-pixel methods are more adapt at addressing the
challenge of unknown reflectance/global illumination ef-
fects, based on which the difficulty of addressing these chal-
lenges for deep feature encoding is analyzed. We show that
the difficulty is relevant to the information of inputs (e.g.,
image resolution, number, and non-uniform material). In-
spired by easy-first-generation / least-to-most principle applied
in diffusion models [43], [44]/large language models [45],
we propose an easy-first-encoding strategy to develop light-
aware deep feature encoder in hybrid methods, facilitating re-
solving unknown reflectance and global illumination effects.

To answer the third question, we provide an analysis of

2

clues utilized for resolving PS challenges, based on which
a discussion about how network architectures in existing
SL-PSNs facilitate resolving these challenges for light-aware
deep feature encoding is provided. We further propose spatial
context-aware attention for light-free deep feature decoding.

Combining above insights, we propose ESSENCE-Net,
which Encodes light-aware deep features with Shading
Supverision and Easy-first-encoding strategy, and decodes
light-free features iN a spatial Context-aware attention
scheme, for surface normal Estimation. ESSENCE-Net is val-
idated to achieve state-of-the-art performance on the DiLi-
GenT [46], DiLiGenT10? [47], and DiLiGenT-II [48] bench-
mark datasets, both in dense and sparse settings.

2 RELATED WORK

This section reviews SL-PSNs based on the three-stage fea-
ture extraction. Tab. 1 compares the differences between
representative SL-PSNs and the proposed ESSENCE-Net.
We follow the traditional setup of PS, which assumes ortho-
graphic projection and directional lights. Other setups are
beyond the scope of this paper; readers may refer to [49],
[50], [51] for near light, [33] for sunlight, [34] for screen
light, [29], [31], [32] for universal light, and [52] for uncal-
ibrated light. For unsupervised learning-based photometric
stereo networks, readers can refer to [53], [54], [55], [56], [57].

2.1

In PS, varying lights provide clues for normal recovery.
Evidence [19], [20] has shown that incorporating light infor-
mation with the observed images can enhance the accuracy
of normal recovery. Per-pixel methods [14], [15], [16], [17],
[18] map the observed pixel values of a point under varying
lights into an observation map, where the position repre-
sents the light direction. All-pixel [19], [20], [21], [22], [23],
[24] and hybrid [25], [26], [27], [28] methods expand the 3-
vector light direction to match the size of the image, forming
image-light pairs through simple concatenation. While the
pixel-wise generated observation map increases the input
size and reduces the efficiency of normal estimation. The
simple concatenation of image and light allows the recovery
of the entire normal map in an end-to-end manner, leading
to higher efficiency. Therefore, the proposed ESSENCE-Net
adopts the simple image-light concatenation approach for
efficient normal estimation.

Observation-Light Alignment

2.2 Light-Aware Deep Feature Encoding

In light-aware deep feature encoder, the desired features for
normal recovery are extracted. Existing SL-PSNs primarily
focus on this stage to address the challenges posed by
unknown reflectance and global illumination effects.
Per-pixel methods feed observation maps into CNNs
to encode deep features from 1D-profiles, achieving ex-
cellent results [14], [15], [17]. However, the performance
significantly degrades in sparse setups. Networks specially
designed for sparse setups are proposed, such as SPLINE-
Net [18], which generates dense observation maps by light
interpolation, and LMPS [16], which applies a connection
table to select the most useful lights. Since per-pixel methods
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TABLE 1
A Summary of the Proposed ESSENCE-Net and Representative SL-PSNs.
Observation-Light Alignment Light-Aware Deep Feature Encoder Light-Free Deep Feature Decoder Performance
Method Sch Speed Deep Encoding Sch . Light-Aware R Supervision oo

cheme pee Features ncoding Scheme Architecture Feature Fusion Architecture on DiLiGenT
CNN-PS [14] Observation Map Slow N.C. Unmixed (1D-Profile) CNN Weighted Summation MLP Normal 7.21°
LMPS [16] Observation Map Slow N.C. Unmixed (1D-Profile) CNN Weighted Summation MLP Normal+Conn.tab. 8.43°
SPLINE-Net [18] Observation Map Slow N.C. Unmixed (1D-Profile) CNN Weighted Summation MLP Normal+Sym.+Asym. 9.63°
PX-Net [49] Observation Map Slow N.C. Unmixed (1D-Profile) CNN Weighted Summation MLP Normal 6.17°
PS-FCN [19] Simple Concatenation ~ Fast Shading Unmixed (2D-Image) CNN Max-Pooling CNN Normal 8.13°
Attention-PSN [21] | Simple Concatenation Fast N.C. Unmixed (2D-Image) CNN Max-Pooling CNN Normal 7.92°
SPS-Net [26] Simple Concatenation Fast N.C. Mixed (Per-All-Alternate) Self-Attention+CNN Max-Pooling CNN Normal 7.60°
GPS-Net [28] Simple Concatenation Fast N.C. Mixed (Per-First-Encoding) GNN+CNN Max-Pooling CNN Normal 7.81°
MT-PS-CNN [25] Simple Concatenation Fast N.C. Mixed (Per-First-Encoding) CNN+CNN Max-Pooling CNN Normal 7.56°
PS-Transfromer [27] | Simple Concatenation Fast N.C. Mixed (Per-All-Parallel) Transformer+Transformer | Transformer Decoder CNN Normal 7.66°
ESSENCE-Net Simple Concatenation  Fast Shading  Mixed (Easy-First-Encoding) Transformer+CNN Max-Pooling Transformer Normal+Shading 5.69°

Notes: The performance on DiLiGenT [46] of PS-Transformer [27] is evaluated with 10 images, while the others are with 96 images. GPS-Net [28] places the feature extraction of 2D-images in light-free deep feature
decoder. 'N.C.” represents Not Considered. "Encoding Scheme” includes unmixed (1D-Profile/2D-Image) and mixed schemes (Per-First-Encoding/ All-First-Encoding/Per-All-Alternate/Per-All-Parallel). ‘Per-First-
Encoding’ means first using the per-pixel method to extract deep features from 1D-profiles, then integrating the all-pixel method to enhance shading features from 2D-images, whereas ”ALL-First-Encoding”
operates conversely. 'Per-All-Alternate” alternates between the two operations, and ‘Per-All-Parallel’ means performing both in parallel. ‘Conn.tab.” means the regularization loss over the connection table proposed

in [16]. 'Sym.” and "Asym.” mean symmetric and asymmetric loss proposed in [18].

ignore spatial information, they are sensitive to global illu-
mination effects, requiring specific strategies (e.g., shadow
map [17], occlusion layer [16], and asymmetric loss [18]).
All-pixel methods [19], [20], [21], [22], [23], [24] primarily
exploit information from 2D-images to obtain deep features.
These methods feed aligned image-light pairs into a shared-
weight siamese network, extracting deep features from
shape clues with the help of the cross-correlation principle
of CNN [58]. However, the lack of explicit model reflectance
makes all-pixel methods sensitive to non-uniform materials.
Hybrid methods [25], [26], [27], [28] adopt a mixed
scheme to encode deep features from 1D-profiles and 2D-
images, thus solving unknown reflectance and global illu-
mination effects. For the solving scheme, GPS-Net [28] and
MT-PS-CNN [25] use a sequential per-pixel followed by all-
pixel method, PS-Transformer [27] performs both in parallel,
and SPS-Net [26] alternates between the two operations.
Architectures such as CNN [25], graph neural network
(GNN) [28], transformer [27], and self-attention [26] are uti-
lized for feature extraction from 1D-profiles or 2D-images.
Despite the advancements of SL-PSNs, they have not ex-
plicitly revealed the deep features encoded at this stage. Al-
though some studies [19], [20] indicate a correlation between
deep features and shading, their analysis focuses on light-
free features, where shading is related to light direction.
Moreover, their analysis lacks quantification validation.
The proposed ESSENCE-Net also adopts a mixed
scheme for encoding light-aware deep features, but it differs
from all previous methods in three aspects. 1) We analyze
the essence of SL-PSNs in addressing the challenges of PS
and validate that the learning involves removing unknown
reflectance and global illumination effects, essentially puri-
fying features highly correlated to shading. Based on this
observation, ESSENCE-Net employs shading supervision
to enhance shading features. 2) ESSENCE-Net employs an
input-aware mixed scheme (easy-first-encoding) based on
analyzing the difficulty in resolving unknown reflectance
and global illumination effects across various cases, distinct
from fixed strategies in [25], [26], [27], [28]. 3) We present
an analysis of network architectures for resolving unknown
reflectance and global illumination effects to encode deep
features.

2.3 Light-Free Deep Feature Decoding

In light-free deep feature decoder, normals are decoded from
the encoded deep features, which receive less attention in

existing research. Initially, observations under K lights are
fused to eliminate light-related features, where weighted
summation are used in per-pixel methods [14], [15], [16],
[17], [18], max-pooling [19], [20], [21], [22], [24], [30] (or
multi-scale max-pooling [23]) is used in all-pixel methods,
and transformer decoder [27] or max-pooling [25], [26],
[28] is used in hybrid methods. Subsequently, per-pixel
methods employ an MLP to recover the 3-vector normal
independently, while all-pixel or hybrid methods use CNNs
to recover the 3-channel normal map spatially. The pro-
posed ESSENCE-Net also utilizes max-pooling to fuse deep
features. However, unlike per-pixel methods, we consider
shape similarity for normal recovery. Unlike all-pixel and
hybrid methods, we propose spatial context-aware atten-
tion, as commonly used CNNs can only leverage local shape
similarity due to the limited effective receptive field [59].

3 REVISITING SUPERVISED LEARNING-BASED
PHOTOMETRIC STEREO NETWORKS (SL-PSNS)

This section revisits SL-PSNs in tackling two challenges:
unknown reflectance and global illumination effects. First,
we show that SL-PSNs inherently learn features highly
correlated to shading to remove unknown reflectance and
global illumination effects. Next, we analyze the difficulty
of addressing those two challenges from 1D-profiles or 2D-
images, proposing an easy-first-encoding strategy for opti-
mized shading features. Finally, we revisit the network
architectures to address those two challenges for encoding
shading features and propose spatial context-aware atten-
tion to decode normals from them. These analyses instruct
the network design in Section 4.

3.1

In this section, we show that per-pixel (all-pixel) methods
primarily learn deep features highly correlated to shading
from reflectance (shape) clues, i.e., addressing challenges
of unknown reflectance and global illumination effects by
removing them. These analyses guide the network design
in Section 4.1.

Revisiting Deep Feature

3.1.1 Analysis
Given a point with normal n € R? illuminated by light with
direction I € R3, the observed intensity I is given by

I = p(n,l,v)max(nT1,0) + 7, (1)
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where p is the reflectance, max(nTl,0) is shading with
attached shadows, 7 is global illumination effects (cast shad-
ows and inter-reflections), v € R? is the view direction.

It is obvious that I is influenced by p, max(n'l,0), and .
Traditional methods model p and 7 by simplified reflectance
models [5], [6], [7], [8] and outlier rejection [9], [10], [11], [12],
allowing shading to be isolated for normal recovery. For SL-
PSNs, we posit that deep features learned from 1D-profiles
or 2D-images convey less information relevant to p or 7 but
remove them to describe max(n'l,0), i.e., shading.
Encoding shading. SL-PSNs aim to estimate the normal n2,
and the deep features inherently include light I (shown in
Fig. 1) in light-aware deep feature encoder. Thus, it is reasonable
to assume that shading max(n™l,0) (linearly related to
normal) constitutes the major part of the deep features.
Resolving reflectance. Although all-pixel methods fuse
deep features with max-pooling for deep feature decoding,
they lack the utilization of intensity variations under differ-
ent lights (absent in 2D-images) for deep feature encoding,
thereby failing to model reflectance [41], [42]. In contrast,
per-pixel methods utilize reflectance clues from intensity
variations in 1D-profiles to encode deep features [41], [42].
However, the highly nonlinear relationship between re-
flectance and normal [40] makes it challenging to recover
normal with several dense layers [14], [15], [16], [17], [18].
Resolving global illumination effects. Although per-pixel
methods consider global illumination effects (abrupt inten-
sity changes in the observation map [14]) through shadow
map [17], occlusion layer [16], or asymmetric loss [18], they
lack the utilization of shape clues that contribute to these
effects (absent in 1D-profiles). In contrast, all-pixel methods
complement global illumination effects by leveraging shape
clues from 2D-images [41], [42]. However, recovering the
entire normal map from them is difficult due to the sparse
distribution and vague relationship between global illumi-
nation effects and normals.

Previous studies also support our hypothesis. Chen et
al. [19], [20] found a correlation between fused features and
shading (belonging to all-pixel methods). However, such
correlation can only be qualitatively verified, not quan-
titatively, because they focus on light-free deep features,
while shading is related to the light direction. Moreover, the
features extracted by per-pixel methods remain unexplored.
In contrast, we fill these gaps in the following section.

3.1.2 Validation

To validate the hypothesis proposed in Section 3.1.1, we con-
duct quantitative correlation and qualitative visualization
analysis of deep features extracted by SL-PSNs on DiLiGenT
dataset [46]. We select the most typical per-pixel (CNN-
PS [14]) and all-pixel (PS-FCN [19]) methods, whose concept
has been adopted by many state-of-the-art methods [15],
[16], [17], [18], [20], [52], [60]. Particularly, we consider the
corresponding types of deep features, i.e., the average and
max value at channel dimension in different layers for CNN-
PS [14] and PS-FCN [19], respectively3 . Following results are
based on the released models by authors of [14] and [19].

Correlation analysis. We use the mean absolute error be-
tween the deep features and ground truth shading (shading

3. More details on how to calculate the deep features can be found in
the supplementary material.
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Fig. 2. Quantitative analysis of the relationship between extracted fea-
tures by SL-PSNs and shading on 10 objects of DiLiGenT dataset [46].
Features 1 to 5 refer to the features extracted by the first five CNN layers
in light-aware deep feature encoder. (a) Shading error of CNN-PS [14].
Diffuse materials are easier to handle, whereas complex shapes are
more difficult. (b) Shading error of PS-FCN [19]. Simple shapes are
easier to handle, whereas complex shapes are more difficult.

error) for quantitative analysis. According to Fig. 2, the
shading error for both CNN-PS [14] and PS-FCN [19] de-
creases as the network goes deeper, validating our hypothe-
sis that the encoded features (especially features in the deep
layer) have a strong correlation with shading. Moreover,
we find a strong correlation between the shading error of
the deepest layer (Feature 5) and the normal estimation
error of L2 method [1] regarding different objects*. Since
the L2 method directly recovers normals from shading, the
normal estimation error inversely reflects the deviation from
shading. Therefore, such a strong correlation manifests that
the shading error we compute is highly correlated with
the actual deviation from the ground truth shading, which
enhances the validity of our quantitative verification.

Besides, we find that the shading error of CNN-PS [14] is
more reflectance-dependent, showing larger errors for non-
diffuse surfaces and smaller errors for diffuse ones, as it
exploits reflectance clues, while PS-FCN [19] is more shape-
dependent, exhibiting larger errors for complex shapes and
smaller errors for simple ones, as it exploits shape clues.
Visualization analysis. Fig. 3 illustrates the visualized fea-
tures in different layers of PS-FCN [19] and CNN-PS [14]°.
For CNN-PS, we select a few surface points to visualize
the corresponding features [14]. For PS-FCN [19], we show
the shading features under specific light directions. It is
obvious that as the network goes deeper, the features of
both methods become more like shading. Additionally, we
observe that per-pixel methods still assign non-zero values
for regions under the attached shadows, as shown in Fig. 3.
We speculate that the CNN may assign unrelated values,
as the attached shadows contain less useful information.
However, for all-pixel methods, attached shadows tend to
be relatively preserved due to a feature extraction on entire
images with shape clues, as shown in Fig. 3.

We analytically and experimentally show that SL-PSNs
inherently learn features highly correlated to shading, i.e.,
removing unknown reflectance and global illumination ef-
fects, where per-pixel methods focus more on modeling
reflectance from 1D-profiles, all-pixel methods primarily

4. The correlation coefficient is 0.935 (0.912) for CNN-PS [14] (PS-
FCN [19]), more details can be found in the supplementary material.

5. More randomly sampled qualitative results can be found in the
supplementary material.
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utilizing shape clues from 2D-images. These insights guide
the network design in Section 4.1 (e.g., shading supervision)
and form the basis for the subsequent analysis.

3.2 Reuvisiting Deep Feature Encoding

In this section, we first analyze the difficulty of addressing
PS challenges (i.e., unknown reflectance and global illumi-
nation effects) on shading encoding from 1D-profiles or 2D-
images and demonstrate that such difficulty is correlated
with information availability. We then propose an easy-first-
encoding strategy to facilitate resolving these two challenges
and encode more accurate shading features. These analyses
form the basis of the network design in Section 4.2.

3.2.1 Analysis of Per-Pixel or All-Pixel Methods

In PS, the input data includes information from three
dimensions, where 2D-images (i.e., the height and width
dimensions in the images) and 1D-profiles (i.e., the light
dimension) are utilized by SL-PSNs to address unknown
reflectance and global illumination effects.

Per-pixel methods. Per-pixel methods [14], [15], [16], [17],
[18] primarily utilize the information in 1D-profiles. The
observation I} P under i-th light can be described as:

1DP __
PP —

p(n,l;,v) max (nTlZ-7 O) + ;. 2)

where 1 < ¢ < K, and K represents the number of lights.
The variations in 1D-profile are primarily caused by changes
in known light directions. Thus, per-pixel methods are more
adept at modeling reflectance p. As a result, the deep
features extracted from 1D-profiles are mainly affected by
image number: the network struggles to exploit reflectance
clues to encode shading features given limited input images
(e.g., CNN-PS [14] performs poorly under sparse setup);
reflectance clues can be efficiently exploited given adequate
input images to encode deep features (e.g., various analytic
models [5], [6], [7], [8] can be fitted).

All-pixel methods. All-pixel methods [19], [20], [21], [22],
[23], [24] primarily utilize the variations in 2D-images. The
observation 1 JZD I of the j-th pixel in an image with height
H and width W under light direction ! can be described as:

®)

where 1 < j < HW. The variations in 2D-image are
primarily caused by changes in shape m. Thus, all-pixel
methods rely on shape clues and the cross-correlation prin-
ciple of CNN [58] to encode deep features. As a result, deep
features extracted from 2D-images is affected by the image

IJZDI p(n;,l,v) max (n;rl, 0) + 5.
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Fig. 4. Easy-first-encoding strategy on different cases.

resolution: while limited neighborhood information makes
shading extraction challenging given low resolution, more
accurate shading features can be extracted given higher
resolution. However, all-pixel methods struggle to handle
spatially varying bidirectional reflectance distribution func-
tion (SVBRDF) surfaces [20], [42] as non-uniform materials
harm CNN's ability to extract cross-correlated information.
In summary, the number and resolution of images affect
the performance of per-pixel and all-pixel methods, respec-
tively; SVBRDF surfaces also affect all-pixel methods.

3.2.2 Analysis of the Hybrid Methods

Hybrid methods combine per-pixel and all-pixel methods
to handle unknown reflectance and global illumination ef-
fects in light-aware deep feature encoder. The mixed encod-
ing scheme for deep features includes per-first-encoding®,
all-first-encoding®, per-all-alternateS, and per-all-parallel®.
However, previous hybrid methods employ different and
fixed strategies (e.g., per-first-encoding [25], [28], per-all-
alternate [26], per-all-parallel [27]), failing to achieve opti-
mal performance and lacking generalizability. In fact, deep
networks typically learn more accessible features first and
combine them to address complex problems later [38],
[61], e.g., easy-first-generation strategy applied in diffusion
models [43], [44], least-to-most strategy applied in large lan-
guage models [45]. Inspired by these, we propose an easy-
first-encoding approach, i.e., to encode deep features from
1D-profiles or 2D-images first while the other next in a
sequential mixed method, based on which has sufficient
information to improve SL-PSNs’ performance. Based on
the difficulty analyzed in Section 3.2.1 and insight of easy-
first-encoding strategy, we categorized the cases according to
relative difficulty, as shown in Fig. 4.

Case I: low resolution of the images results in limited
information in 2D-images for encoding shading features,

6. For a detailed explanation, see the notes in Tab. 1.
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while 1D-profiles provide relatively sufficient information.
Therefore, feature extraction should be performed in the
order of per-first-encoding.

Case II: insufficient images result in limited information
in 1D-profiles for modeling reflectance, while 2D-images
provide relatively sufficient information. Thus, all-first-
encoding is preferred.

Case III: sufficient images with high resolution result in
sufficient information in both 1D-profiles and 2D-images.
However, Eq. (2) shows that resolving n from several I, ilD P
is less difficult than resolving n; from several | sz I Because
across different ilD P thereis only one unknown n, whereas
across different ]ZD I there is several unknowns n;. In this
case, per-first-encoding strategy will perform better.

Case IV: non-uniform materials harm the performance to
extract shading features from 2D-images, while less affect
extraction from 1D-profiles. Therefore, per-first-encoding
should be implemented.

In practice, we find normalization strategy [14], [20],
[24], [28] may affect the performance of easy-first-encoding
strategy. While it benefits shading encoding by mitigating
the effect of Lambertian reflectance, which improves the
performance of normal estimation [20], its performance is
less effective on anisotropic material or complex-shaped
surfaces. We conduct more experimental validation on the
effectiveness of the easy-first-encoding strategy across Case I
to Case IV and the role of normalization in Section 5.2.

3.3 Revisiting Network Architectures

In this section, we analyze suitable network architectures
for resolving unknown reflectance and global illumination
effects to encode light-aware deep features and propose
spatial context-aware attention to decode the normal map
from light-free deep features (detailed in Section 4.3). These
analyses guide the network design in Sections 4.2 and 4.3.

3.3.1 Architectures for Deep Feature Encoding

An effective design for a deep feature encoder should be
tailored to the characteristics of different types of input data.
As discussed in Section 3.1, 1D-profiles capture intensity
variations caused by the reflectance at specific points, while
2D-images contain global illumination effects under a given
light direction. To address PS challenges in these two types
of data through feature encoding, we consider transformer
as a more suitable network structure for 1D-profiles, and
CNNs for 2D-images. In the following part of this section,
we analyze the rationale behind this choice with respect to
the distinct properties of each data type.

1D-profiles. An encoder for 1D-profiles must account for
the varying reflectance of objects to effectively extract shad-
ing features. However, the sequential nature of 1D-profiles
requires the encoder to be order-agnostic, ensuring that
reordering elements in the sequence does not significantly
affect performance. Furthermore, 1D-profiles exhibit ran-
domness across different points, and the amount of ben-
eficial information for shading feature extraction (such as
Lambertian-dominant reflectance or low-frequency compo-
nents [32], [40]) lacks consistency. This inconsistency is vali-
dated through statistical analysis of low-frequency informa-
tion content on the DiLiGenT dataset [46], as shown in Fig. 5.

6
10°
. o~ Ball
P1 P2 ‘ —e- Cat
e Pott
6 ‘ o~ Bear
Pot2
5 ‘ Buddha
Goblet
4 ‘ ‘\_ —e— Reading|
P3 4 ’ \/\ —o- Cow
P4 ‘ VN ~e— Harvest
3
E s
% i Y
P1 s
P2 Pos,
L L LT L L L L L B B
o
PAEE E & mmEE ]

0 16 32 a8 64 80 96

[ Low-frequency Points I Other Points Number of L.

Fig. 5. Visualization of low-frequency reflectance components on 1D-
profiles and statistics on frequency of low-frequency reflectance (point’s
reflectance that falls between 5 and 50 percentage of all points’ re-
flectance) with respect to the number of low-frequency reflectance in
1D-profiles.

Specifically, we establish upper and lower intensity bounds
(5th and 50th percentiles of all pixel values) to identify
points within this intensity range. A one-hot vector is then
formed, where a value of 1 represents low-frequency points,
and 0 represents the others. The number of 1 in the vector
reflects the amount of beneficial information in the 1D-
profiles. Statistical results show that nearly all objects exhibit
a flattened distribution in the amount of this information,
highlighting the inherent complexity of 1D-profiles.

While CNNs [14], [15], [16], [17], [25], GNNs [28], self-
attention [26], and transformer [27] are potential choices
for encoding 1D-profiles, we consider transformers to be
the most suitable option given these challenges. Specifically,
CNN:s are inherently limited in handling spatial information
in 1D sequential data due to their restricted receptive fields
and sensitivity to light-order variations. Converting 1D-
profiles into a 2D observation map may partially address
these limitations [14], but this approach is constrained in
sparse setups and less adaptable to hybrid network struc-
tures. GNNs and self-attention offer global feature utiliza-
tion and order-agnostic, but the performance of GNNs
is sensitive to node distance [62], and self-attention may
converge exponentially to a rank-1 matrix with depth [63].
In contrast, transformers overcome these issues by lever-
aging global reflectance patterns to extract deep shading
features from 1D-profiles while maintaining order-agnostic.
A performance comparison in Tab. 2 (Section 5) validates
the superiority of transformers for this task. Considering
the improvement, the extra computational consumption
introduced by the transformer can be ignored.
2D-images. An encoder for 2D-images should address
global illumination effects, with cast shadows being a key
contributor, to extract shading features. In PS, these effects
are often clustered in specific object regions and exhibit
limited correlation with distant regions, validated by a simi-
larity analysis on shadow patterns cast by different lights.
Specifically, we represent shadow patterns using a one-
hot vector for each surface point, where low pixel values
(<107%) are marked as 1 (shadow) and others as 0. We then
compute the cosine similarity between pairs of points. As
shown in Fig. 6, correlated shadow patterns are primar-
ily distributed within a small distance. Further statistical
analysis of shadow pattern similarity versus distance across
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Fig. 6. Visualization of correlations between shadow patterns of refer-
ence point and other points on object’s surface, as well as statistics
on frequency of correlated point pairs with respect to the distance and
corresponding referenced filter size.

all point pairs (Fig. 6) confirms that useful information for
addressing global illumination effects is concentrated in the
local region around each point. This analysis indicates that
utilizing global information for normal estimation provides
limited improvement, as the correlation of global patterns
diminishes with distance (Tab. 2, comparison between IDs
11 and 12). Additionally, leveraging global information sig-
nificantly increases training and inference costs. In contrast,
CNNs [19], [24] are a more suitable choice for 2D-image
encoders when computational resources are limited, due
to their strong ability to exploit local information while
maintaining significantly lower computational costs.

3.3.2 Architectures for Deep Feature Decoding

The goal of feature decoding is to extract surface normal
from shading features under K lights. Since shading fea-
tures contain both normal- and light-related information,
it is crucial to first fuse the features across K lights to
remove light-related components, and then decode the nor-
mals from normal-related information. Per-pixel methods
employ fully connected layers for feature fusion and de-
coding, followed by an L2-normalization layer for pixel-
wise normal estimation [14], [15], [16], [17], [18], while all-
pixel and hybrid methods use max-pooling [19], [20], [24],
[25], [26] or transformer [27] for feature fusion, followed by
simple CNNs with L2 normalization [19], [20], [24], [25],
[26] or MLP [29] for normal estimation. Despite all-pixel
or hybrid methods showing advantages in exploiting shape
clues like local similarity and continuity of surface normals
distribution, it is also restricted by the effective receptive
fields [59]. Incorporating global information is important
for more accurate normal extraction, since normals exhibit
global similarity and continuity. This implies that both dis-
tant and nearby points’ deep features can provide valuable
information for estimating normal at a specific point.

We illustrate the global similarity and continuity in
Fig. 7. Specifically, we calculate the cosine similarity be-
tween pairs of normal vectors and plot the number of
correlated point pairs (those with a cosine similarity greater
than 0.8) beyond varying distances in image coordinates.
Additionally, we record the reference filter size required to
include these points’ information. As shown in Fig. 7, many
points exhibit high correlation even when they are far apart,
while revealing shape-related clues. Generally, the plotted
curve is more convex compared to the previous shadow
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Fig. 7. Visualization of correlations between normals of reference point
and other points on object’s surface and statistics on frequency of
correlated point pairs with respect to the distance and corresponding
referenced filter size.

curve in Fig. 6. Leveraging such correlations would require
either very large filter sizes or deep CNN architectures,
which are less effective compared to transformers. This is
validated by the comparison between IDs 1 and 6 in Tab. 2.
Based on these insights, we propose spatial context-aware
attention for light-free deep feature decoding. The analyses
above form the foundation of the model design detailed in
Section 4.3, with further experimental validation provided
in Section 5.3.3.

4 DEEP SHADING NEURAL NETWORK

In this section, we introduce the proposed ESSENCE-Net
based on the insights of revisiting SL-PSNs in Section 3.

The overall architecture of ESSENCE-Net is illustrated in
Fig. 8, which comprises two parts: light-aware shading feature
encoder” and light-free shading feature decoder. We first align
images (normalized by maximum [14]) with light directions
through simple concatenation, allowing for rapid normal
estimation in an end-to-end manner. Specifically, based on
the analysis in Section 2.1, we replicate the 3-vector light
direction into a 3 x H x W light map and concatenate it with
the 3 x H x W image to form a 6 x H x W image-light pair.
Subsequently, all aligned image-light pairs under K light
directions are stacked to form a 6 x K x H x W input. The
stacked input is fed into light-aware shading feature encoder to
obtain deep shading features, which are then processed by
light-free shading feature decoder to generate accurate normal
maps.

The proposed ESSENCE-Net is trained by the guidance
of shading features in light-aware shading feature encoder, as
described in Section 4.1. We develop the blocks in encoder
according to the easy-first-encoding strategy, described in Sec-
tion 4.2. Additionally, ESSENCE-Net is designed to decode
accurate normal maps in light-free shading feature decoder with
spatial context-aware attention, as detailed in Section 4.3.

4.1

Previous SL-PSNs do not reveal the deep features and fail
to explicitly leverage them to facilitate resolving the PS
challenges. In contrast, based on insights from Section 3.2
that shading has a strong correlation with deep features,

Deep Feature Guided by Shading Supervision

7. The data flow of light-aware deep features is provided in the
supplementary material, demonstrating that the output light-free deep
features are unaffected by the order of lights.
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Fig. 8. The overall architecture of the proposed ESSENCE-Net (taking the per-first-encoding strategy as example). The values below each layer

represent the number of the output feature channels.

we introduce shading supervision for 1D-profiles and 2D-
images. An MLP is used to obtain accurate representations
of shading, which have been proven to enhance feature
quality by mapping features to the space of contrastive loss
in contrastive learning [64], [65], [66]. Specifically, the deep
shading features extracted from both are processed through
an MLP to obtain shading, which are used to calculate shad-
ing loss. For shading features extracted from 1D-profiles
with dimensions of 128 x K x H/2 x W/2, we first reshape
them into HW/4 x K x 128, then apply two linear layers:
the first reduces the dimensions to HW/4 x K x 64 and
the second reduces it to HW/4 x K x 1. We then reshape
the output to K x H/2 x W/2 for loss calculation with
the ground truth shading (resized to K x H/2 x W/2). For
shading features extracted from 2D-images with dimensions
of 128 x K x H/2 x W/2, we apply two 3D convolutional
layers to first reduce the dimensions to 64 x K x H/2 x W /2
and then to K x H/2 x W/2, allowing for loss calculation
with the ground truth shading (resized to K x H/2 x W/2).
We adopt the mean squared error to minimize the gap
between the extracted and ground truth shadings, as follows

1 ~ 9
= — , 4
Lipp I Ek ha(Sk,h,w Skhw) s 4)
1 ~ 9
Lopr = KHW E E (Sk,hyw — Skyhyw)”s ®)

k haw

where Lipp and Lop; represent the shading loss for 1D-
profiles and 2D-images, S and S denote the extracted and
ground truth shading.

Additionally, we apply the commonly used cosine simi-
larity loss to minimize the error between the predicted and
ground truth normal map, which is formulated as

1 ~
ACnormal - HW £ w(1 Nh,w Nh,w)7

(6)

where N and N denote the predicted and ground truth
normal, and - indicates the dot product operation.

We empirically assign weights (0.25) to shading loss. The
overall loss function is

L =0.25x Lipp + 0.25 X Lopr + Lnormal- 7)

By integrating shading loss, the network encodes more
accurate shading features and achieves faster convergence.

4.2 Deep Feature Encoding by Easy-First-Encoding
Strategy

Previous hybrid methods employ different and fixed strate-
gies to address the challenges of PS, which fail to achieve
optimal performance and lack generalizability. By contrast,
based on the analysis in Sections 3.2 and 3.3 regarding the
strategy and network architectures for addressing these two
challenges, we adopt an easy-first-encoding strategy and im-
plement it using appropriate architectures (i.e., transformer
for 1D-profiles and CNN for 2D-images).

First, we employ a 3D CNN layer with kernel size
1 x 1 x 1 to increase dimensionality (from 6 x K x H x W
to 64 x K x H x W), followed by a downsampling layer to
reduce feature size (from 64 x K x H x W to 128 x K x
H/2 x W/2). To encode shading features from 1D-profiles,
we employ five transformer layers (each with a 4-head self-
attention and an MLP) along the light (2nd) dimension, as
analyzed in Section 3.3.1, detailed in Fig. 9. Transformer
can maintain light permutation invariance compared to
CNN [26] and can prevent rank collapse compared to self-
attention [63], thus achieving better results. To encode shad-
ing features from 2D-images, we employ three 3D CNN
layers with kernel size 1 x 3 x 3, each followed by a
Leaky ReLU layer, as analyzed in Section 3.3.1. Both the
transformer for encoding features from 1D-profiles and the
3D CNN for encoding features from 2D-images do not alter
the feature dimensions (i.e., 128 x K x H/2 x W/2).

4.3 Deep Feature Decoding by Spatial Context-Aware
Attention

Previous methods have extensively explored network archi-
tectures for encoding deep features but pay little attention
to the network architectures for deep feature decoding, as
analyzed in Section 3.3. Thus, we focus more on the network
architectures of light-free shading feature decoder. Previous per-
pixel methods lacked the utilization of spatial information in
normal decoding. All-pixel and hybrid methods using CNN
architectures could only leverage local shape similarities to
decode normals due to the limited receptive fields [59]. In
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Fig. 9. Implementation details of transformer in encoding deep features from 1D-profiles (1DP-FE). The notation below each block represents the
output feature size. B represents the batch size, 128 is the number of feature channels, H and W are the image width and height, and K is the
number of lights. The number 4 indicates the number (4) of the heads in multi-head self-attention.
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Fig. 10. Implementation details of transformer in decoding the normal map from deep shading features (T-ND). The notation below each block
represents the output feature size. B represents the batch size, 128 is the number of feature channels, H and W are the image width and height.
The number 4 indicates the number (4) of the heads in multi-head self-attention.

contrast, based on the analysis in Section 3.3.2 that spatial
context-aware attention can leverage shape similarity glob-
ally, we employ transformer to decode the normal map from
deep shading features. In light-free shading feature decoder, the
deep shading features are first fed into a max-pooling layer
to remove light information (from 128 x K x H/2 x W/2 to
128 x H/2 x W/2). Subsequently, two transformer layers
are employed to decode normal features, which utilize
self-attention mechanisms to identify regions with similar
shapes globally along the spatial dimensions (2nd and
3rd), as detailed in Fig. 10. Since the features have been
downsampled on 2D-images (1/4) and 1D-profiles (1/K),
it is feasible to utilize the spatial context-aware attention
of transformer with lower computational cost. Finally, an
upsampling layer followed by a 3D CNN layer with kernel
size 1 x 1 x 1 and L2 normalization is used to output an
accurate normal map (from 128 x H/2x W /2 to 3x H x W).

5 NETWORK ANALYSIS AND ABLATION STUDY

In this section, we analyze the proposed ESSENCE-Net to
validate the effectiveness of the proposed shading supervi-
sion, easy-first-encoding strategy, and network architectures.
We retrain all the alternatives of ESSENCE-Net to ensure
the validity of ablation studies by carefully controlling vari-
ations in each alternative and keeping other parts fixed.

Implementation Details. ESSENCE-Net contains 1, 365, 378
parameters and is implemented using PyTorch with the
Adam optimizer. It is trained for approximately 8 hours
with an NVIDIA GeForce RTX 3090 GPU on synthetic
datasets proposed in [20], following the training settings
in [20]. The mean angular error (MAE) between estimated
and ground truth normals is used as the evaluation metric.

|—— w/ Shading Supervision L ;..

0.24 1 [—— wlo Shading Supervision L ...,

[—— w/ Shading Supervision DiLiGenT
w/o Shading Supervision DiLiGenT

*\, |- - - -w/ Shading Supervision Validation

w/ Shading Supervision L ;pp 94 \v
w/ Shading Supervision L ,p

0.22

Loss

0.20 -

0.02

0.00 T T T T T T T T T T T T
15 20 25 30 0 5 10 15 20 25 30

Epochs

(a)

Fig. 11. The effect of shading supervision on convergence. (a) Man-
ifestation of convergence in loss. (b) Manifestation of convergence in
validation and DiLiGenT [46] datasets.

5.1 Validation of the Effectiveness on Shading Super-
vision for Deep Feature

5.1.1 Ablation Experiments

To validate the effectiveness of the proposed shading su-
pervision strategy, we conducted ablation experiments on
the DiLiGenT dataset [46]. The experiments with IDs 1
and 2 in Tab. 2 compare the performance of the proposed
method w/ and w/o shading supervision. Adding shading
as an intermediate supervision improves the performance
of nearly all objects. The second column in Fig. 15 shows
the shading features extracted by the proposed ESSENCE-
Net. The shading information is close to the ground-truth,
whether inferred from 1D-profiles or 2D-images, which
indicates the effectiveness of shading supervision.

5.1.2 Effectiveness on Convergence

To validate the effectiveness of the proposed shading super-
vision in facilitating convergence, we visualized the changes
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TABLE 2
Quantitative Comparison of Results for Alternatives of ESSENCE-Net on the DiLiGenT Benchmark Dataset [46].

D Normalization Shading Strategy Encoder Encoder Decoder BALL CAT POTl BEAR POT2 BUDDHA GOBLET READING COW HARVEST AVG.
upervision (1D-Profiles)  (2D-Images)
1 Max v Per-First-Encoding ~ Transformer CNN Transformer | 201 = 423 494 426 4.90 6.25 6.32 7.72 4.99 11.22 5.69
2 Max X Per-First-Encoding ~ Transformer CNN Transformer | 240 425 598 4.82 6.52 6.44 6.88 8.64 5.14 11.43 6.25
3 Max v All-First-Encoding ~ Transformer CNN Transformer | 212 | 504 532 4.74 7.05 7.03 8.03 9.43 6.83 13.58 6.92
4 Max v Per-All-Parallel Transformer CNN Transformer | 2.66 @ 529  6.34 4.25 6.36 6.46 6.63 7.36 6.90 11.57 6.38
5 Max v Per-All-Alternate Transformer CNN Transformer | 273 496 581 4.68 5.50 6.52 6.89 8.41 5.95 12.60 641
6 Max v Per-First-Encoding Transformer CNN CNN 2.60 4.77 6.35 423 5.88 6.67 6.80 8.48 5.43 11.72 6.29
7 Max v Per-First-Encoding  Self-Attention CNN Transformer | 214 490 581 4.25 5.93 6.67 7.43 8.02 5.17 12.11 6.24
8 Max v Per-First-Encoding CNN CNN Transformer = 3.69 550 6.74 6.23 7.80 7.99 10.17 10.81 8.32 14.67 8.19
9 L2 v Per-First-Encoding ~ Transformer CNN Transformer [ 221 | 509 554 5.01 543 6.51 6.60 8.43 545 10.51 6.08
10 w/o v Per-First-Encoding ~ Transformer CNN Transformer | 295 566  6.62 4.01 5.94 7.69 8.29 15.51 5.10 14.48 7.62
11 Max v Per-First-Encoding ~ Transformer CNN Transformer | 234 455 577 4.32 5.68 6.60 6.92 8.96 5.88 11.56 6.26
12* Max v Per-First-Encoding  Transformer  Transformer  Transformer | 285 450 557 3.96 5.93 6.57 6.76 8.63 5.43 13.12 6.28

*The training size for experiments with IDs 11 & 12 is halved compared to other experiments to accommodat

TABLE 3
Performance of ESSENCE-Net w/ and w/o Shading Supervision on
SynTestMERL Dataset, Showing the Average MAE of 100 Materials.

Method SPHERE BUNNY ARMADILLO DRAGON
w/o Shading Supervision 2.71 2.80 3.64 3.55
w/ Shading Supervision 2.39 2.56 3.30 3.17

in loss and normal estimation performance during the train-
ing process. Fig. 11a illustrates the change in normal loss
(Lnormar) and shading loss (Lipp, Lopp) during the training
process w/ and w/o shading supervision. Shading supervi-
sion significantly accelerates the convergence speed, and the
shading loss of 1D-profiles (L£ipp) and 2D-images (Lopy) is
markedly decreasing and maintained at a low level. Fig. 11b
shows the convergence on the validation and DiLiGenT [46]
datasets. Shading supervision significantly speeds up the
convergence and achieves better performance. These exper-
imental results indicate that shading supervision enables
ESSENCE-Net to not only learn more accurate shading
features but also accelerate convergence speed.

5.1.3 Performance on Data with Different Materials

To evaluate the performance of the proposed shading su-
pervision strategy across various materials, we conducted
experiments on SynTest™EFRL dataset, which includes
SPHERE, BUNNY, ARMADILLO, and DRAGON objects, each
with 100 materials from the MERL dataset [67]. Tab. 3 shows
an improvement of the proposed shading supervision by a
comparison between w/ and w/o shading supervision®, vali-
dating the effectiveness of the shading supervision strategy.

5.2 Validation of the Effectiveness on Easy-First-
Encoding Learning Strategy for Deep Feature Encoding

To validate the effectiveness of the proposed easy-first-
encoding learning strategy, we compared it with other strate-
gies across Case I to Case IV as classified in Section 3.2.
Validation on different resolutions: Case I to Case IIIL
According to the analysis in Section 3.2, extracting shading
features from 1D-profiles is consistently relatively easy from
Case I to Case III. Figs. 12a and 12b show the performance
of different strategies as the image resolution increases (32
and 96 images), with the models retrained using the corre-
sponding image resolutions. The easy-first-encoding strategy
(per-first-encoding) outperforms other strategies.

8. For more detailed performance on the 100 materials, please refer
to the supplementary material.

e the usage of transformer in 2D-images.

Validation on different numbers of images: Case II to
Case III. According to the analysis in Section 3.2, from
Case II to Case III, the ease of extracting shading features
from 2D-images will be surpassed by that of 1D-profiles.
We retrain the models and test their performance using the
same number of images (less than 32). Fig. 12c shows that as
the image number increases to a certain number (7), the per-
formance of per-first-encoding gradually surpasses the all-
first-encoding w/o0 normalization, indicating the validity of
easy-first-encoding strategy. Moreover, w/ normalization, this
surpassing occurs earlier because normalization reduces the
difficulty of extracting shading features from 1D-profiles.
And experiments with IDs 1, 3, 4, and 5 in Tab. 2 demon-
strate the superiority of the easy-first-encoding strategy under
dense inputs. Fig. 12d further illustrates the performance
of the proposed easy-first-encoding strategy on DiLiGenT10?
dataset [47], where the per-first-encoding strategy surpasses
the all-first-encoding strategy at 11 and 6 images, w/o and
w/ normalization, respectively. Fig. 13a further elucidates
the specific performance of the easy-first-encoding strategy,
showing that w/o normalization, the advantage of the per-
first-encoding strategy becomes more apparent (blue) as the
number of images increases, especially on isotropic and
simple-shaped surfaces, as extracting shading features from
1D-profiles becomes easier with more images’. In contrast,
normalization reduces the difficulty of extracting shading
features from 1D-profiles and 2D-images, positively affect-
ing the easy-first-encoding strategy.

Validation on SVBRDF surfaces: Case IV. According to the
analysis in Section 3.2, no-uniform materials make feature
extraction from 2D-images more challenging. Fig. 14 shows
that the performance of easy-first-encoding strategy (per-first-
encoding) far exceeds that of comparative methods all-
first-encoding, per-all-alternate, and per-all-parallel. Fig. 15
shows that shading features extracted by per-first-encoding
are significantly closer to ground truth. In contrast, shading
features extracted in all-first-encoding and per-all-parallel
orders are significantly affected by non-uniform materials.
Effectiveness of normalization strategy. According to the
analysis in Section 3.2, normalization preprocessing signifi-
cantly reduces the difficulty of extracting shading features,
especially for isotropic and simple-shaped surfaces. Fig. 12
demonstrates that normalization consistently improves the
performance of normal estimation, regardless of the strategy
or case. Fig. 13b illustrates the impact of normalization
on per-first-encoding and all-first-encoding strategies across

9. For more detailed performance of the easy-first-encoding strategy on
DiLiGenT10* dataset [47], please refer to the supplementary material.
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Fig. 14. Performance of different learning strategies on SVBRDF sur-
faces from the CyclesPS dataset [14].

various surfaces, showing significant effects on isotropic
and simple-shaped surfaces while still beneficial but less
prominent for anisotropic and complex-shaped surfaces'’.
Experiments in Tab. 2 with IDs 1, 9, and 10 compare the
effects of commonly used max normalization, L2 normal-
ization, and w/o normalization, indicating that max normal-
ization better facilitates the extraction of shading features.

10. For more detailed performance of the normalization strategy on
DiLiGenT10* dataset [47], please refer to the supplementary material.
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Fig. 15. Shading features extracted from 1D-profiles (1DP) and 2D-
images (2Dl) on CyclesPS [14] for different strategies.
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5.3 Validation of the Effectiveness on Network Archi-
tectures

5.3.1 Effectiveness of Transformer in 1D-Profiles

To validate the effectiveness of the transformer architecture
in 1D-profiles, we compared its performance with CNN and
self-attention on the DiLiGenT dataset [46]. We also con-
ducted comparative analyses of the attention maps between
transformer and self-attention. Experiments with IDs 1, 7,
and 8 in Tab. 2 show that transformer outperforms CNN
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Fig. 16. Attention maps of transformer and self-attention on extracting
features from 1D-profiles. «, 8, v ,0, and 7 are five consecutive trans-
former or self-attention layers. The first row and column of each attention
map represent the values of the 1D-profiles.

and self-attention almost on all objects. Fig. 16 visualizes the
attention and error maps for self-attention and transformer
on HARVEST with 20 images. It shows that self-attention
assigns high attention values on the diagonal line of the
attention maps, e.g., § layer, while transformer does not, sug-
gesting that self-attention focuses less on global information
exchange within 1D-profiles than transformer. Additionally,
self-attention has greater attention on shadow regions, e.g.,
point C in the attention maps of the v and 7 layers, while
transformer relies more on information from general reflec-
tion points to encode shading features. The error map also
indicates that transformer better handles general reflectance
and shadow areas. These experimental results indicate that
transformer can more effectively leverage global informa-
tion from 1D-profiles to address unknown reflectance issues
for encoding shading features.

5.3.2 Effectiveness of CNN in 2D-Images

To validate the effectiveness of CNN architecture in 2D-
images, we evaluate its performance in handling shadows
and compare its normal estimation performance with that of
transformer on the DiLiGenT dataset [46]. We compute the
shading errors in shadow regions (threshold set at 109 [40])
for each layer, as shown in Fig. 17. As the processing shifts
from 1D-profiles to 2D-images, there is a significant decrease
in shading error, validating the hypothesis in Section 3.3.1
that global illumination effects can be complemented by
shape clues and the cross-correlation principle of CNN.
Experiments with IDs 11 and 12 in Tab. 2 compares the
performance of both approaches when training sizes are
halved. The performance of CNN is not inferior to that of
transformer, validating its effectiveness in encoding shading
features from 2D-images.

5.3.3 Effectiveness of Spatial Context-Aware Attention
Scheme in Shading Feature Decoding

To validate the effectiveness of the proposed spatial context-
aware attention in normal decoding, we compare its per-
formance with CNN on the DiLiGenT dataset [46] and
visualized the attention maps of objects from CyclesPS [14]
for in-depth analysis. Experiments with IDs 1 & 6 in Tab. 2
compare the performance of different decoding methods.
With spatial context-aware attention, transformer performs
better on most objects than CNN, whether on objects with
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Fig. 17. The shading error variation of the proposed ESSENCE-Net in
shadow regions as the network goes deeper.
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Fig. 18. Comparison between the transformer and CNN for normal
decoding in regions with severe shadows.

general reflectance (e.g., BALL, POT1) or objects with signif-
icant global illumination effects (e.g., READING). We select
some non-convex objects of DiLiGenT [46] and CyclesPS [14]
datasets to show the performance in shadow areas in Fig. 18.
Using transformer with spatial context-aware attention for
normal decoding results in significantly better performance
in shadow regions. Fig. 19 shows the attention maps of
transformer when decoding surface normals. Transformer
focuses not only on the neighborhood information of the
target point but also on regions with similar normals. More-
over, for regions susceptible to shadow effects, such as point
C on PIG, there is a lack of effective information within
the neighborhood. Transformer primarily seeks points with
similar shapes globally; for instance, there is a greater focus
on the lower left part of the face, aiding in decoding normal
for point C in the ear region. Consequently, the proposed
spatial context-aware attention can decode normal maps
more accurately by leveraging shape similarity globally.

5.3.4 Effects of the Network Architecture Number

To determine the proper block numbers of 1DP-FE (1D-
profile feature extractor), 2DI-FE (2D-image feature ex-
tractor), and T-ND (transformer-based normal decoder),
we present both training metrics (training time, resource
consumption, and MAE on the validation dataset during
training) and testing performance (MAE on DiLiGenT [46],
DiLiGenT10? [47], and DiLiGenT-II [48] datasets) in Fig. 20.
Number of 1DP-FE: As shown in Fig. 20a, increasing the
number of 1DP-FE does not result in continuous improve-
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Fig. 19. Visualization of the attention maps for the transformer decoder.

ments on the validation dataset, while both training time
and memory consumption increase. We therefore choose 5
1DP-FE blocks for encoding deep features from 1D-profiles.
Furthermore, as shown in Fig. 20b, the MAE on the three
benchmark datasets does not consistently decrease with
more 1DP-FE blocks, validating that 5 1DP-FE blocks are
enough for deep feature encoding and that additional blocks
may lead to overfitting.

Number of 2DI-FE: As shown in Fig. 20c, during training,
the MAE on the validation dataset significantly decreases
when the number of 2DI-FE increases to 3, after which it
stabilizes, while the training time and memory consumption
continue to rise. Thus, we select 3 2DI-FE blocks to extract
deep features from 2D-images. As shown in Fig. 20d, the
MAE on the benchmark datasets further validates the opti-
mal performance with 3 2DI-FE blocks.

Number of T-ND: As shown in Fig. 20e, 2 T-ND blocks al-
ready show excellent performance on the validation dataset.
Thus, we choose 2 T-ND blocks for normal decoding which
avoids excessive computational resources at the same time.
The performance on benchmark datasets in Fig. 20f confirms
that 2 T-ND blocks achieve optimal performance on the
benchmark datasets.

6 OVERALL PERFORMANCE EXPERIMENTS

This section presents the overall performance of the pro-
posed ESSENCE-Net on the pre-trained models and com-
pares it with state-of-the-art methods on three real-world
datasets. We train ESSENCE-Net with 32 input images
for dense setups and 10 input images for sparse setups!!.
We evaluate ESSENCE-Net on real-world datasets DiLi-
GenT [46], DiLiGenT10? [47], and DiLiGenT-1I [48].

11. The differing performances between models trained with 10 im-
ages and 32 images can be found in the supplementary materials.

13

Training Performace

Testing Performace
|—=— Training Time

T
16 1 |—e— Memory Consumption

I

I
nsun / 155 14 V(A‘\\/\'
4] |—4— MAE on Validation Datas?t |—o— MAE on DiLiGenT Dataset

o 150 12 [—— MAE on DiLiGenT10? Dataset
0] W |—o— MAE on DiLiGenT-M Dataset

& 45 < <

g 104 = 104 1

T Q—"M—)—)——_"\)

i
|
6 i
7 T2 s d s e 7
Number of 1DP-FE

Number of 1DP-FE
(@) " G

T
4 I
I
.___.__.———0/.——‘ da4
13 i 144
|
I
I
I
] ' —H4.2
I
10 i —_——
I
9 1 440 s !
1 I
] I
I 4 1
! 6 ——— |
f
7

|
T TR S T S SR A N
Number of 2DI-FE Number of 2DI-FE
@ w &)
|
144 i {44

—_— 144 W

i I
I I
12 ! 124 !
| 142 |
' < '

| . ] ——
I ]
/ I * !
I I

87 ! 6-| “W

T ; T T T 3.8 T t T T T
1 2 3 4 5 1 2 3 4 5
Number of T-ND Number of T-ND

(e)

MAE
IAE

Hours/GB
M,

1

MAE
E

Hours/GB
M,

Fig. 20. The training performance (training time, resource consumption,
and MAE on the validation dataset) and testing performance (MAE on
DiLiGenT [46], DiLiGenT10? [47], and DiLiGenT-II [48] datasets) under
different numbers of 1DP-FE, 2DI-FE, and T-ND blocks.

6.1

DiLiGenT dataset [46] consists of 10 objects with 96 images,
commonly used for evaluating photometric stereo methods.

Performance on DiLiGenT Dataset

6.1.1 Dense Input

To validate the effectiveness of the proposed ESSENCE-Net
in addressing unknown reflectance and global illumination
effects, we compare its performance against conventional
methods (L2 [1], IA14 [68], ST14 [40]), per-pixel SL-PSNs
(DPSN [69], CNN-PS [14], PX-Net [17]), all-pixel SL-PSNs
(PS—FCN+N [20], NormAttention-PSN [24], Wang20 [30]),
and hybrid SL-PSNs (GPS-Net [28], SPS-Net [26], MT-PS-
CNN [25], HT21 [70], Uni MS-PS [71]) on the DiLiGenT [46]
dataset with 96 input images'?, as shown in Tab. 4. Com-
pared to previous methods, ESSENCE-Net shows superior
performance on general reflective surfaces (e.g.,, CAT and
Cow) and complex surfaces heavily influenced by global
illumination effects (e.g., READING and HARVEST). Bene-
fiting from the proposed shading features encoding and
decoding framework, ESSENCE-Net achieves state-of-the-
art performance with an average MAE of 5.69°. The experi-
mental results validate the effectiveness of ESSENCE-Net in
handling the challenges posed by unknown reflectance and
global illumination effects.

12. For qualitative comparison on the DiLiGenT [46] dataset with
dense inputs, please refer to the supplemental material.
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TABLE 4
Comparison of the Proposed ESSENCE-Net with Existing State-of-the-art Methods in a Dense Setting on the DiLiGenT Benchmark Dataset [46].

Category Method BALL CAT Potrl BEAR PoOT2 BUDDHA GOBLET READING COw HARVEST AVG.
L2 [1] 410 841 889 839  14.65 14.92 18.50 19.80 25.60 30.62 15.39

Conventional 1A14 [68] 334 674 6.64 7.11 8.77 10.47 9.71 14.19 13.05 25.95 10.60
ST14 [40] 174 612 651 6.12 8.78 10.60 10.09 13.63 13.93 25.44 10.30

DPSN [69] 202 654 7.05 6.31 7.86 12.68 11.28 15.51 8.01 16.86 9.41

Per-pixel CNN-PS [14] 212 438 537 4.20 6.38 8.07 7.42 12.12 7.92 14.08 721
PX-Net [17] 195 426 486 3.46 5.03 7.58 6.71 9.78 4.72 13.30 6.17

PS-FCNTV [20] 267 473 615 5.01 7.15 7.56 7.88 10.98 6.70 12.42 7.12

All-pixel NormAttention-PSN [24] | 293 465 5.96 4.80 6.42 7.12 7.49 9.93 5.99 12.28 6.76
Wang?20 [30] 178 466 646 4.12 6.45 6.09 7.22 10.05 6.33 13.34 6.65

GPS-Net [28] 292 542 6.04 5.07 7.01 7 9.00 13.58 6.14 15.14 7.81

SPS-Net [26] 280 510 7.50 - 7.40 6.90 7.10 11.90 6.30 13.70 7.60

. MT-PS-CNN [25] 229 587 692 5.79 6.89 6.85 7.88 11.94 7.48 13.71 7.56
Hybrid HT21 [70] 230 450 5.03 3.66 5.03 722 6.95 11.30 4.85 12.70 6.35
Uni MS-PS$ [71] 193 305 385 2.64 4.32 5.88 6.40 7.31 3.76 10.44 4.96

ESSENCE-Net 211 423 494 4.26 4.90 6.25 6.32 7.72 4.99 11.22 5.69

Results with § are obtained with 30 images as input. The first 20 images of BEAR are discarded in CNN-PS [14], PX-Net [17], PS-FCNTY [20],
NormAttention-PSN [24], Wang20 [30], GPS-Net [28], HT21 [70], and ESSENCE-Net.

TABLE 5
A Comparison of the Proposed ESSENCE-Net and Uni MS-PS [71] in Terms of Training Parameters and Testing Time on the DiLiGenT
Benchmark Dataset [46] (with 96 Input Images).

Method Training Testing Time (second)f
Parameters  Materials Time (hour) | BALL CAT POTl BEAR POT2 BUDDHA GOBLET READING COW HARVEST Average
Uni MS-PS [71] 80M 200000 72% 7343 59379 591.52 74.08 592.94 588.09 583.58 74.76 72.73 587.83 383.28
ESSENCE-Net ™M 100 8t 0.38 1.26 1.46 0.74 1.03 1.01 1.31 0.74 0.65 1.28 0.99

Results with T are obtained on an NVIDIA GeForce RTX 3090 GPU (24GB), while results with 1 are obtained on an NVIDIA A100 GPU (80GB).

As shown in Tabs. 4 and 5, the proposed ESSENCE-Net
demonstrates competitive performance compared to Uni
MS-PS [71], despite being trained with significantly fewer
materials (100 materials for ESSENCE-Net vs. 200,000 ma-
terials for Uni MS-PS [71], dataset not released). This high-
lights the effectiveness of the proposed strategies, including
shading supervision, easy-first-encoding for deep shading
feature encoding, and spatial context-aware attention for
normal decoding, in achieving optimal normal estimation
accuracy. Moreover, the proposed ESSENCE-Net excels with
its lightweight design, featuring only 1 million learnable
parameters, which is two orders of magnitude fewer than
Uni MS-PS (80M) [71]. This leads to significantly faster train-
ing speed (8 RTX3090 hours for ours vs. 72 A100 hours for
Uni MS-PS [71]) and significantly faster testing speed (0.99
seconds for ours vs. 383.28 seconds for Uni MS-PS [71]).
The remarkable training efficiency and high accuracy of
ESSENCE-Net make it highly competitive for real-world
applications, such as industrial quality inspection [2], where
efficiency is of utmost importance.

6.1.2 Sparse Input

Under a sparse set of lights, the limited information in
1D-profiles makes normal estimation challenging. Tab. 6
compares the proposed ESSENCE-Net with state-of-the-art
sparse photometric stereo methods [14], [16], [17], [18], [20],
[26], [27], [28], [30] on the DiLiGenT [46] dataset with 10
input images'®. We randomly sample 10 out of 96 images
for normal estimation. We repeat this process 100 times
and report the average MAE. ESSENCE-Net outperforms
all methods with an average MAE of 6.98°, even surpassing
most methods under dense inputs (Tab. 4), indicating that

13. For qualitative comparison on the DiLiGenT [46] dataset with
sparse inputs, please refer to the supplemental material.

ESSENCE-Net can effectively handle unknown reflectance
and global illumination effects even under sparse setups.

6.2 Performance on DiLiGenT10? Dataset

To evaluate the performance of the proposed ESSENCE-Net
across various material and shapes, we conducted experi-
ments on the DiLiGenT10* dataset [47], which comprises 100
objects with 10 shapes and 10 materials. The comparison be-
tween ESSENCE-Net and existing state-of-the-art methods
is illustrated in Fig. 21. Benchmark results of the compara-
tive methods (L2 [1], ST14 [40], PS-FCN [19], CNN-PS [14],
SPLINE-Net [18], GPS-Net [28], and PX-Net [17], Uni MS-
PS [71]) are collected from [47] or the authors. The proposed
ESSENCE-Net performs remarkably well across various re-
flective and geometric surfaces, achieving an average MAE
of 13.81°, indicating its effectiveness in handling various un-
known reflectance and global illumination effects. Although
the proposed ESSENCE-Net demonstrates slightly lower
accuracy in normal estimation compared to Uni MS-PS [71]
on the DiLiGenT10* dataset [47], it significantly outperforms
Uni MS-PS [71] in terms of efficiency, as described in Tab. 5.

6.3 Performance on DiLiGenT-1I Dataset

To evaluate the ability to estimate shape details of
ESSENCE-Net, we conducted experiments on the DiLiGenT-
II dataset [48], which comprises 30 near-planar scenes
with rich details featuring metallic, specular, rough, and
translucent materials. The comparison between ESSENCE-
Net and state-of-the-art methods is shown in Tab. 7. Bench-
mark results of comparative methods (L2 [1], WG10 [10],
ST14 [40], PS-FCN [19], CNN-PS [14], PX-Net [17], and GPS-
Net [28], Uni MS-PS [71]) are collected from [48] or the
authors. ESSENCE-Net performs excellently across various
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TABLE 6
Comparison of the Proposed ESSENCE-Net with Existing State-of-the-art Methods in a Sparse Setting (10 Input Images) on the DiLiGenT [46]
Benchmark Dataset. All Results Are the Averages of 100 Random Experiments.

Method BALL CAT PoOTl BEAR POT2 BUDDHA GOBLET READING COW HARVEST AVG.
SPLINE-Net [18] 4.96 7.52 8.77 5.99 11.79 10.07 10.43 16.13 8.80 19.05 10.35
LMPS [16] 3.97 6.69 7.30 8.73 9.74 11.36 10.46 14.37 10.19 17.33 10.01
PS-FCNT [20] 4.26 6.43 7.84 6.52 9.96 9.52 10.32 12.86 12.06 17.50 9.72
SPS-Net [26] 4.60 6.90 8.90 - 9.00 8.00 9.00 13.60 8.30 16.70 9.44
GPS-Net [28] 4.33 6.81 7.50 6.34 8.38 8.87 10.79 15.00 9.34 16.92 9.43
CNN-PS [14] 4.06 6.54 6.94 5.79 8.23 9.97 10.45 13.63 9.88 17.44 9.29
PX-Net [28] 2.50 6.30 7.00 4.90 7.70 9.40 9.70 13.10 7.20 16.10 8.37
Wang?20 [30] 2.30 5.62 7.08 5.18 8.19 7.05 8.80 10.88 7.53 15.26 7.79
PS-Transformer [27] 3.27 5.34 6.06 4.88 6.97 8.65 9.28 11.24 6.54 14.41 7.66
ESSENCE-Net 2.14 5.14 6.11 5.29 6.87 7.16 8.89 8.12 6.62 13.42 6.98

The first 20 images of BEAR are discarded, except for LMPS [16].

CNN-PS (15.78/13.99)
73 16 14 16 19
1494129213 22

PS-FCN (16.21/15.10)
e 1 1 17 2 2
159715871219 1612 15 27
14110 11739989 22 10 22 31
19,12 21101798 20 15 17 24
1914 20 13 16 10 198131 13
nfzBLBYBRY A
10111011 179521 14 20 22
26113 20 11 10 12 129998 14
5710 8 17 34 25 25 23 23 28
1968 21 5 17 11128810 16

ST14 (18.34/17.29)
[E578 105891 13 19 10 23
220 1587 26 11 19 17 29 28
119912 12 11 11 16 15 19 31
1925 20 13 26 16 17 18 28 23
10122093 1710 13 33 19 136
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Fig. 21. Comparison of shape-material error matrix (mean/median) between ESSENCE-Net and state-of-the-art methods on DiLiGenT1(? [47].

TABLE 7
Comparison of the Proposed ESSENCE-Net with Existing State-of-the-art Methods on the DiLiGenT-II Benchmark Dataset [48].
Metallic Specular Translucent Rough

= i o = TR = ¥ %
Method g e 2 2 E = . s o s F g x . 5 = g = 5 2 z ZE, § 5 ¢ z g 5 | AvG
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= I & 3 & U & & & & |k O 4 @& & @ = 2 < = = i 3 53 ] 15 x| 3 & 9}
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ESSENCE-Net 44 6.8 5.6 53 6.5 43 4.7 4.1 15 45 | 103 | 54 7.3 7.7 9.9 74 813 6.1 7.0 10.1 166 135 202 167 174 | 118 106 156 138 133 9.4

Results with ¢ are obtained with 30 images as input.

materials, achieving an average MAE of 9.4°. Despite being
slightly lower than CNN-PS [14] (average MAE of 9.2°),
ESSENCE-Net still achieves comparable performance. We
hypothesize that this may be due to the spatial downsam-
pling and upsampling operations, leading to a loss of de-
tails!'*. However, ESSENCE-Net demonstrates more efficient
normal estimation than per-pixel CNN-PS [14], as analyzed
in Section 2.1, and its performance remains equally out-
standing. Additionally, although the proposed ESSENCE-
Net demonstrates slightly lower accuracy in normal esti-
mation compared to Uni MS-PS [71] on the DiLiGenT-II
dataset [48], it significantly outperforms Uni MS-PS [71] in
terms of efficiency, as described in Tab. 5.

7 CONCLUSION

In this paper, we revisited the essence of SL-PSNs. We show
that the SL-PSNs inherently learn features highly correlated
to shading for normal recovery, i.e., eliminating unknown
reflectance and global illumination effects. We propose the
shading supervision strategy and experimentally demon-
strate its effectiveness in enhancing shading features and

14. For a detailed illustration, please refer to the supplementary
material.

accelerating convergence. We propose an easy-first-encoding
learning strategy based on analyzing the difficulty level in
resolving unknown reflectance and global illumination ef-
fects across various cases, and experimentally demonstrate
its ability to facilitate deep shading features extraction. We
present an analysis of suitable network architectures for re-
solving unknown reflectance and global illumination effects
to encode deep features and further propose spatial context-
aware attention to decode the normal map from deep fea-
tures. The experiments demonstrate that these architectures
facilitate encoding deep features and accurately decode nor-
mals from them. We propose ESSENCE-Net based on shad-
ing supervision, easy-first-encoding deep feature encoding,
and spatial context-aware attention-based normal decoding
strategy. Experimental results have shown that the proposed
method outperforms previous state-of-the-art methods.

Limitations. Although our method performs excellently
in normal estimation, it has several limitations. First,
ESSENCE-Net struggles with handling translucent mate-
rials (e.g., ACRYLIC) and extremely complex shapes (e.g.,
TURBINE), as shown in Fig. 21. Second, our method assumes
directional lights and a camera with orthographic projec-
tion. Future work will focus on relaxing that assumption.
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Supplementary Material: Revisiting Superwsed
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In this supplementary material:

1.

We provide a more detailed experimental setup for validating the deep features of SL-PSNs in Section 8 (footnote 3
in the main paper); we also provide a detailed correlation analysis between the shading error of SL-PSNs [1], [2] and
the normal estimation error of the L2 method [3] in Fig. 22 of this section, which further illustrates that shading
constitutes the deep feature for SL-PSNs (footnote 4 in the main paper); we also provide additional qualitative
analyses of deep features extracted from ID-profiles (CNN-PS [1]) and 2D-images (PS-FCN [2]) in Fig. 23 and
Fig. 24 of this section, further enhancing the conclusion that shading constitutes the deep feature for SL-PSNs
(footnote 5 in the main paper).

We present the data flow of the light-aware deep features within the proposed ESSENCE-Net in Section 9 (footnote 7
in the main paper). Changing the order of the lights does not affect the output lighting-free deep features.

We present the detailed performance of the proposed shading supervision strategy on 100 materials from the
SynTestMERL [4] in Section 10 (footnote 8 in the main paper).

o Fig. 26 (SPHERE);

o Fig. 27 (BUNNY);

o Fig. 28 (ARMADILLO);
o Fig. 29 (DRAGON).

We present the detailed performance of the easy-first-encoding strategy and the effectiveness of normalization on
DiLiGenT10? dataset [5] across various materials and shapes in Section 11 (footnotes 9 and 10 in the main paper).
We provide a detailed discussion on the performance of models trained with different numbers of input images in
both sparse and dense scenarios in Section 12 (footnote 11 in the main paper).

We present a qualitative comparison between the proposed ESSENCE-Net and previous state-of-the-art methods
on 10 objects from the DiLiGenT dataset [6] with dense inputs (96 images) in Section 13 (footnote 12 in the main

paper).
o Fig. 33 (BALL, CAT, POT1);

o Fig. 34 (BEAR, POT2, BUDDHA);
o Fig. 35 (GOBLET, READING, COW, HARVEST).

We present a qualitative comparison between the proposed ESSENCE-Net and previous state-of-the-art methods
on 10 objects from the DiLiGenT dataset [6] with sparse inputs (10 images) in Section 14 (footnote 13 in the main
paper).

o Fig. 36 (BALL, CAT, POT1);

o Fig. 37 (BEAR, POT2, BUDDHA);

o Fig. 38 (GOBLET, READING, COW, HARVEST).

We present a detailed illustration on the loss of details on the DiLiGenT-II dataset in Section 15 (footnote 14 in the
main paper).
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8 DETAILED EXPERIMENTAL SETUP FOR VALIDATING THE DEEP FEATURES OF SL-PSNs

Experimental setup for per-pixel methods. For per-pixel methods, which extract deep features from 1D-profiles, we
analyze the typical network, CNN-PS [1], which has become the foundation of numerous works [7], [8], [9], [10]. Since
the spatial positions in the observation map correspond to the light directions, and the normal is given, we can calculate
a dense ground truth shading map. We analyze the features after each ReLU (rectified linear unit) layer in light-aware deep
feature decoder by taking the channel average. The mean absolute error between the deep features extracted by the network
and ground truth shading is calculated and averaged over all points.

Experimental setup for all-pixel methods. For all-pixel methods, which extract features from 2D-images, we analyze the
typical network, PS-FCN [2], whose concept has been adopted by many studies [4], [11], [12]. We take the max value of the
features by channel dimension as PS-FCN [2] uses features after max-pooling layer for normal estimation. We then calculate
the error between the feature map and ground truth shading in light-aware deep feature decoder. Note that the deconvolution
operation will introduce a checkerboard pattern [13] and seriously affect the analysis. Thus, we only analyze the features
before the deconvolution operation.

Correlation analysis between shading error of SL-PSNs and normal estimation error of the L2 method. Fig. 22 shows a
strong correlation between shading error of the deepest layer (Feature 5) extracted by representative SL-PSNs and normal
error estimated by L2 method [3]. Since the L2 method directly recovers normals from shading, the normal estimation
error inversely reflects the deviation from shading. Therefore, such a strong correlation manifests that the shading error we
compute is highly correlated with the actual deviation from the ground truth shading, which enhances the validity of our
quantitative verification (shading constitutes the deep feature for SL-PSNs).

Qualitative analyses of deep features extracted by CNN-PS [1] from ID-profiles and PS-FCN [2] from 2D-images. For
CNN-PS [1], which extracts deep features from 1D-profiles, we randomly sampled an observation point on the object from
the DiLiGenT dataset [6] and visualized the extracted deep features and the ground truth shading in Fig.23. As the network
goes deeper, the extracted deep features become increasingly continuous and closer to the ground truth shading. For
PS-FCN [2], which extracts deep features from 2D-images, we randomly sampled an observed image under one lighting
direction on the object from the DiLiGenT dataset [6] and displayed the extracted deep features and the ground truth
shading in Fig. 24. As the feature extraction process goes deeper, the extracted deep features become increasingly similar to
the ground true shading. These experiments further enhance our conclusion that shading constitutes the light-aware deep
feature extracted by SL-PSNs.
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Fig. 22. Correlation analysis between shading error (the deepest layer) of SL-PSNs and normal estimation error of the L2 method [3]. ‘r’ represents
the correlation coefficient. (a) Correlation between shading error of per-pixel method CNN-PS [1] and normal estimation error of the L2 method [3].
(b) Correlation between shading error of all-pixel method PS-FCN [2] and normal estimation error of the L2 method [3].
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Fig. 23. Qualitative analysis of the relationship between the deep features extracted from 1D-profiles by CNN-PS [1] and the ground truth shading.
The leftmost column shows the normal map. The middle five columns display the deep features extracted by the first five layers in light-aware deep
feature encoder, corresponding to the point marked by the red box in the leftmost column. The last column shows the ground truth shading.
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Fig. 24. Qualitative analysis of the relationship between the deep features extracted from 2D-images by PS-FCN [2] and the ground truth shading.
The leftmost column shows the observed image under one random light. The middle five columns display the deep features extracted by the first
five layers in light-aware deep feature encoder, corresponding to the observed image in the leftmost column. The last column shows the ground
truth shading.
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9 THE DATA FLOW OF LIGHT-AWARE DEEP FEATURES

In Fig. 25, we show the data flow of light-aware deep features within ESSENCE-Net. When the order of the input image
and light sequence changes, the output light-free deep features remain identical. We further illustrate this in terms of
specific components in ESSENCE-Net:

Convolutions for dimensionality increase and spatial downsampling (convl and conv2): The operations are
performed on 2D-images and do not involve the 1D-profiles (light dimension), where the convolutional weights are
shared across different light directions.

Transformer for feature encoding from 1D-profiles (1DP-FE): The self-attention mechanisms across the light
dimension ensure invariance to the order of lights [14].

CNN for feature encoding from 2D-images (2DI-FE): The convolution operation is performed on 2D-images
for feature extraction without involving the light dimension, where the convolutional weights are shared across
different light directions.

Max-pooling for obtaining light-free deep features:The maximum values from the 1D-profile dimension are
preserved, which are inherently unaffected by the order of lights [2], [4].

Normal decoding: Since light information has been removed, the decoding of normals is inherently independent of
the light order.

Light-Aware Deep Feature Encoder H Light-Free Deep Feature Decoder

Input: 6xKxHxW| [ Conv1 | | 64xKxHxW | [Gonva | [128xKxhizxwiz HWi4xKx128  |[{DP-FEx5| HWiaxKx128
1 [Attention]
=l

125xKxHIZxWIZH 2DI-FEx3 H128><Kx HI2xWi2 ‘ Max-Pooling ‘

4 x X Max Value of K lights

e

st |
— -
X = =
min . §» o i g Max Value of K lights|
Bl teg 2
g £ o k-]
L™ ° 14
nin” = ﬁ s
[
¢ 128x64x
Kan | (1x3x3)
Shuffle the Msicae
. eep Features
Light Order B
Input: 6xKxHxW| [ Conv1 HW/4xKx128  [1DP-FEx5| HW/4xKx1 128xKxH/2xW12 ] x 3 |128xKxH2xWi2 | Max-Pooling
2 64x6% x
nth | (1x1x1) n-t
Py Max Value of K lights
: 2
m-th ] m-t
1 =
3
2 @
Kth 2 K-t
@ .
2 Max Value of K lights
¢ 64x6x
Al (1x1x1) 1sf

Light-Aware Deep Feature Encoder H Light-Free Deep Feature Decoder ‘

Fig. 25. Data flow of light-aware deep features within ESSENCE-Net. Changes in the order of lights do not affect the extracted light-free deep
features.
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10 EFFECTIVENESS OF SHADING SUPERVISION STRATEGY ON DATA WITH DIFFERENT MATERIALS

From Fig. 26 to Fig. 29, we show the performance of the proposed method w/ and w/o shading supervision on SynTestM ERL
dataset [4], which includes SPHERE, BUNNY, ARMADILLO, and DRAGON objects, each with 100 materials from the MERL
dataset [15]. The figures illustrate that the proposed method outperforms the method w/o shading supervision on objects

of almost all materials. This demonstrates the effectiveness of the shading supervision strategy across various materials,

whether close to diffuse materials or non-diffuse materials.

w/o Shading Supervision (Average MAE:2.71)

—w/ Shading Supervision (Average MAE:2.39)
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Fig. 26. The performance of the proposed method w/ and w/o shading supervision on SPHERE from SynTest™ FRL dataset [4]. The red and gray

100 materials.
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Fig. 27. The performance of the proposed method w/ and w/o shading supervision on BUNNY from SynTest™EL dataset. The red and gray

dashed lines represent the average MAE of methods w/ and w/o shading supervision across the 100 materials.
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Fig. 28. The performance of the proposed method w/ and w/o shading supervision on ARMADILLO from SynTest™M FRL dataset [4]. The red and

gray dashed lines represent the average MAE of methods w/ and w/o shading supervision across the 100 materials.
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Fig. 29. The performance of the proposed method w/ and w/o shading supervision on DRAGON from SynTest™ ERL dataset [4]. The red and gray

dashed lines represent the average MAE of methods w/ and w/o shading supervision across the 100 materials.
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11 EFFECTIVENESS OF EASY-FIRST-ENCODING AND NORMALIZATION STRATEGY ON DILIGENT102 DATASET

Fig. 30a illustrates the performance of the proposed easy-first-encoding strategy on DiLiGenT10* dataset [5], across various
materials and shapes. The per-first-encoding strategy gradually surpasses the all-first-encoding strategy, demonstrating the
effectiveness of the proposed easy-first-encoding strategy, as encoding deep features from 1D-profiles becomes easier with
an increasing number of images. And the use of normalization enhances this advantage even further. Fig. 30b illustrates
the performance of the normalization strategy on DiLiGenT10* dataset [5] across various materials and shapes, showing
significant effects on isotropic and simple-shaped surfaces while still beneficial but less pronounced for anisotropic and
complex-shaped surfaces.
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Fig. 30. The detailed performance of the easy-first-encoding strategy and the effectiveness of normalization on DiLiGenT10? dataset [5] across
various materials and shapes. Each subplot in the figure represents performance on a specific image number, shape, or material, with the x-axis
as the horizontal axis and the y-axis as the vertical axis.
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12 PERFORMANCE OF MODELS TRAINED WITH SPARSE AND DENSE INPUTS IN SPARE TEST SCENARIOS

In Fig. 31, we present the average MAE (AMAE) of normal maps estimated by models trained with sparse (10) and dense
(32) inputs, given sparse (10) inputs during testing. All results are reported as the average of 100 random experiments.
Specifically, slight performance degradation in AMAE is observed when comparing models trained with dense input
(AMAE®?) to sparse input (AMAE!) (e.g., 1.15° on the DiLiGenT dataset [6], 0.14° on the DiLiGenT10? dataset [5], and
2.05° on the DiLiGenT-II dataset [16], AMAE?? - AMAE!Y), which is inevitable due to the gap in shading features extracted
by the deep network during the testing and training stages. This degradation is particularly evident on anisotropic objects,
where the extracted pattern may be more sensitive to the number of input images due to the complexity of its reflectance
model [17], [18].

We further compare our method with PS-FCN*Y [4]'5, as shown in Fig. 32. The comparison reveals improved stability
in our method while maintaining an advantage in normal estimation accuracy. This improvement is particularly evident
for anisotropic material, which highlights the effectiveness of the easy-first-encoding strategy in addressing PS challenges in
complex scenarios. It also underscores the strength of the network design, particularly in using optimal network structure
to extract limited but useful information in 1D-profiles and 2D-images.

AMAET0 Avaesz [lJ] essencenet [l ps-Fon| ] Difference -

20 1.1‘19

AMAE

DiLiGenT DiLiGenT10? DiLiGenT-[1

Fig. 31. Quantitative analysis on ESSENCE-Net and PS-FCN*/ [4] trained with 10 images and 32 images, tested with 10 images. The average
MAE (AMAE) over 100 random experiments are calculated for models trained with 10 images (AMAE'?) and 32 images (AMAE®?) across three
datasets: DiLiGenT [6], DiLiGenT10? [5], and DiLiGenT-II [16]. The green dotted line and values represent the difference, AMAE32 - AMAE10.

254 |AMAE‘° avae I} essencenet [l ps-Fon| | Difference -
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Fig. 32. Quantitative analysis on ESSENCE-Net and PS-FCN*/ [4] trained with 10 images and 32 images, tested with 10 images. The average
average MAE (AMAE) over 100 random experiments are calculated for models trained with 10 images (AMAE'?) and 32 images (AMAE?®2) across
three groups of materials, i.e., isotropic, anisotropic, and challenging (translucent) on DiLiGenT10? [5] and DiLiGenT-II [16] datasets. The green
dotted line and values represent the difference, AMAE32 - AMAE'0.

15. We choose PS-FCNT¥ [4] as the baseline method since it is one of the most representative, open-source SL-PSN that shares the same training
setting as ESSENSE-Net and achieves relatively low normal estimation errors. Methods with hybrid encoder structures are not included in the
comparison as they do not release their training code.
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13 QUALITATIVE ANALYSIS ON DiLiGenT DATASET WITH DENSE INPUTS

From Fig. 33 to Fig. 35, we show a comparison between ESSENCE-Net and previous state-of-the-art methods on 10 objects
from DiLiGenT dataset [6], in terms of the estimated normal maps and error maps. The comparison includes conventional
method (ST14 [17]), per-pixel method (CNN-PS [1]), all-pixel method (PS-FCN*Y [4]), and hybrid method (GPS-Net [19]).
ESSENCE-Net outperforms in general reflective surfaces (e.g., CAT and COW) and complex surfaces heavily influenced by
global illumination effects (e.g., READING and HARVEST), indicating the effectiveness of the proposed ESSENCE-Net in
handling the challenges posed by unknown reflectance and global illumination effects.

GT/object ST14 CNN-PS PS-FCN*N GPS-Net ESSENCE-Net

Fig. 33. Comparison of the proposed ESSENCE-Net with existing state-of-the-art methods (ST14 [17], CNN-PS [1], PS-FCN*Y [4], GPS-Net [19])
on estimated normal and error maps for the BALL, CAT, and POT1 objects with 96 input images. The number indicate the Mean Angular Error (MAE)
for estimated normal maps.
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GT/object ST14 CNN-PS PS-FCN*N GPS-Net ESSENCE-Net
y

Buddha

Fig. 34. Comparison of the proposed ESSENCE-Net with existing state-of-the-art methods (ST14 [17], CNN-PS [1], PS-FCN+ [4], GPS-Net [19])
on estimated normal and error maps for the BEAR, POT2, and BUDDHA objects with 96 input images. The number indicate the Mean Angular Error
(MAE) for estimated normal maps.
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GT/object ST14 CNN-PS PS-FCN*N GPS-Net ESSENCE-Net

T

Fig. 35. Comparison of the proposed ESSENCE-Net with existing state-of-the-art methods (ST14 [17], CNN-PS [1], PS-FCN*+Y [4], GPS-Net [19])
on estimated normal and error maps for the GOBLET, READING, Cow, and HARVEST objects with 96 input images. The number indicate the Mean
Angular Error (MAE) for estimated normal maps.
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14 QUALITATIVE ANALYSIS ON DiLiGenT DATASET WITH SPARSE INPUTS

Fig. 36 to Fig. 38 compares the performance of the proposed ESSENCE-Net with state-of-the-art sparse photometric stereo
methods on BALL, CAT, and READING in terms of normal and error maps with 10 images. The comparative methods
include LMPS [7], PS-Transformer [20], and SPLINE-Net [10], all designed specifically for sparse settings. For SPLINE-
Net [10], PS-Transformer [20] and the proposed ESSENCE-Net, We conducted 100 random experiments and selected the
normal maps and error maps closest to the average MAE for qualitative analysis. For LMPS [7], which applies a connection
table to select helpful light for normal recovery, we obtained the normal maps and error maps using the released code.
It is evident that our method performs exceptionally well under sparse inputs, especially in shadow and highlight areas,
showing significant superiority over existing methods. The experimental results indicate that even under sparse setups,
the proposed ESSENCE-Net effectively handles unknown reflectance and global illumination effects.

GT/object SPLINE-Net LMPS PS-Transformer ESSENCE-Net

Fig. 36. Comparison of the proposed ESSENCE-Net with existing state-of-the-art methods (SPLINE-Net [10], LMPS [7], and PS-Transformer [20])
on estimated normal and error maps for the BALL, CAT, and POT1 objects with 10 input images. The comparison methods are all specifically
designed for sparse inputs. For SPLINE-Net [10], PS-Transformer [20] and the proposed ESSENCE-Net, We conducted 100 random experiments
and selected the normal maps and error maps closest to the average MAE for qualitative analysis, the numbers represent the average MAE of 100
random experiments. For LMPS [7], which applies a connection table to select helpful light for normal recovery, we obtained the normal maps and
error maps using the released code.
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Fig. 37. Comparison of the proposed ESSENCE-Net with existing state-of-the-art methods (SPLINE-Net [10], LMPS [7], and PS-Transformer [20])
on estimated normal and error maps for the BEAR, POT2, and BUDDHA objects with 10 input images. The comparison methods are all specifically
designed for sparse inputs. For SPLINE-Net [10], PS-Transformer [20] and the proposed ESSENCE-Net, We conducted 100 random experiments
and selected the normal maps and error maps closest to the average MAE for qualitative analysis, the numbers represent the average MAE of 100
random experiments. For LMPS [7], which applies a connection table to select helpful light for normal recovery, we obtained the normal maps and
error maps using the released code.
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Fig. 38. Comparison of the proposed ESSENCE-Net with existing state-of-the-art methods (SPLINE-Net [10], LMPS [7], and PS-Transformer [20])
on estimated normal and error maps for the GOBLET, READING, Cow, and HARVEST with 10 input images. The comparison methods are all
specifically designed for sparse inputs. For SPLINE-Net [10], PS-Transformer [20] and the proposed ESSENCE-Net, We conducted 100 random
experiments and selected the normal maps and error maps closest to the average MAE for qualitative analysis, the numbers represent the average
MAE of 100 random experiments. For LMPS [7], which applies a connection table to select helpful light for normal recovery, we obtained the normal

maps and error maps using the released code.
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15 ILLUSTRATION ON THE L0OSS OF DETAILS IN DiLiGenT-II DATASET

Compared to DiLiGenT [6] and DiLiGenT10? [5] datasets, the DiLiGenT-II [16] dataset contains richer details and higher
resolution, with neighboring pixels often exhibiting distinct features, as shown in Fig. 39. For per-pixel methods such as
L2 [3] and CNN-PS [1], no spatial downsampling or upsampling is performed, preserving the detailed information. In
contrast, all-pixel methods like PS-FCN [2] employ two downsampling and upsampling operations, leading to a loss of
details that can compromise the accuracy of normal estimation. To broaden the receptive field and achieve a lightweight
model, ESSENCE-Net adopts a single downsampling operation and restores the size through upsampling. As shown in
Fig. 39, the details of the CLOUD-T object within the red box are magnified for comparison. The normal maps estimated
by L2 [3] and CNN-PS [1] retain rich details, whereas the normal map estimated by PS-FCN [2] exhibits a noticeable loss
of details. While the detailed representation in ESSENCE-Net’s estimated normal map does not perfectly align with the
ground truth, it still demonstrates performance comparable to CNN-PS [1]. We believe that in the future, removing the
downsampling and upsampling operations on high-performance devices or integrating super-resolution techniques [21],
[22], [23] could further enhance its performance.

DiliGenT (512x512) DiliGenT102 (1001x1001)

T 00e

DiliGenT-N (1216x1216)
GT/Object CNN-PS PS-FCN ESSENCE-Net

LION-R 19.4 15.8

o> N - . 30°

Fig. 39. A visual comparison between methods involving spatial downsampling and upsampling (PS-FCN [2], the proposed ESSENCE-Net) and
methods that do not involve spatial downsampling and upsampling (L2 [3], CNN-PS [1]) on the DiLiGenT-II dataset [16]. Methods of L2 and CNN-
PS demonstrate better detail preservation. In contrast, PS-FCN smooths some of the details. Despite undergoing downsampling and upsampling,
the proposed ESSENCE-Net still achieves excellent detail representation.
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