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Abstract

We present the ilLumination-Aware conditional Image Repainting (LuminAIRe)
task to address the unrealistic lighting effects in recent conditional image repainting
(CIR) methods. The environment lighting and 3D geometry conditions are explic-
itly estimated from given background images and parsing masks using a parametric
lighting representation and learning-based priors. These 3D conditions are then
converted into illumination images through the proposed physically-based illumina-
tion rendering and illumination attention module. With the injection of illumination
images, physically-correct lighting information is fed into the lighting-realistic
generation process and repainted images with harmonized lighting effects in both
foreground and background regions can be acquired, whose superiority over the
results of state-of-the-art methods is confirmed through extensive experiments. For
facilitating and validating the LuminAlRe task, a new dataset CAR-LUMINAIRE
with lighting annotations and rich appearance variants is collected.

1 Introduction

Advanced image editing is in high demand across a multitude of applications, e.g., old photo
colorization [78,132,168]], damaged image restoration [48, 73} 72|, and artistic style transfer [22| 35,
70]. Recently, conditional image repainting (CIR) [67, 166, 58] has emerged as an innovative research
topic, proven effective in controllable image editing while “freeing” users from the necessity of expert
proficiency and retaining the “freedom” to actualize their creative visions for image modification.
By utilizing provided attributes or textual descriptions, fine-grained strokes, and Gaussian noise to
separately represent colors, contours, and texture conditions, users could insert generative objects
with desired appearances in specified image positions, as shown in the blue line of Fig.[I]

Although CIR methods have made great progress in synthesizing photo-realistic and visually-pleasing
conditional images by avoiding gradient vanishing pitfall [67]], adopting flexible condition representa-
tion [66], and designing condition fusion modules [S8]), there is still a crucial element missing from
the CIR task: making the synthesized results harmonized with the illumination of the scene, e.g.,
spatially-varying dark and bright regions in accordance to the lighting condition in the background,
physically-accurate highlight effects for highly-specular surfaces (shining objects), and perceptually-
realistic shadow avoiding “floating objects” artifacts, as shown in the lower right example of Fig.[I]

Specifically, existing CIR methods handle image harmonization purely in 2D image space by esti-
mating a pixel-wise color tone transformation of the repainted regions from the background regions.
Current approaches use semantic parsing maps as “geometry” representations and do not exploit
the lighting information contained in given background images, which prevents them from having
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Figure 1: Illustration of proposed LuminAlIRe task and result. Compared with the previous CIR
task [58]] (blue line) which takes all condition inputsﬂ at once conducting a conditional image-to-image
generation purely in 2D image space, LuminAIRe (orange line) exploits 3D lighting and geometry
information and repaints both foreground (fg.) and background (bg.) regions via a lighting-realistic
generation process. The 3D information is transformed back to 2D image space in the form of an
illumination image, with the desired reflective properties obtained from an illumination attention
module. LuminAIRe handles (i) surface shading, (ii) highlight effects, and (iii) realistic shadow in
the repainted image (top right).

awareness of physically-based lighting in 3D space. To introduce physically-correct 3D lighting
instead of hallucinated lighting effects into CIR results, there remain some major challenges: (i) The
lighting condition in 3D space should be extracted from the limited field of view (limited-FoV) 2D
LDR images; (ii) the lighting condition should be physically-correctly transformed back into 2D
image space; (iii) a dataset suitable for learning-based solutions to the proposed task is needed.

To achieve lighting-realistic generation within the CIR pipeline in an illumination-aware manner,
we hereby propose the task of ilLumination-Aware conditional Image Repainting, denoted as
LuminAIRe. We first lift geometry conditions from 2D parsing maps to 3D/'| normal maps using
learning-based shape priors and estimate lighting conditions from limited-FoV LDR background
images by designing a proper parametric representation. Then, we use physically-based reflection
models to render illumination candidate images to capture possible lighting effects in 2D image space.
With the help of illumination attention module, surface regions with different reflective properties
are learned to adopt correct lighting effects in the resulting appearance. A dataset containing
rich geometry and lighting annotations with abundant object variants is collected to facilitate the
learning-based solution of the LuminAIRe task. As far as we know, we are the first to emphasize
illumination-awareness in the image editing task of conditional image repainting.

Our contributions can be summarized as follows:
* introducing a new task of ilLumination-Aware conditional Image Repainting (LuminAIRe)
by exploiting the lighting information from background images;

* designing a full LuminAlIRe pipeline that represents, extracts, converts, and injects lighting
information to acquire more realistically repainted results; and

* collecting a new dataset CAR-LUMINAIRE with rich material and lighting condition variants
for facilitating and validating the LuminAIRe task.

2 Related Work

Our method aims at introducing physical lighting constraints into generative image synthesis pipelines.
In this section, we briefly review relevant works first and then discuss the relationships to our task.

Controllable image synthesis. Researchers have presented numerous works to synthesize images
under the guidance of diverse user-provided conditions, e.g., synthesizing specific object with category
label [10] [73]), transferring the texture from paintings to daily photos [35] 1701, restoring

IStrictly speaking, the normal maps are in 2.5D. Here we use 3D to simply distinguish it from 2D.
2In this paper, attributes are shown in templated sentences for formatting, and texture is omitted for simplicity.



the colors of old photos [[11} 12,169, 168]], and directly generating images from text descriptions [51}
5041551 156]]. Recently, with the development of the condition injection mechanism [31} 47,80} 34],
researchers explore to control synthesized images with multiple cross-modality conditions, e.g.,
condition guided image inpainting [44} 53], controllable person synthesis [54, 165]], and inversion-
based style transfer [79]. However, few works focus on synthesizing images strictly following
lighting conditions. Following DIH-GAN [6] that considers introducing illumination estimation in
harmonization task that adjusts the highlight of the inserted given object, we further explore the
lighting condition in synthesizing illumination-consistent objects under the guidance of multiple
cross-modality conditions.

Conditional image repainting and image harmonization. Conditional image repainting (CIR)
aims at synthesizing reasonable visual content on an existing image, where the generated visual
content should both meet the requirement of the user-provided conditions (e.g., color, geometry, and
texture) and in harmonization with the existing background image. The first CIR task is proposed
in MISC [67] for person image synthesis, where the foreground person image is synthesized first
and then composited with the background. Weng et al. [66] design the semantic-bridge attention
mechanism which allows more freely expressed color conditions by the users in text. UniCoRN [5§]]
breaks the two-stage dependency and proposes a unified architecture that achieves more visually
pleasing results. Despite recent achievements made by previous works in condition consistency,
existing CIR models suffer from the issue of illumination inconsistency: although techniques such as
color tone transform are applied, the lighting from the given background and on the generated visual
contents often differ a lot, making lighting effects in the image rather unrealistic, such as incorrect
shading, highlights, and shadows. In this paper, we address this issue by exploiting lighting and shape
constraints in 3D space, which allows a more physically-correct rendering processing for generating
lighting effects. Image harmonization methods [23} 124} 25| [14}142] 162} |59]], with a similar goal of CIR
to realistically composite image foreground and background regions, have focused on illumination
harmonization recently [6} [8]]. However, this thread of works has poor control of visual content in
foreground regions and may fail to preserve the color tone in background regions as they were.

Lighting representation and estimation. Achieving illumination-aware synthesis/repainting re-
quires appropriate lighting representation and estimation from images. Lalonde et al. [37] is the
first to use shadows, shading, and sky appearance variations observed in the image to infer outdoor
lighting. A physics-based HoSek-Wilkie (HW) sky model [29, [30] is proposed to recover HDR
parameters for deep outdoor lighting estimation [28]]. A more weather-robust Lalonde-Matthews
(LM) model [38}[77] is then proposed to cover more comprehensive lighting conditions in the outdoor
environment. More recently, a learning-based lighting representation [27] is used on a large sky
panorama dataset [36] with an autoencoder network. The encoder-decoder framework is further
proposed [39] to estimates lighting as a spherical HDR lighting map. HDSKky [74] and SOLD-Net [60]
disentangle several physically meaningful attributes into separate learned latent spaces by hierarchical
autoencoders and make the estimation editable. Parametric models such as spherical harmonic (SH)
coefficients [[7, 21]] and spherical Gaussian (SG) [19]140] are also widely used, especially in indoor
scenes. Gardner et al. [20]], Neurlllum [S7], and SOLID-Net [81] design sophisticated networks
to hallucinate the missing parts in the panoramic view and predict lighting as environment maps.
3D volumetric lighting representations are also widely used in recent works, which facilitate the
lighting-realistic scene editing for indoor [41] and outdoor [64] scenes, however heavily require
computation resources. Considering the demand for lighting-realistic generation, we propose a
parametric lighting representation for outdoor scenes that is both easy to predict and simple to use.

3 Problem Formulation

For self-containedness, we briefly review the CIR formulation before introducing ours.

3.1 Preliminaries about CIR

The previous CIR tasks [66, 67, 58] aim at generating the repainted image y" by repainting certain
regions in an image 2 € R3*H#>*W according to user-specified conditions in different modalities: x2,

2P, 2, and 2P for the “geometry”, “texture”, “color”’, and background conditions respectively.

In their works, the “geometry” condition z¢ € LNe*#*W jg 3 binary semantic parsing mask, where
Ny is the number of possible parts of the visual content to be repainted and L. = {0, 1}; the “texture”



condition 2P ~ A/(0, 1) is a Gaussian noise; the “color” condition can be represented as attributes

2° € LYXN or text descriptions z¢ = {m%}ivgl, where N, N,, and Ny, represent the numbers
of attributes and available choices, and the length of the user-inputted sentences, respectively; the
background condition 2P € R3*H*W s the image of background region with respect to the repainted
region as foreground region, i.e., ° = (1 —m) ® x, where the binary mask m indicating foreground
region can be directly acquired from the parsing mask z2, as shown in lower left of Fig.

The repainted image y* can be further decomposed as a blending of repainted foreground image 3*
and repainted background image y":

v =moy +1-m)oy" (1)

Previous works assume unchanged background region, i.e., y® = 2P, leaving the key question of CIR
tasks as generating realistic foreground region 4! constrained by given conditions:

y' = FC(28, 2P, 2% 2"), 2

where previous works ignore clues in 3D space and implement the generation pipeline F© as a
conditional image-to-image generation purely in 2D image space. To make the repainted image
harmonized as a whole, previous works [S8,167] design additional harmonization modules to adjust
the color tone of intermediate repainting result based on clues in .

3.2 Formulation of LuminAIRe

However, the image-based harmonization modules have limited representation ability for complex
lighting effects (e.g., varying shading and shiny surfaces) due to a lack of 3D representation. Besides,
directly using 2 as 3 in Eq. (1) may neglect possible light transport effects (e.g., shadows) introduced
by the repainted region as its corresponding behaviors in the 3D real world might be.

As illustrated by the rendering equation [33]], a physically-correct and -realistic appearance of an
object is derived from its geometry, reflective property, and omnidirectional environment lighting in
3D space. Therefore, to make the repainted image y* more lighting-realistic, the repainted foreground
y* should also be conditioned by the lighting condition L and geometry condition G in 3D space:

y' = FF (28,27, 2% 2", L, G). A3)

Given L and G in 3D space, a proper 2D representation x! containing both the information from L
and G should be derived for compatibility with current image generation architectures:

' =RY(L,G), @

and then the lighting-realistic generation for foreground 7' can be rewritten as:
yt = F¥ (28, 2P, 2¢ 2P, 2h). 5)
Similarly, the repainted background 3 should also be conditioned on z' to recover lighting effects:
Y =FB(2P, 2). (6)

The limited-FoV background image z" itself is a partial observation of environment lighting and thus
can provide clues about L. Therefore, the lighting condition L can be inferred in the form of:

L =F4(zP). (7

Similarly, by finding the shape priors of certain types of objects, the 3D geometry condition G can be
lifted from its “2D flattened version”, i.e., parsing mask x5:

G = FC°(228). (8)

Moreover, in our LuminAIRe formulation, we extend the attributes ¢ beyond colors, which allows
the users to describe the reflective property and have control over the lighting effects of repainting
results. A sample of attributes is shown as the bold text in the lower left of Fig. [I]

As aforementioned, both the repainted foreground 3! and background 3" are given by the lighting-
realistic generation in our LuminAIRe formulation, which leads to more realistic and harmonized
results than traditional CIR pipelines [58], as shown in Fig.
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Figure 2: Data preparation process of the CAR-LUMINAIRE dataset.
4 Data Preparation

To tackle the data shortage issue, we create the first dataset suitable for the LuminAlIRe task, named
CAR-LUMINAIRE, with its data preparation process and data sample shown in Fig. 2]

3D car models with hierarchical semantic labeling. Collecting large-scale real data for learning-
based LuminAIRe methods is infeasible since the geometry and lighting capture in 3D space requires
specialized equipment and extensive human labor. Therefore, here we resort to computer graphics
techniques to create photo-realistic synthetic data. The cars are chosen as the foreground objects for
the obviousness of lighting effects and the availability of high-quality synthetic models. We collect
198 detailed 3D car models in 17 different categories from online model stores [2} 4] and then label
the parts of the models in 3D space, which allows us to get the accurate parsing mask in 2D image
space from any viewpoint. Following the common structure of vehicles, we divide the car models into
35 semantic part labels. The part labels are organized in a hierarchical way (e.g., the door window is
a sub-part of the door) to accommodate car models in different granularity. Besides 3D labeling, we
manually adjust the scales of each model to fit the real-world dimensions.

Background images with lighting annotations. Then we prepare background images with known
lighting annotations. Here we use the SUN360-HDR dataset [27,[76], which contains HDR panoramic
environment maps (envmaps) corresponding to the LDR panoramas of outdoor scenes in the SUN360
dataset [[71]]. Limited field-of-view (limited-FoV) background images are cropped from the LDR
panoramas with virtual cameras of randomized FoVs and camera poses. For each cropped background
image, the corresponding HDR envmap in the SUN360-HDR dataset [76]] is warped to align
with the viewing direction of the virtual camera. Background images unsuitable for realistic object
insertion are manually filtered out, leaving 1,321 images of diverse scenes and lighting conditions.

Enhanced data rendering with realistic placement. For each background image, we randomly
select insertion points within the central region of the “placeable flat ground” marked by an off-
the-shelf segmentation toolbox [[13]]. Then, for each 2D insertion point in the image, we calculate
the relative transformation from the camera coordination O, to the local coordination of the object
O, from the depth d and the normal Z, estimated by depth [52] 53] and normal [3] estimation
methods. With the aligned envmaps and the ray-tracing based Blender [3] Cycles rendering engine,
physically-correct lighting effects can be rendered into the composited images. In the rendering
process, besides the original materials of the models, several physics-based rendering (PBR) car paint
materials are randomly applied for more appearance variants, especially in lighting effects; besides,
the inserted models are randomly rotated around Z, axis for more geometry variants. The rendered
images are filtered to ensure reasonable pixel portions of both foreground and background regions. At
last, 52,581 composited images at the resolution of 256 x 256 are collected, accompanied by parsing
mask and normal map annotations, as shown in the data sample of Figure 2}

5 Method

To realize the LuminAIRe formulation, we first estimate 3D lighting and geometry from background
images and parsing masks (Sec. [5.I). Then the lighting information is injected into the lighting-
realistic generation process as illumination images (Sec.[5.2). By further introducing hierarchical
labeling enhancement (Sec. @), our method can generate reasonable results even with coarse-level
parsing masks. Our pipeline is shown in Fig.[3] with detailed network architectures and loss functions
for network modules in supplementary materials.
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Figure 4: Our lighting representation can capture most of the lighting effects in all weather conditions.

5.1 Estimating 3D Information with Learning-based Priors

Our CAR-LUMINAIRE dataset consists of outdoor scene images, where the lighting can be ap-
proximately decomposed into the high-frequency sunlight and the low-frequency ambient light [60].
Accordingly, we model the lighting condition L as the addition of a directional light and a 2-nd order
spherical harmonics (SH) lighting, which can be specifically described as lighting parameters:

L= {Zvis; Zint; Zang; Csun; Lsun, USH}7 ©)
where zy;s € {0, 1} is the sun visibility, ziy is the intensity of sunlight, Zang describes the “size” of

the sun (in solid angle formally), ¢ € R? is the normalized sun color in RGB channels, [y, € R?
indicates the sun position, and osy € R3*? is the 2-nd order SH coefficients for RGB channels.

As shown in Fig. 4| the parametric representatimﬂ in Eq. @) can well fit real-world lighting in sunny,
cloudy, and low light conditions. On the other hand, the proposed parametric lighting representation
is convenient for network prediction. Here we design a NetL to serve as F™ in Eq. (7)), where Iy, is
estimated by a classification task and other parameters are estimated by regression tasks. To apply
our method to other types of background scenes, specifically tailored lighting representations can be
directly adopted, without modification to our underlying formulation of LuminAlRe.

For 3D geometry, we use the normal map G € R3*H*W aq the representation where each pixel
indicates the surface normal direction n at that surface point in 3D space. For certain types of objects,
there exist strong shape priors (such as sedans and hatchbacks), which can be learned in a supervised
way. Similarly, a NetS of encoder-decoder structure is further proposed to serve as F&¢ in Eq. .

5.2 Injecting Lighting Information using Illumination Images

To bridge the 3D lighting and geometry with 2D images, the rendering equation [33] is a handy tool
to serve as R' in Eq. @), which physically models the image formation process as the light reflection:

Lo(c.ur):/Q Li(wi) fi(wi, wp) (1 - wyp)dw;, (10)

where L;(w;) is the environment lighting from direction wj, Lo (w;) is the reflected lighting toward
direction wy, {2, is the visible hemisphere determined by surface normal n, and f;(w;, w;) describes
the reflective properties of all possible combination of incoming and outgoing directions.

3Lighting parameters are converted back to tone-mapped HDR environment maps for visualization.
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For a certain image pixel with the known camera viewing direction v, ideally, the pixel intensity can
be calculated as L,(—v), and accurate lighting effects can be calculated as illumination images.

However, with L and G estimated from input conditions, f;(wj, w;) still remains unknown. Therefore,
in a similar spirit to Gao et al. [18] and Pandey e al. [46], instead of directly calculating the actual
illumination image, we use a set of uncolored “standard materials” as f; in Eq. and render
corresponding illumination candidate images {I.}. For the physics-based rendering of {I.}, we
use the Lambertian refectance model fyir(wj, w;) = /= and normalized Blinn-Phong model [9]
fspee (Wi, wy) = (pH4)(n-h)” /s with M different values of roughness p, where h = witwi/||wi+a|| is
the half vector. At last, we have {I.} = {Iar} U {Ifec } ;.

As shown in Fig. [5] most lighting effects in different appearance variants can be covered by the
linear combinations of the pre-computed {I. }. However, it’s worth noting that the correspondence
of the appearance image and {I.} may vary pixel-wisely (e.g., the tires, hood, and windshield have
different reflective properties thus different lighting effects). Accordingly, we design an illumination
attention module A! to estimate the combination coefficient maps C; = A!(E) for each image pixel,
where E is the feature embedding map containing information of both part labels and part-associated
attributes in a pixel-aligned way. After the illumination image I derived as I = vaffl Ci oI,
which covers lighting effects of parts with different materials , we use I as ' in Eq. (5) and conduct
lighting-realistic generations of foreground and background regions using our proposed NetF and
NetB respectively. For NetF, we adopt the network backbone of F& in UniCoRN [58]], and the
illumination image I is injected in a similar way as other conditions in 2D image space at different
resolutions. The NetB is also an encoder-decoder architecture, serving as F® in Eq. (6). We adopt the
same loss functions for NetF as used in UniCoRN [58]].

5.3 Generating Realistic Results from Coarse Parsing Masks

As mentioned in Sec. [d] the parsing masks in our CAR-LUMINAIRE dataset can be very coarse,
which also reflects the possible application scenarios when the user only specifies interested parts.
Previous CIR formulations may fail to generate realistic results in regions without fine-grained labels
since their generation follows a strictly pixel-wise semantic mapping between labels and images. We
hereby introduce a hierarchical labeling enhancement: randomly coarsening the input parsing mask
at training time (e.g., door glass label becomes door label) and encouraging the fine-grained parts
(door glass) to be generated. Besides, the part-associated attributes of lower-level parts (door glass)
should be also associated with their upper-level parts (door) to avoid loss of condition in attributes
x°, which can be done by modifying the association matrix [58] A € LN-*Ne accordingly.

6 Experiments

In this section, we conduct comparisons with state-of-the-art methods and validate our design with an
ablation study and a robustness test. Please see supplementary materials for implementation details.

6.1 Comparison with State-of-the-art Methods

Baseline methods. We conduct quantitative and qualitative comparisons with three state-of-the-art
CIR methods (UniCoRN [58]], Weng et al. [66], and MISC [67]) and a most-relevant conditional
image generation method (Pavllo et al. [49]). Among them, modifications are made for Pavllo et
al. [49] and Weng et al. [66] to accept conditions represented as attributes.

Quantitative metrics. Following previous work [58]], we adopt Fréchet inception distance (FID) [26]
for assessment of perception quality, R-precision [66] for assessment of alignment between generated



images y" and given attributes =, and M-score [61] for assessment of authenticity. We use the latest
manipulation detection model [[17,|13] for calculating the M-score [61]. We also report the structural
similarity index (SSIM) [63]] for comparing the major image structure with the reference image.

Table 1: COIIlp arison  with Quantitative Evaluation User Study
the state-of-the-art methods and Method
variants of our proposed method.

FID| R-prentT M-score ] SSIM?T Real. 1 Har. 1

s . MISC [67] 53.84  3494% 3123 0.6660 | 025%  0.28%
Quantitative evaluation scores {0 ") e | 3512 4666% 3084 06697 | 085%  0.85%
and user study results are shown.  pavilo er al. [49] 929  56.98% 36.77 0.7050 | 43.00% 36.72%
T (\l/) means higher (lower) iS UniCoRN [58] 11.55 62.13% 29.72 0.6940 7.78% 9.90%

LuminAlIRe (Ours) | 4.62  74.13% 13.68 0.7211 | 48.12% 52.25%

better. “Real.” and “Har.” are

abbreviations of “Realistic’ and  Ours-H 583 6327% 1397 07163 — —
“H ed” Ours-HA 631  63.94% 13.95 0.7214 — —
armonized . Ours-HAI 800  62.13% 15.83 0.7054 — —
Conds. MISC Weng et al. Pavllo et al. UniCoRN LuminAlRe Reference

a hatchback with normal wind glass, normal door glass, normal roof glass, and metallic carpaint

L

a hatchback with normal wind glass, normal door glass, normal roof glass, and sky blue diffuse carpain

a sedan with normal wind glass, dark door glass, and sky blue metallic carpaint

Figure 6: Qualitative comparison with the state-of-the-art methods, with given conditions (conds.).

The scores in Tab. |I| and the second and the third columns of Fig. |§| show that results of MISC [67]]
and Weng et al. [66]] are far from lighting-realistic with “crayon-drawing-like” appearances, since
the color tone transform is not applied [[66]], or conducted in a two-phase manner [67]. As shown in
the fourth column of Fig.[6] Pavllo et al. [49] tend to generate foreground regions in flat shadings
with fewer texture patterns, which makes its results generally look reasonable when only focusing
on foreground regions or in low light or cloudy scenes (as indicated by the FID and user study
results), but computer vision models can easily find the disharmony due the sharp boundaries between
foreground and background regions [58]], as also indicated by the worst M-score. UniCoRN [58]]
fails to generate correct lighting effects from its unified color tone transform (the first row), therefore
tends to hallucinate highlights at the top of cars regardless of lighting in background regions (the
second row). The hallucinated lighting effects along with the undesired texture pattern on car bodies
drastically damage the perceptual preferences, as confirmed by the FID score and user study results
in Tab. [T} LuminAIRe generates realistic lighting effects close to the reference images in both sunny
(the first and the third rows) and cloudy (the second row) scenes of specified materials and even when
a coarse-level parsing mask is given (the third row), with a large margin in all quantitative metrics
compared with baseline methods. LuminAIRe also learns to avoid the undesired texture pattern with
the hints of the smoothly varied shading in the illumination images (Fig.[7).
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Figure 7: Ablation study for three variants of our proposed method, with given conditions (conds.).
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Figure 8: Our method can generate realistic lighting effects with given materials (left), which are
consistent across different geometry conditions (right). Green and blue boxes mark individual cases.

6.2 Evaluations

Ablation study. We conduct an ablation study with three variants of Qurs: (i) Ours-H, (ii) Ours-HA,
and (iii) Ours-HAI, where “-H”, “-A”, and “-I” mean disabling the hierarchical labeling enhancement,
the illumination attention, and the illumination injection for the foreground, respectively.

The hierarchical labeling enhancement is confirmed helpful in generating realistic results with coarse-
level parsing masks, as shown in Fig. [7]and the third row of Fig. [f] where Ours generates more
consistent and better repaintings at regions with no specified part labels (marked in blue purple),
which is also demonstrated by the FID and R-prcn score in Tab. [T} The second row of Fig. [7]shows
an example where the lack of illumination attention module wrongly renders a diffuse appearance,
with further evidence from the drop of FID from Ours-H to Ours-HA in Tab.[I] It’s quite obvious
from Tab. [T] and Fig. [7) that the illumination injection helps foreground generation by comparaing
Ours-HA and Ours-HAIL From UniCoRN to Ours-HAI, the improvements in FID score and
M-score validate the contribution of the lighting-realistically generated background.

Besides, Ours-HA gets an unexpectedly good SSIM score. It’s possibly because a slight misalignment
of lighting effects (especially highlights) due to errors in lighting or geometry estimation would lead
to a considerable drop in the SSIM score (which honestly measures the pixel-wise difference) but
with very little harm to the lighting-realistic perception (as indicated by the FID and M-score).

User study. We also conduct a user study with 20 volunteers on the Amazon Mechanical Turk [/1]]
platform, where 200 sets of results randomly drawn from the test set are shown and volunteers are
asked to choose one in each set with (i) the most realistic foreground and (ii) the most harmonized
lighting. The results of the user study in Tab. [T]are basically aligned with the trending of FID and
SSIM scores in quantitative evaluation, showing that repainting results of our LuminAIRe are most
favored subjectively, with a greater lead in realistic and harmonized lighting perception.

Robustness Test. Fig. [8| shows the robustness of our method to varying materials and geometry
conditions, where different materials and geometry conditions are correctly handled with realistic
lighting effects accordingly and consistently generated. To test the robustness of our method to
varying parsing masks (e.g., casually-drawn parsing masks), we compare in Fig. [9 the repainting



results of from the input parsing masks before and after the disturbing, where the boarders are
randomly extended and the inner structures are coarsened. To test the robustness of our method to
varying lighting conditions, we conduct an experiment where the estimated lighting conditions are
rotated clockwise while all other conditions are left unchanged. The results in Fig. [I0] show that
our method correctly handles most of the lighting rotations in the sense of the lighting effects on
the foreground objects and the shadow effects in the background regions. The repainting results in
the second column with no lighting conditions given (“No light”) further validate the effectiveness
of our illumination injection module. To test the robustness of our method to varying background
conditions, we also show the results of in-the-wild examples in the supplemental material.

Parsing mask Normal lllumination Repainting  Parsing mask Normal lllumination Repainting

a liftback with light wind glass, light door glass, dark roof glass, and a liftback with light wind glass, light door glass, light roof glass, and
light green clearcoat carpaint night blue clearcoat carpaint

Figure 9: Qualitative results of normal maps, illumination images and repaintings using original (first
row) and disturbed (second row) parsing masks as input conditions. Backgrounds are omitted here.

Conditions  No light/Normal 0°/+180° +30°/+210° +60°/+240° +90°/+270°  +120°/+300°  +150°+330°

Figure 10: Qualitative results of repaintings and illumination images as the estimated lighting rotates.

7 Conclusion

In this paper, we introduce the task of LuminAlIRe for the realistic generation of lighting effects.
The synthetic CAR-LUMINAIRE dataset is collected for the newly proposed task. Extensive experi-
ments and the user study confirm that our method achieves perceptually more lighting-realistic and
harmonized repainting results compared with the state-of-the-art methods. The effectiveness and
consistency of our illumination-aware design are shown in the robustness test.

Limitations and future works. In this paper, only the results of cars as foreground objects are
shown, resulting from the inadequate feasibility of data collection. Besides, our model can not handle
complex thin structures and some translucent glass materials very well, which are not well covered by
our synthetic data for now. As a single-image-based method for generic outdoor scenes, our method
currently ignores the non-local inter-reflections with other objects and focuses on the shadows cast
directly on the ground. Therefore, datasets of richer object categories and finer details will be helpful
to boost the training of learning-based methods. Combining the lighting constraints with the newly
emerged latent diffusion models [55] would also be an interesting direction for our future work.

Acknowledgement. This work is supported by the National Natural Science Foundation of China
under Grant No. 62136001, 62088102.
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In this supplementary material, we provide more information about our data collection, implementa-
tion details, and network architectures. We also show additional results on our CAR-LUMINAIRE
dataset and in-the-wild data.

8 Appendix

8.1 Details on the CAR-LUMINAIRE Dataset

When calculating the object’s local coordinate system O,, we assume that X || X,, that is to say, we
assume that the ground is approximately horizontally level, which is satisfied at most times.

We divide the car into 35 classes of parts, of which the hierarchy and color coding are shown

in Fig.

[ ] 2 g
£ = = x 2
© S z S & «
3 £ 2 e 5 g
& Z a
iu %E a o a;g =
= o Z & 2 2 S £ x =t = = g
T oz g g 2 g % U £ i = T &
cE=zmcom sy 2 EZE %28 R g
n 2 £ ow 2 an O == = M 3 3
o oA % O - X z o=} = o
- g2 g S 2 E 2 ¢ € 3 £ ¢ g B s B 5 ¥ 2 g x £
2 TmEigg |28 :58 |z888 | L8288 8 %8, xxmEEE
Z A2 4 g T = o % 2 A @ o o2 T ,_,_““”‘M:’:“‘”miﬁéguém
2 o 2 2 3 5 k& z = S 3} 2 5 5 2z = o Z
) S = 2 gz o 5 I ] <] = £ 5 £ o < S
S m T O 0o o a = E = & o E o v = U 2 %
¥
S0 00 U I 1 R A (N AN I UO— N Y O —
me

K

Figure 11: The hierarchy and color coding of the part labels used in the CAR-LUMINAIRE dataset.

The attribute of car models is also manually annotated when labeling the parts of models. We mark
N, = 6 major part-related attributes (car type, wind glass darkness, door glass darkness, roof glass
darkness, car paint color, and car paint type) with [V, = 81 available choices. The N, is set as 35
following our hierarchical labeling. The relationship between parts and corresponding attributes is
represented as an association matrix [14] A € LNexNg,

We use a randomly chosen camera pitch in [—15°,15°] and FoV in [25°,66°] for the background
image cropping. The same FoV is used in image rendering for view consistency. For each combination
of the background image and geometry condition, we render one image of the original car model
and two images of variants with randomly chosen enhanced car paint materials. When splitting the

*Corresponding author.
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Figure 12: Data examples of our CAR-LUMINAIRE dataset.

dataset, we assure the images of each combination are only shown in one set. We only use images
with the pixel ratio of the foreground between 10% and 50%, leaving 58,521 images (41,058 for the
training set, 12,141 for the testing test, and 5,322 for the validation set). Each set of data contains
a background image (256 x 256), a lighting annotation (128 x 64 envmap), a rendered reference
image (256 x 256), a geometry annotation (256 x 256), a parsing mask (256 x 256), and an attribute
annotation. Here we give more data examples of our CAR-LUMINAIRE dataset in Fig. [I2]

8.2 Details on the Parametric Lighting Representation

As stated in Sec. 5.1 of the main paper, we use a combination of 2-nd order SH lighting and directional
lighting as our parametric lighting representation, where the low-frequency SH lighting is designed
to fit the ambient lighting in the environment and the high-frequency directional lighting is used to
describe the sunlight. Since the original lighting annotations in our CAR-LUMINAIRE dataset are
envmaps, therefore, conversions have to be made to get the training labels in our parametric lighting
representation.

The part of directional light is represented as Lgir = { Zvis, Zint; Zangs Csun, lsun } 1Dl OUT Tepresentation.
For each envmap, if the maximum grey-sacle intensity zi, is larger than a threshold &y, = 100,
the sun visibility zyjs is set as 1 otherwise 0 (and other parameters treated as invalid). Then we use
a manually set ratio 7, = 0.1 and only keep pixels with grey-scale intensity larger than rg 2.
We calculate the intensity-weighted mass center of the connected area Ay, containing the pixel of
maximum intensity, as the direction of the sun [y, € R? in the spherical coordinates. The diameter
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of Agn in pixels is used as z,ng and the mean RGB values divided by the mean intensity values over
Agun is used as the RGB weights cg,, € R3.

The ideal directional light has no corresponding solid angle w and thus can not be directly used in
Eq. (10) of the main paper, we approximately “assign” a small solid angle wy;; corresponding to a pixel
(minimum visible unit) in the envmap. To calculate the equivalent intensity ¢g4;; corresponding to the
pixel in the envmap, we assume the intensity from the sun center to the surroundings approximately

2
fits the Gaussian distribution fg(7) = ag exp (—57 ), and therefore we have:
G

fG(O5) = Zint, fG(Zang/2) = TsunZint, (11)
1
and we can solve ag = ziyTan ™ and oG = W from Eq. (11) and therefore we have:
Zang /2 Zang /2
idir = / fg(r)dw(r)/wdir ~ / f(‘,(T‘)Q’]T?"dT/wdir. (12)
0 0

We use 2-nd order SH coefficients oS = {USH, o$y, 084} to represent low-frequency light in each
RGB color channel, where each og; = {000, ol 1 O'TO, ..., 0, } are the corresponding coefficients

for the 2-nd order spherical harmonics basis {YE),O, Yi.1,Y10,..., Y22}. Due to the orthogonality of
the spherical harmonics basis, the coefficients for low-frequency lighting isy (6, ¢) are computed as:

2m ™
:/ / iy (0, 0) Y1 (6, ¢) sin 0d0dep, (13)
o Jo

where we use the envmap annotation (clipped into [0, 7sun2int] if 2vis is 1) as isu(6, ¢). The recon-
structed sy (0, ) is simply the weighted sum of the spherical harmonics basis:

l l
isu(0,0) =Y Z . (14)
:O =

8.3 Details on the Illumination Image Rendering

The rendering of the illumination (candidate) images is conducted by applying Eq. (10) of the main
paper pixel-wisely. Since the actual camera FoV is unknown, here we assume the camera viewing
directions of all pixels are the same v = (0,0, —1) (orthogonal camera model), which is shown in
Fig. 5 of the main paper to be a reasonable approximation for lighting-realistic generation tasks.

Since we use the normal map as the representation of geometry, which is not a complete 3D shape
model (such as meshes, or signed distance functions), we only calculate single-bounce light effects,
ignoring complex light transport effects such as self-cast shadow or inter-reflections. This is a
trade-off between using the costly (and maybe more unreliable) single-view full 3D reconstruction or
ignoring inconspicuous indirect light bounces.

The integration over the hemisphere €2,, in Eq. (10) can be done discretely on an envmap. Therefore,
the most intuitive way for the calculation is converting our parametric lighting representations back to
envmaps before applying Eq. (10). However, a more efficient computation can be done utilizing the
properties of our parametric representation, where we use p € {1,2,4, 8,16, 32,64, 128} for {I.}.

Specifically, we divide I as the sum of two parts Isy and Iy, corresponding to our representation.

Then each pixel p of T4 gir and 17 spec,dir CaN be calculated without integration as igirCsun (70p - Ldir)Wair

and igirCsun (1p - Pair )’ wair, Where lgi; is the Cartesian coordinate representation of [y, and hgi; =
lir—v/||14,—w|| 18 the half vector introduced in Sec. 5.2 of the main paper. The negative dot product is
clipped to 0 to avoid underflow. Besides, we also clip the minimums of /gy to 0.

For Igifr su, each pixel p is fast calculated by using Y; ,,, (6, o) to describe the distribution of  [13]:

p _ 2 2 2
Tiisgsu = [c102,2(nh” — n}%) + c302,0n8” + 4000 — 5020 15)
+ 2¢; (0'2’,2712715 + o9 1nEnf + 02,,1n§n§) + 2¢a(01,1mf, + 01, —1nf) + o1,0n8)]/ 7,

with weights ¢; = 0.429043, co = 0.511664, c3 = 0.743125, ¢4 = 0.886227, and c5 = 0.247708.

17



For Isppec,SH’ we have 0; = 20y, and ¢, = @p,. Similarly, ffl’m(G, ) =Y., (20, ¢) is used to describe
the distribution of h [22]], which gives the fast approximation of pixel p with Blinn-Phong model [2]:

Igj’epc’sﬂ ~ {00,0(ca)’ + 017_1(402n5n§)p + 01,0[202(27122 —1)]” + 01,1 (4canEnk)” (16)

+ 027_2(801n§n5n€2)p + 027_1[201(47157112’3 — 2njn?)]” + oa.0les(12nP* — 12022 + 2))°

+ 02,1[201(4n’;n§3 —2nPn2))P + 02.2[c1 (4n§,2n§2 — 4n§2n€2)]”}(p +4)/8m.

8.4 Details on the User Study

We randomly sample 200 sets of results of compared methods and ask volunteers to choose one in
each set that best matches the following description: (i) “The repainted region which seems most
realistic”; (ii) “the whole repainted image which seems most harmonized in lighting”; (iii) “the whole
repainted image which seems most realistic overall”.

The volunteers are shown with the masked repainted foreground images, i.e., without the background
context when asked about the realistic question. Then the full repainted images are shown and the
harmonized question is asked on the same set of results, where we use our repainted background region
for all results to prevent our method to be identified or guessed out by only noticing the difference in
the background. The original results of compared methods are shown to the volunteers when asking
about the realistic overall question. We first ask the realistic question, then the harmonized question,
and at last the realistic overall question. We have reported the results of the first two questions in
Tab. 1 of the main paper while the results for the realistic overall question are: Ours: 77.32%,
Pavllo ef al. [12]]: 14.50%, UniCoRN [6]: 7.03%, Weng et al. [18]: 0.92%, MISC [19]: 0.23%.

The order of sets and images in each set is randomized, and we deliberately duplicate 5 sets of the
samples as the quality control questions to judge whether the volunteers have paid attention when
finishing the questionnaires. Questionnaires that failed in the quality control questions are discarded.

8.5 Training Details

Experimental settings. Our pipeline is implemented in PyTorch [[11] and trained step-wise. We
first train our NetL on the held-out background images with a batch size of 64 and an initial learning
rate of 1 x 10~ (which halves every 20 epochs) for 60 epochs, where we estimate the sun position
lsun in the form of an 8 x 32 classification task and we apply log-compressed tone mapping [8]]
T = log (1+16H)/10¢ (1+16) for the HDR sun intensity zi,. Our NetS and NetB are separately trained
on our CAR-LUMINAIRE dataset with a batch size of 32 and a fixed learning rate of 2 x 10~* for 60
epochs. Then we run our full pipeline optimization (one discriminator step after each generator step)
with fixed NetL, NetS, and NetB to learn the network parameters of NetF, with a batch size of 24 and
a fixed learning rate of 2 x 10~* for 30 epochs. During the training of NetS and NetF, we use the
hierarchical labeling enhancement at the probability of 0.5, where each part label has a probability
of 0.5 to be coarsened to its upper-level label. Before illumination injection, the illumination image
1 is clipped by an empirically set threshold 6; = 2.0 to simulate the over-exposure of highlights
in LDR images and avoid extremely high inputs to network layers. For cross-modality conditional
consistency constraints, we pretrain the image encoder Enc' (omitted in the main paper) and the
attribute encoder Enc® (Fig. 3) on our CAR-LUMINAIRE dataset following previous work [21]].

The baseline methods are trained on our CAR-LUMINAIRE dataset with the same batch size of 24 as
our NetF for 30 epochs using their default settings in their released code. We use Adam optimizer [9]
in all of our experiments, and all experiments are conducted on 4 NVIDIA Tesla V100 graphic cards.

Training losses. Our full pipeline is trained with the following losses:
L=L+ Ls+ L+ Lk, a7
where L1, Ls, Lg, and L are the loss terms for our NetL, NetS, NetB, and NetF, respectively.

For our NetL, L consists of two parts L1 = Lsy + Lg; corresponding to our lighting modeling:
ESH = Ecoeff + Epanoa £dir = Evis + Epos + Eparama (18)

where Lcoefr i an Lo loss for ogy with aim from Eq. , Lpano is an Ly loss for envmaps recon-
structed by SH coefficients 7 (6, ) from Eq. with isg (60, ), Lyis is a binary cross-entropy loss
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for zyis, Lpos is a cross-entropy loss for the 8 x 32 classification results of Iy, and Lpaam are Lo
losses for the remaining parameters (log-compressed Zin, Zang, and csun). For images with the sun not
visible (zis = 0) in the lighting annotations, we set Lpos = Lparam = 0.

For our NetS, Ls is defined as:
£S = £sp + £s—smootha (19)

where Lgp is an Lo loss for G, and Ly gmoon = Y [(ViG)? + (V,;G)?] is the smoothness loss for G.
For our NetB, Lz is defined as:
EB = Ebg + Ebfsmoolh + Eb—disa (20)

where Ly, is an Ly loss for 4°, Losmoon = Y. [(Vi(y°/2"))? + (V,(y°/2"))?] is the smoothness
loss for 4/°, and Ly,_q;s is the discriminator loss for ¢° with the background regions of reference images.

For our NetF, L is defined following UniCoRN [[14] as:
EF = ACfg + Er + »Cbc + »Cfm + ﬁper + Ecmy (2D

where L, and L, are discriminator losses judging whether y" is real and whether 3" is composited,

Ly is an Ly loss enforcing (1 —m) ® yf close to 2P, L, and Ly are the feature matching loss [[17]
and the perceptual loss [3] for 4", and L., is the cross-modality conditional matching loss [21].

8.6 Implementations of Baseline Methods

We use the released code of UniCoRN [14], MISC [19], Weng et al. [[18]], and Pavllo et al. [12] as the
implementations of our baseline method. As mentioned in the main paper, modifications have been
made to the released code of Weng er al. [[18]] and Pavllo et al. [12] for taking attributes as the input
color condition z°¢. Besides, for Pavllo et al. [12]], since their generated background is not conditioned
on either the original background or other conditions and thus is not controllable, we discard their
generated background and replace it with the input background image to fit the formulation of CIR.

8.7 Additional Results

Lighting and shape estimations. Our LuminAIRe pipeline consists of lighting and shape estimations
which will inevitably introduce errors. As stated in Sec. 5.1 of the main paper, the low-frequency
part (SH lighting) and high-frequency part (directional light) of the lighting are separately estimated.
Here we report the lighting estimation errors from masked background images (foreground regions
masked by zeros) in each part: (i) directional (sun) light: mean angular error (MAE): 28.37°, mean
azimuth error: 3.84°, and mean elevation error: 27.74°; (ii) SH lighting: mean absolute error of SH
coefficients: 0.0488, mean square error of SH coefficients: 0.0054, mean absolute error of envmaps
reconstructed by SH coefficients: 0.0435, and mean square error of envmaps reconstructed by SH
coefficients: 0.0043. Similarly, we report the estimation errors on normalized normal maps in the
shape estimation: mean angular error (MAE): 9.83°, mean absolute error: 0.0167, and mean square
error: 0.0039. These errors would prevent us from recovering the exact lighting effects, however, are
tolerable for the demand of lighting-realistic repaintings.

More comparisons and ablation variants. We conduct a breakdown evaluation on how our method
and compared methods work on foreground regions (noted as “fg.”) and how repainted background
regions (noted as “bg.”) by our method contribute to the realistic perception. We also compare our
method with more ablation variants (Ours-A and Ours-Al) for the completeness of the ablation study.
Despite that we can not compare our method with image harmonization methods in an exact fair
setting, as an intuitive reference, we choose two of the latest methods (DHT+ [5]] and PCT-Net [4]])
and use the repainting results from Ours-Al as their inputs. The quantitative results are shown
in Tab. [2and the qualitative comparisons are shown in Fig. where the harmonized images show
better integrity than input as M-score indicates, however, do not show better lighting effects and may
have severe color-shifting issues as R-prcn and SSIM scores indicate.

More results on our CAR-LUMINAIRE dataset. More qualitative results on our CAR-LUMINAIRE
dataset are shown in Fig. [4]and Fig.[T5] Our LuminAIRe generally performs better qualitatively
than baseline methods in generating realistic, harmonized, and consistent lighting effects.

In-the-wild performance. To test the generalization ability of the compared methods, we show
qualitative results of in-the-wild data which are collected from the Waymo dataset [[15] and the
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Table 2: Additional quantitative eval-

uation results. Separated evaluations Method FIDJ R-prenf M-score] SSIMT

of foreground and background regions MISC fg. 76.26 — — 0.8228
are shown. Qualitative results of addi- Weng et al. fg. | 44.14 — — 0.8306
tional ablation variants and image har- ~ Pavlloezal. fg. | 6.14 — — 0.8671
monization baselines are also shown. ~ UniCoRN fg. 9.53 - — 0.8541
1 (1) means higher (lower) is better. Ours fg. 4.30 — — 0.8689
“fg.” stands for “foreground” and “bg.”  Original bg. 2143 — — 0.8309
stands for “background”. Please note Ours bg. 4.94 — — 0.8494
that “original bg.” corresponds to the Ours-A 504 7429% 13.76 07167
background regions of all compared  Qyrg-AT 572 7473% 1536 0.7106
baseline methods since they leave the DHT+ [5] 504  67.34% 9.02 0.7057
background untouched. PCT-Net 531 69.59% 7.85 0.7035
Conds. Reference Ours Ours-A Ours-Al DHT PCT-Net

& r

| wind glass, normal door glass, normal roof glass, and blue grey metallic carpain

a liftback with normal wind glass, normal door glass, dark roof glass, and metallic carpaint

Figure 13: Qualitative results of additional ablation variants and image harmonization baselines.

UASOL dataset [T] in Fig.[T6 Although their data distribution is far different from our synthetic data,
our LuminAlIRe still gives reasonable lighting-realistic results compared with baseline methods.

Failure cases. Here we analyze examples of failure cases in Fig. When the repainted region
is across the boundary of the shadows (the first row), the global lighting assumption may lead to
unrealistic lighting effects. A too-coarse parsing mask (the second row) would raise serious geometry
ambiguity and renders a failed repainting. The lighting effects would become less realistic if the
accumulated errors in lighting and shape estimations were too large (the third row). The occasionally
badly repainted background (the fourth row) would also do harm to the lighting-realistic perception.

8.8 Detailed Network Architectures

We show the detailed network architectures of the NetL, NetS, NetB, and NetF from Fig. [I9]to Fig. 21]
with the structures and default settings of common blocks shown in Fig. [18]

The network architectures of the image encoder Enc' and the attribute encoder Enc® for measuring
cross-modality conditional consistency remain the same with the HCMSM proposed in UniCoRN [[14].
We adopt the network backbone of their FC for our NetF, where we inject the illumination images
I as the illumination condition z' in 2D image space from the resolutions of 32 x 32 to 256 x 256.
Specifically, we replace the batch normalization layers with instance normalization layers in FABN
module and ignore the texture condition P when injecting the illumination image /.
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Conds. MISC Weng et al. Pavllo et al. UniCoRN LuminAIRe Reference

a sedan with mirror-like wind glass, mirror-like door glass, and green flake carpaint

oy’

a hatchback with normal wind glass, normal door glass, normal roof glass, and taupe clearcoat carpaint

a liftback with normal wind glass, normal door glass, normal roof glass, and dark grey clearcoat carpaint

a hatchback with mirror-like wind glass, mirror-like door glass, and frosted carpaint

a hatchback with normal wind glass, normal door glass, and clearcoat carpaint

a sedan with normal wind glass, normal door glass, and red metallic carpaint

a CUV with normal wind glass, normal door glass, and grey metallic carpaint

a hatchback with normal wind glass, normal door glass, and metallic carpaint

Figure 14: More qualitative comparisons on our CAR-LUMINAIRE dataset.
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Conds. MISC Weng et al. Pavllo et al. UniCoRN LuminAIRe Reference

a pickup with normal wind glass, normal door glass, normal roof glass, and sky blue frosted carpaint

=
o

a sports with light wind glass, light door glass, and ke carpaint

a hatchback with light wind glass, normal door glass, dark roof glass, and metallic carpaint

a sedan with normal wind glass, normal door glass, and night blue clearcoat carpaint

-
47

a sports with dark wind glass, dark door glass, and light red clearcoat carpaint

a coupe with mirror-like wind glass, mirror-like door glass, and orange diffuse carpaint

a CUV with normal wind glass, normal door glass, and dark yellow clearcoat carpaint

a CUV with light wind glass, light door glass, light roof glass, and taupe flake carpaint

Figure 15: More qualitative comparisons on our CAR-LUMINAIRE dataset.
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Conds. Geometry lllumination LuminAIRe UniCoRN Pavllo et al. Weng et al. MISC

a CUV with normal wind glass, normal door glass, and brown frosted carpaint

a hatchback with normal wind glass, normal door glass, and metallic carpaint

a liftback with normal wind glass, normal door glass, normal roof glass, and flake carpaint

a CUV with normal wind glass, normal door glass, normal roof glass, and blue grey frosted carpaint

a sedan with light wind glass, light door glass, and grey clearcoat carpaint

a coupe with mirror-like wind glass, mirror-like door glass, and diffuse carpaint

a van with normal wind glass, normal door glass, and light blue clearcoat carpaint

a coupe with mirror-like wind glass, mirror-like door glass, and blue grey flake carpaint

a hatchback with normal wind glass, normal door glass, dark roof glass, and metallic carpaint

Figure 16: More qualitative comparisons on in-the-wild data.
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Conds. MISC Weng et al.

Pavllo et al. UniCoRN LuminAlRe Reference

O

sedan with light wind glass, light door glass, and dark orange clearcoat carpaint

a liftback with light wind glass, light door glass, and clearcoat carpaint

a sedan with mirror wind glass, mirror door glass, and sky blue flake carpaint

a roadster with light wind glass, and red diffuse carpaint

Figure 17: Failure cases on our CAR-LUMINAIRE dataset.

=P Conv IN RelU fr==——p | »| conv GN Leal((:zeLU ;C) >
(a) Convolutional Layer (ConvL) -

(b) Residual Convolutional Layer (ConvR)

Plus

\ 4

a A
Conv IN RelU » Conv IN > >
Concat N

XD

(c) Residual Block I (ResBIk-I)

Conv GN RelU L Conv | GN RelU J-> Conv [ GN RelU ->®—>€9—>

\ 4

A
| Conv
> (1x1) GN ReLU
(d) Residual Block II (ResBIKk-IT)
» FABN | sn [ Conv
(1x1)
v
> > >N .
» FABN SN Conv » FABN SN Conv > >

(e) FABN Residual Block (FABN ResBIk)
Figure 18: Common blocks used in the network architectures. Notations: BN = Batch Normal-

ization [7], IN = Instance Normalization [16]], GN = Group Normalization [20], SN = Spectral
Normalization [10], FABN = Feature Adaptive Batch Normalization [14]].
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Figure 19: Network architectures of our pipeline.
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Figure 20: Network architectures of our pipeline (cont’d).
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Figure 21: Network architectures of our pipeline (cont’d).
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