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Abstract—We propose DeRenderNet, a deep neural network to decompose the albedo and latent lighting, and render
shape-(in)dependent shadings, given a single image of an outdoor urban scene, trained in a self-supervised manner. To achieve this
goal, we propose to use the albedo maps extracted from scenes in videogames as direct supervision and pre-compute the normal and
shadow prior maps based on the depth maps provided as indirect supervision. Compared with state-of-the-art intrinsic image
decomposition methods, DeRenderNet produces shadow-free albedo maps with clean details and an accurate prediction of shadows
in the shape-independent shading, which is shown to be effective in re-rendering and improving the accuracy of high-level vision tasks
for urban scenes.
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1 INTRODUCTION

INTRINSIC image decomposition aims to decompose an
input image into its intrinsic components that separate

the material properties of observed objects from illumina-
tion effects [1]. It has been studied extensively that such
decomposition results could be beneficial to many computer
vision tasks, such as segmentation [2], recognition [3], 3D
object compositing [4], relighting [5], etc. However, decom-
posing intrinsic components from a single image is a highly
ill-posed problem, since the appearance of an object is jointly
determined by various factors. An unconstrained decompo-
sition without one or more terms of shape, reflectance, and
lighting being fixed, will produce infinitely many solutions.

To address the shape-reflectance-lighting ambiguity,
classic intrinsic decomposition methods adopt a simplified
formulation by assuming an ideally diffuse reflectance for
observed scenes. These methods decompose an observed
image as the pixel-wise product of a reflectance map and a
greyscale shading image, leaving the lighting color effects
on the reflectance image [6], [7], [8], [9]. By learning the
reflectance consistency of a time-lapse sequence, the illu-
mination color can be correctly merged into the shading
map [10]. However, it cannot be extracted from the shading
without shape information, so the results of decomposition
cannot be re-rendered into a new image. Re-rendering using
the decomposed intrinsic components can be achieved by
choosing objects with simple shapes [4], [5], [11]. In more re-
cent research, attention has been put on decomposing shape,
reflectance, and lighting on a complete scene [12], [13], by
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still assuming Lambertian reflectance (represented by an
albedo map). It becomes rather challenging to consider more
realistic reflections such as specular highlights, shadows,
and interreflection for single image intrinsic decomposition
at the scene context, because the diverse objects and their
complex interactions significantly increase the ambiguity
of the solution space. Recently, a complex self-supervised
outdoor scene decomposition framework [14] has been pro-
posed to further separate shadows from the shading image
with a multi-view training dataset, and relighting a city
scene has been achieved by using a neural renderer with
learned shape and lighting descriptors [15].

Lacking an appropriate dataset is the main obstacle
that prevents a deep neural network from learning intrin-
sic decomposition at the scene level effectively. Existing
datasets are either sparsely annotated (e.g., IIW [6] and
SAW [16]) or partially photorealistic with noisy appearance
(e.g., SUNCG [17], CGIntrinsics [8], PBRS [18]). We notice
that the recently released FSVG dataset [19] created from
videogames1 complements well existing intrinsic image
decomposition datasets in several aspects: 1) it contains
dense annotations of albedo and depth maps (from which
shape information can be acquired); 2) the renderings are
of high quality with complex reflection effects and little
noise; and 3) it covers unprecedentedly abundant outdoor
urban scenes on a city scale. However, it is non-trivial
to directly apply this data to the task of intrinsic image
decomposition. The dataset is initially collected for high-
level vision tasks such as segmentation and recognition,

1. We want to comment that the computer graphics (CG) rendering
and physics-based image formation (IF) are different and approxima-
tion is widely applied in graphics for efficiency consideration. There-
fore, we mainly focus on the components which CG and IF render in the
same way, such as diffuse shading and shadow. For components that
CG does not follow IF (e.g., specular component and interreflection),
we will not discuss them in this work.



therefore only the albedo is directly usable for supervising
decomposing intrinsic components.

In this paper, we propose DeRenderNet to learn intrinsic
image decomposition from the outdoor urban scenes based
on FSVG dataset [19]. As the name suggests, we “derender”
the scene by decomposing the scene intrinsic components
to obtain albedo, lighting, and shape-independent shading
(which mainly contains cast shadows), and then rendering
shape-dependent shading (dot product of normal and light-
ing) using a self-supervised neural network. Our major
contributions include:

• We propose an image formation model (Section 3)
and data preprocessing pipeline (Section 4) that takes
full advantage of FSVG dataset [19] to conduct intrin-
sic image decomposition for outdoor urban scenes.

• We design a two-stage network (Section 5) to ef-
fectively extract four types of intrinsic compo-
nents, including albedo, lighting in its latent space,
shape-independent shading, and re-rendered shape-
dependent shading with the guidance of the depth
map by self-supervised learning.

• We demonstrate that our method avoids over-
smoothing the albedo map by correctly decomposing
shape-(in)dependent shadings (Section 6). The recov-
ered shadow-free albedo with clean details could
benefit high-level vision tasks for urban scenes (Sec-
tion 7).

2 RELATED WORK

Recently, learning-based methods have shown advantages
over conventional methods relying on hand-crafted priors.
In this section, we discuss current learning-based methods
for intrinsic image decomposition and, more broadly, those
for inverse rendering.

2.1 Intrinsic Image Decomposition
The traditional intrinsic image decomposition refers to de-
compose an image into reflectance and shading. However,
even for such a two-layer decomposition, ground truth data
covering diverse scenes are difficult to collect. There are only
a few datasets for this problem, such as single-object-based
MIT intrinsic dataset [20], animation-movie-based MPI-
Sintel dataset [21], sparse manually labeled IIW [6] and SAW
datasets [16], OpenGL-rendered SUNCG dataset [17], and
physically rendered CGIntrinsics dataset [8]. Among them,
MIT, IIW, and SAW contain real captured images, MPI-
Sintel, SUNCG, and CGIntrinsics are synthetic datasets. To
date, the majority of intrinsic methods [7], [9], [22] used
the IIW dataset [6] for training and validation. Narihira et
al. [22] extracted deep features from two patches and trained
a classifier to determine the pairwise lightness ordering.
Zhou et al. [7] proposed a data-driven method to predict
lightness ordering and integrated it into energy functions.
Nestmeyer et al. [9] used signal processing techniques and a
bilateral filter to get reasonable decomposition results. These
methods rely on pairwise reflectance comparison to guide
the network prediction due to the lack of densely labeled
ground truth albedo. Li and Snavely [8] proposed a deep
model to combine CGIntrinsics, IIW, and SAW datasets to

learn intrinsic decomposition with densely labeled synthetic
data. Later, they [10] proposed an image sequence dataset
with a fixed viewpoint to learn constant reflectance images
over time and successfully put lighting color into shading
images. Bonneel et al. [23] reviewed and evaluate some past
intrinsic works for image editing. Fan et al. [24] revisited
this problem and used a guiding network to finetune the
albedo estimation results. Liu et al. [15] learned intrinsic
decomposition for relighting city scenes on a time-lapse
dataset collected from Google Street View.

In this paper, we also consider the colors in shading
and further decompose shading into shape-dependent and
shape-independent terms.

2.2 Inverse Rendering

The appearance of an observed image is jointly determined
by shape, reflectance, and lighting. Previous works tried to
take such components as input and train a neural network
to estimate the result of forward rendering [25], or formulate
it in a differentiable way [26]. Compared with forward ren-
dering, inverse rendering is more widely used in computer
vision applications, but it is also a difficult task. To alleviate
the difficulty in joint intrinsic components estimation for
general objects, single types of objects with relatively unified
material property (such as human faces) have been studied.
Sengupta et al. [5] assumed the human face is a Lambertian
object and used supervised training on synthetic data, while
later used real images for finetuning using self-supervised
learning. Yamaguchi et al. [27] proposed a hybrid reflectance
model that combined Lambertian and specular properties to
get a more realistic face appearance. Meka et al. [4] used
an encoder-decoder architecture to successfully estimate
the material of single objects. Recently, research focus has
turned to inverse rendering of a scene. For example, Yu et
al. [12] used multi-view stereo (MVS) to get a rough geom-
etry and then estimated a dense normal map by assuming
a Lambertian model and albedo priors on outdoor scenes.
Yu et al. [14] further estimated a global shadow map to
get shadow-free albedo in order to relight outdoor scenes.
Sengupta et al. [13] rendered indoor scenes with the Phong
model and proposed a learning-based approach to jointly
estimate albedo, normal, and lighting of an indoor image
based on a synthetic dataset. However, reflectance on the
scene level is much more complex than what a Lambertian
or Phong model can describe. Li et al. [28] proposed a
physically-based renderer with SVBRDF to render more re-
alistic images to learn inverse rendering for complex indoor
scenes.

In this paper, we extract intrinsic components to inverse-
render a scene without explicitly estimating depth and
specularity; instead we focus on extracting an independent
shadow layer.

3 IMAGE FORMATION MODEL

The goal of DeRenderNet is to decompose an image in its
intrinsic components for real-world outdoor scenes, con-
taining complex shape, reflectance, and lighting (shadows).
To improve the classic formulation which uses the albedo-
scaled shading, we define the shape-dependent shading that
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Fig. 1. The network architecture of DeRenderNet is composed of two modules: (a) Intrinsic Decomposition Module and (b) Rendering Module. Kernel
sizes for all convolutional layers are 5×5. The intrinsic decomposition module takes an image I as input and estimates the intrinsic components:
shape-independent shading Si, albedo A, and latent lighting code L. The rendering module first takes the depth image D as input and extracts
shape features in latent space, and then it is concatenated with L to decode the shape-dependent shading Sd. The estimated Si, A, and Sd can
be used to generate a reconstructed image via pixel-wise multiplication.

is consistent with classic shading as the dot product be-
tween normal and lighting, and the shape-independent shad-
ing, which mainly contains cast shadows (which are not de-
termined by the shape of an object itself but by the occlusion
on the light path). We ignore the specular highlights and
other global illumination effects (such as inter-reflection,
transparency and translucency), since they are too complex
in a scene with many objects. Fortunately, they are generally
sparse, so we leave them as additive noise. Then the image
formation can be expressed as

I = A� Sd(D,L)� Si + ε, (1)

where albedo map A and shape-dependent shading Sd

have the same physical meaning as other intrinsic decom-
position works [8], [12]. To link our definition to diffuse
shading, which is defined as S̃d(n,Ω) = Σk max(n>ωk, 0)
(ωk ∈ Ω is a 3-D vector encoding directional light intensity
and direction sampled from the visible hemisphere of an
environment map Ω), we design a rendering module Θ
that takes depth D and lighting L in a latent space as
input to render Sd instead of writing down its explicit form
(usually not differentiable), i.e., S̃d(n,Ω) = S̃d(Θ(D,L)) =
Sd(D,L). Sd does not take any global lighting effect such
as shadows or interreflections into account, while shape-
independent shading Si, as the complement of Sd, is in-
tended to encode the contribution of cast shadows and
interreflections.

Given a scene image I as input, we decompose all
intrinsic components A, Sd, Si, with D and L as latent
variables in Equation (1), as illustrated in Figure 1. We
do not explicitly estimate the shape as one of the intrinsic
components because inferring the scene depth from a single

image is another highly ill-posed problem [29], [30]. Due to
the strong shape-light ambiguity in scenes, estimating the
shape information constrained by reconstruction errors [12],
[13] is fragile.

4 TRAINING DATA

To achieve shape-(in)dependent decomposition on shading,
we need densely labeled depth maps in addition to albedo.
We therefore propose a data preprocessing method to obtain
additional supervision for our task.

4.1 FSVG Dataset
The FSVG dataset [19] is created by collecting and labeling
an enormous amount of data (about 220k images) from
videogames such as GTAV and The Witcher 3. It includes
instance and semantic segmentation labels, densely labeled
depth, optical flow, and pixel-wise albedo values. This
dataset is useful in many high-level vision tasks thanks
to both realistically rendered images and accurate ground
truth labels. By collecting data from videogames, a large
number of images in outdoor scenes with great diversity
can be acquired, which is highly difficult and impractical
using human labor. In this paper, we use densely labeled
ground truth values of albedo and depth for directly and
indirectly supervising intrinsic image decomposition task.

4.2 Data Preprocessing
To provide more useful supervision for our task, we pre-
compute two types of additional labels: a shadow prior map
and a normal map, as shown in Figure 2.
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Fig. 2. Our training data contains two parts: the image, albedo, and
depth directly available from FSVG dataset [19] (left column), and the
shadow prior map and normal map (right column) pre-computed from
the data on the left.

The shadow prior map provides an approximate prob-
ability distribution of shadow regions. To obtain the
shadow prior map, we first calculate the pseudo-shading as
Spseudo = I/A. Then we set the regions where Spseudo > 1
to a large intensity value (10 in our experiment) to eliminate
the effects of non-shadow parts and convert Spseudo into a
greyscale image Sgrey. We define the shadow prior map as

W =
1√
2π

exp(−
S2
grey

2
). (2)

The shadow prior map alone is not sufficient to distinguish
dark shadings and shadows, so we consider to involve
depth for further decomposition. The depth map contains
pixel-wise relative distance information, but it does not
explicitly represent surface orientations, which encode im-
portant cues for intrinsic image decomposition. We therefore
calculate the pixel-wise normal vector according to the
depth map. We assume a perspective camera model, so the
projection from 3D coordinates P = (x, y, z) to 2D image
coordinates p = (u, v, 1) is given by

p =
1

z
KP, K =

f 0 cx
0 f cy
0 0 1

 . (3)

Accordingly the surface normal directions can be calculated
as n̄> = [−zx(u, v),−zy(u, v), 1]. We use unit-length nor-
mal vectors n = n̄/‖n̄‖.

5 PROPOSED METHOD

In this section, we show how to solve the intrinsic image
decomposition defined in Equation (1) by fully exploiting
the available and pre-computed data, instead of relying on
smoothness terms on albedo and shading [6], [8], [9], [24].

5.1 Network Structure Design
We have the following considerations: 1) we want to esti-
mate as many as possible intrinsic components according
to the data available; 2) we want to use depth to guide
our intrinsic image decomposition but avoid using it as a
necessary input; 3) we want to use learned shape features
and lighting in latent space to overcome the limited repre-
sentation power of parametric image formation models.

Based on the considerations above, we create a two-stage
framework called DeRenderNet. The first stage of DeRen-
derNet is an intrinsic decomposition module that takes an
observed image I as input and estimates three intrinsic com-
ponents: albedo A, lighting L in latent space, and shape-
independent shading Si. The second stage of DeRenderNet
is a rendering module, which generates shape-dependent
shading Sd based on lighting code L extracted by the
previous module and depth map D.

5.1.1 Intrinsic Decomposition Module
The intrinsic decomposition module is a single-input-multi-
output network that consists of three branches, as shown
in Figure 1 (a). The first two layers of the network are used
to extract global features from an input image I, and then
two residual block based architectures are used to predict A
and Si, respectively. The skip connections in residual blocks
allow the high-frequency information to be merged with
low-frequency features. Since L is a latent code, we use a
deep encoder followed by a fully connected layer to predict
it. We find that such an architecture can help separating Si

and Sd, because Si has stronger gradients on edges. These
features can pass through convolutional layers but are not
preserved after traversing the fully connected layer. In this
way, the intrinsic decomposition module can partly separate
Si and Sd features.

5.1.2 Rendering Module
The rendering module is a multi-input-single-output net-
work. It takes depth D and lighting code L as input, and
outputs Sd. We treat this network as a “rendering engine”
that is able to generate realistic shading for complex scenes.
We design it to handle shape-related complex reflection in a
self-learning way. The main structure is an encoder-decoder,
as shown in Figure 1 (b). The encoder part is used to encode
a shape prior and to extract features of shape information.
Shape features obtained by the last layer of the encoder are
concatenated with lighting code L before being sent into
the decoder part to generate Sd. We use a fully connected
layer at the end of the encoder and the beginning of the
decoder to extract high-frequency features and merge these
two types of features together. Several skip connections are
used to make full use of shape information.

5.2 Learning Shape-(in)dependent Shadings
DeRenderNet is trained with the labeled and pre-computed
data in Figure 2. We use ground truth albedo labels and
dense depth labels from the FSVG dataset [19] to super-
vise the albedo estimation and guide the self-supervised
learning, respectively. Since the ground truth lighting, shad-
ing, and shadows are not available in current datasets,
we propose a self-supervised learning method to estimate



lighting code L, shape-dependent shading Sd, and shape-
independent shading Si by designing appropriate loss func-
tions.

5.2.1 Supervised Loss
Since the images in the FSVG dataset [19] are equipped with
ground truth albedo values, we use the albedo as direct
supervision to train our intrinsic decomposition module:

La =
1

M

M∑
i=1

(Ai −A∗i )2, (4)

where A is the estimation of albedo image, A∗ is the ground
truth value of albedo, M is the total number of valid pixels
correspond to non-sky regions.

5.2.2 Self-supervised Losses
Although A∗ provides direct supervision for albedo esti-
mation, there is no supervision guidance for the other two
intrinsic attributes: L and Si. Hence we propose a self-
supervised method to make our intrinsic decomposition
module learn how to effectively extract these two com-
ponents and to make our rendering module learn how to
render Sd based on the estimated L and the guiding depth
map D at the same time.
Shape-independent Shading Loss: We use the pre-
computed shadow prior map, which is an approximate
probability distribution indicating where shadows should
appear, to guide the prediction of shape-independent shad-
ing Si using the following loss function:

Lsi =
1

M

M∑
i=1

wi

∑
j∈N (i)

(Sii − Sij)
2. (5)

Here wi ∈ W is the shadow prior at pixel i, N (i) de-
notes the neighborhood of the pixel at position i, and M
is the same as in Equation (4). This loss function mainly
encourages shape-independent shading Si to be considered
as shadows, and we will further decouple it from the de-
pendency on shape by the next loss function.
Shape-dependent Shading Loss: After putting high-
frequency terms as an additive noise in ε, it is natural
to assume that the shading is smooth. More specifically,
considering that the outdoor light source mainly comes from
the distant sun, albedo-normalized scene radiance values on
the same shadow-free plane should be roughly consistent.
On the other hand, though using D and L significantly
suppresses the edges of shadows, there still exists ambiguity
in non-edge parts. To further remove this ambiguity, we
define the shape-dependent shading loss as

Lsd =
1

M

M∑
i=1

[(Sdi(D,L)−
B∑

m=1

ni
>lm)2+

(1− wi)(AiSdi(D,L)− Ii)
2], (6)

where ni is the normal vector at pixel i of image, lm is
a directional light (a 3-D vector) extracted from the latent
code L (in total B vectors are extracted) to encourage
similar surface normals to have similar “shading” under L,
wi is the same as in Equation (5), and M is the same as
in Equation (4). In particular, we split L as a total of B 4-D

vectors and take the first three elements of each 4-D vector
as 3-D vector lm. The first term in this loss aims to smooth
the shape-dependent shading approximately in a planar
surface, and the second term is used to suppress shadows
in the rendering process of shape-dependent shadings.

Reconstruction Loss: Given a estimated albedo A, a shape-
dependent shading Sd and a shape-independent shading
Si, we compute a reconstructed image using Equation (1).
Then we use a pixel-wise L2 loss between the reconstructed
image and the input image as the reconstruction loss:

Lrecon =
1

M

M∑
i=1

(AiSdi(D,L)Sii − Ii)
2. (7)

5.3 Implementation Details

We train our DeRenderNet to minimize

L = Lrecon + λ1La + λ2Lsd + λ3Lsi, (8)

where λ1 = 0.8 and λ2, λ3 = 0.5. We use all 220k training
images from the FSVG dataset [19] to train our networks.
Before training, the images are resized to 320 × 240 due to
the fully connected layers in DeRenderNet. For the middle
layers, we use ReLU and Batch Normalization followed
by convolutional layers. We use the same learning rate
for all layers. According to previous lighting estimation
studies [31], [32], the scene lighting information encoded
in a latent space has a strong representation power, so we
adopt the similar strategy. To figure out a proper number
of dimensions of lighting code, experiments are conducted
when the number of dimensions are searched from 0 to 2000.
We empirically set the dimension of the latent lighting code
to 1024 and B in Equation (6) as 256 based on the results
from validation set.

Please note that we only use depth as input in the train-
ing stage to guide DeRenderNet to learn how to extract Sd

and Si from images. To analyze the influence of depth errors
during training, we added some noise to the depth input.
However, we found that this will not affect our results,
probably because the useful features could be extracted by
the network despite noisy input depth. Once the training is
completed, we can use the intrinsic decomposition module
to get Si and A without depth input. Please refer to our
supplementary material to see the shape-dependent shad-
ing results with the estimated depth from MegaDepth [29]
trained on in-the-wild data.

6 EXPERIMENTAL RESULTS

For thoroughly testing the performance of DeRenderNet,
we perform quantitative evaluations on both the FSVG
dataset [19] and the IIW benchmark [6] where we use Sd�Si

as our “overall” shading in order to compare with other
methods. Although we do not have access to the ground
truth values of real-world scenes to finetune our model, we
still evaluate the generalization capability of our model on
the real-world KITTI dataset [33]. Finally, we do ablation
studies to show the role of the shape-independent shading
loss and the shape-dependent shading loss.
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Fig. 3. Qualitative evaluation on the FSVG dataset [19]. We compare our albedo results against a synthetic dataset trained method [8] and multi-view
dataset trained methods [12], [14]. The shape-(in)dependent shading estimates are further compared with [14].
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Fig. 4. Qualitative results on the FSVG dataset [19]. We retrain the work by Yu et al. [12] on the FSVG dataset [19] using their official code as our
baseline.

TABLE 1
Quantitative evaluation on the FSVG dataset [19]. We use Sd�Si as our “overall” shading to compare with other methods. ↓ means lower is better.

MSE ↓ LMSE ↓ DSSIM ↓

Methods Albedo Shading Avg. Albedo Shading Avg. Albedo Shading Avg.

Li et al. [8] 0.0295 0.0416 0.0356 0.0124 0.0136 0.0130 0.2993 0.2123 0.2558
Fan et al. [24] 0.0283 0.0426 0.0354 0.0124 0.0144 0.0134 0.3077 0.2416 0.2746
Li et al. [10] 0.0276 0.0326 0.0301 0.0111 0.0117 0.0114 0.2908 0.2007 0.2458
Yu et al. [12] 0.0211 0.1670 0.0940 0.0098 0.0863 0.0481 0.2293 0.3362 0.2807
Yu et al. [14] 0.0382 0.1443 0.0912 0.0140 0.0923 0.0532 0.3333 0.3294 0.3314

IRN [12]@FSVG 0.0196 0.0305 0.0251 0.0073 0.0156 0.0114 0.2615 0.2056 0.2336
Ours 0.0074 0.0271 0.0172 0.0046 0.0140 0.0093 0.1224 0.2036 0.1630

TABLE 2
Quantitative evaluation on the IIW dataset [6]. We use Sd � Si as our

“overall” shading to compare with other methods. ↓ means lower is
better.

Methods Training data WHDR ↓

Bell et al. [6] - 21.0
Zhou et al. [7] IIW 19.9

Nestmeyer et al. [9] IIW 19.5
Fan et al. [24] IIW 14.5
Shi et al. [34] ShapeNet 59.4

Narihira et al. [35] Sinetl+MIT 37.3
Li et al. [10] BigTime 20.3
Yu et al. [12] MegaDepth 21.4
Yu et al. [14] MegaDepth 24.9

Ours FSVG+MegaDepth 21.0

6.1 Evaluation on FSVG

We quantitatively evaluate the intrinsic image decomposi-
tion using rendered outdoor urban scenes from the test split
of the FSVG dataset [19] (50k images from 303 scenes). We
compare with state-of-the-art intrinsic image decomposition
methods [8], [10], [24] and inverse rendering methods [12],
[14], with quantitative results summarized in Table 1. For
fully evaluating albedo estimation, we use three metrics:
MSE, LMSE, and DSSIM, which are commonly used [36].

Our method performs best in general, but the shading
estimation performance is not the best because we leave
some specular parts and local lights as additive noise.
We further show examples of our estimated albedo A in
comparison against [8], [12], and [14], and our estimated
shape-dependent Sd and independent shading Si in com-
parison with [14] in Figure 3. Our method not only recovers
more details in A (e.g., textures of the road are not over-
smoothed in our result), but also successfully removes shad-
ows (e.g., cast by the motorcycle riders and trees) from A to
Si. From Figure 3, we can see that our method can generate
a more reasonable light color than Yu et al.’s method [14]; by
using the depth information to guide the network training,
the cast shadows are naturally removed from Sd to Si, as
shown in our results (Row 7), while there are noticeable
residues remaining in Yu et al.’s results [14] (Row 8). Com-
paring the cast shadow estimations of our method and Yu et
al.’s [14] (Row 9 and 10), our method distinguishes more
accurately dark albedo noise from shadows on the ground.

To further validate the contribution of our network
architecture design, we retrain InverseRenderNet of Yu et
al. [12] on the FSVG dataset [19] (denoted as IRN@FSVG)
using their official code (some loss terms are not applica-
ble). From Figure 4, we can see that the cast shadows are
removed from our albedo, and our Sd shows the correct
color of lighting. Quantitative results are shown in Table 1,
where our results show a closer appearance to the ground
truth than the baseline method.
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Fig. 5. Qualitative evaluation on the KITTI dataset [33]. We show Spseudo in greyscale as our shading results for easier comparison with other
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6.2 Evaluation on KITTI

We use the KITTI dataset [33] which also contains outdoor
urban scenes to test the generalization capability of DeRen-
derNet on real-world data, as shown in Figure 5. Compared
with the traditional optimization-based method [6] and a
learning-based method [24] that used cross-dataset super-
vised loss, our method shows more reasonable albedo esti-
mates, by retaining richer texture details while discarding
undesired shadows.

6.3 Evaluation on IIW

We also compare different methods on the popular IIW
benchmark [6] for indoor intrinsic image decomposition.
Among them, Yu et al. [12], [14] used the MegaDepth
dataset [29], which has ground truth albedo computed by
a multi-view inverse rendering algorithm [37] and depth to
train their model. To narrow the gap between our training
data and the IIW dataset [6], we use MegaDepth dataset [29]
to finetune our model with weakly-supervised learning. We
use InverseRenderNet [12] to get the dense normal map and
use a pre-trained DeRenderNet on the FSVG dataset [19] to

get shape-independent shading. Then we finetune DeRen-
derNet with the same loss functions. We report the mean
weighted human disagreement rate (WHDR) [6] in Table 2.
Despite the domain gap, our method achieves comparable
performance to other intrinsic decomposition methods.

6.4 Ablation study
To analyze the effects of our proposed shape-(in)dependent
shading losses, we compare the performance of DeRender-
Net by applying different shading losses in our training
strategy (qualitative examples shown in Figure 6). The up-
per example in Figure 6 shows that our method can recover
a more complete shadow appearance withLsi. The lower ex-
ample shows that our method correctly distinguishes shape-
dependent (with shadow removed) and shape-independent
shadings (with shadow reconstructed) with Lsd.

7 APPLICATION

In this section, we use the task of cross rendering to validate
the fidelity of our intrinsic decomposition results and show
that our method could be beneficial to downstream high-
level vision tasks taking object detection as an example.
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Fig. 6. Ablation study of shape-independent shading loss Lsi and shape-dependent shading loss Lsd. Red boxes highlight noticeable differences.

7.1 Cross Rendering

We show our cross-rendering results with an example in Fig-
ure 7. The first column are the input images, and the second
column are the decomposed shape-dependent shading from
input images. The third column are generated shading by
our rendering module with the guidance of depth map
and exchanged lighting codes (the lighting is exchanged
between rows) in the latent space. According to the shadows
of inputs, we can see that the light sources come from the
left direction in the top case and the right direction in the
bottom case. We can infer from the relighted objects (such
as shown in green boxes in Figure 7) that our rendering
module can re-render reasonable shape-dependent shadings
without shadows according to different lighting conditions.

7.2 Application in high-level vision

Decomposed intrinsic components could potentially benefit
high-level vision tasks such as object detection and segmen-
tation by feeding the albedo map, which is less influenced
by lighting and shadow, as their input. We show such an
application example in Figure 8. We use a Mask R-CNN [38]
pre-trained on the COCO dataset [39] as our test model
2, and show its detection and segmentation results on the
original image with albedo estimated by Li et al. [8], and
with albedo estimated with our method. The bicycle, person,
and car in the upper example and the truck and car in the
lower example are detected with high confidence based on
our albedo, but are incorrectly labeled in other cases.

8 CONCLUSION

We have proposed DeRenderNet to successfully decom-
pose the albedo, shape-independent shading, and render
shape-dependent shadings for outdoor urban scenes, with
estimated latent lighting code and depth guidance. We
demonstrate that with sufficient data, deep neural networks
can learn how to decompose complex scenarios into their
intrinsic components in a self-supervised manner. We hope
our intrinsic image decomposition results can be helpful to
other computer vision tasks, especially for urban scenes. For

2. The code is available at https://github.com/multimodallearning/
pytorch-mask-rcnn.

Input Sd Ŝd

Fig. 7. Cross rendering shading results. Sd is the directly estimated
shape-dependent shading, and Ŝd is the cross rendered shading results
where the lighting is exchanged between rows. The lighting effects of Ŝd

are correctly rendered. Green boxes show zoom-in details.

Original Li et al. [8] Ours

Fig. 8. An example where our intrinsic image decomposition results
benefit object detection and segmentation. Please zoom-in for details.

example, by removing the cast shadows along the roadside
and avoiding over-smoothing the albedo map, autonomous
vehicles can detect the lanes on the road more reliably.
Quantitative evaluation of the benefits brought by extracted
intrinsic components to high-level vision problems for ur-
ban scenes could be an interesting future topic.

There are ways to extend this work to broader applica-
tions. For example, our rendering module could be com-
bined with depth estimation methods to generate shape-
dependent shading, and our intrinsic decomposition mod-
ule can generate a pseudo map of albedo and shadow as

https://github.com/multimodallearning/pytorch-mask-rcnn.
https://github.com/multimodallearning/pytorch-mask-rcnn.


guidance for other tasks. There are still limitations to our
methods. Our framework is trained only with albedo and
depth supervision from the FSVG dataset [19], which is col-
lected by exploiting CG rendering technology. Though use-
ful for diffuse shape-(in)dependent shading decomposition,
it is hard for CG to accurately model complex reflectance
(e.g., specular component and interreflection) since approxi-
mations are widely applied for efficiency consideration.

In the future, we will investigate a more physically-
reliable dataset with more comprehensive labels and better-
designed network architecture to further handle intrinsic
image decomposition in more challenging scenes.
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I DATA PREPARATION

Due to the lack of high-quality intrinsic component labels
for real scene data, we use FSVG dataset [19] to get training
images with corresponding albedo and depth labels. The
raw shape data are given as disparity images (3 channels),
we first convert the disparity images into depth maps by:

D =
1

disp[2] + disp[1]× 256 + disp[0]× 2562
, (9)

where disp[i] denotes the 8-bit integer in the i-th channel.
Then we re-scale the depth by multiplying 100 and normal-
ize it using the log function for network input.

II NETWORK ARCHITECTURE

In this section, we introduce the detailed network archi-
tectures of the DeRenderNet. Taking a single image as
input, the intrinsic decomposition module consists of two
convolutional layers for extracting global features, two
residual blocks for A and Si prediction (see Figure I(a)),
and one encoder branch for L prediction (see Figure I(b)).
The rendering module has an encoder-decoder architecture
(see Figure I(c)). Specifically, the encoder consists of eight
convolutional layers followed by a fully connected layer to
extracted shape features, and the decoder consists of a fully
connected layer to fuse shape features and latent light code
and eight convolutional layers to predict Sd. The detailed
structures of the convolutional layer and deconvolutional
layer we used are shown in Figure II.

III IMPLEMENTATION DETAILS

Our framework is implemented in PyTorch 1.4.0, and Adam
optimizer [40] is used with default parameters. We train
DeRenderNet in an end-to-end manner using a batch size of
8 for 20 epochs until convergence on a GTX 1080Ti GPU. The
learning rate is initially set to 5 × 10−4 and halved every 5
epochs. The training process takes roughly 36 hours to reach
convergence.

IV MORE QUALITATIVE RESULTS

In Figure III, we show additional results of our method and
Yu et al. [14] (trained on a real-world dataset) on KITTI
dataset [33] where Yu et al. [14] estimates albedo, direct
shading, and shadow.

Here in Figure IV and Figure V, we show more qual-
itative results of DeRenderNet on FSVG dataset [19]. To
further show the generalization capacity of DeRenderNet,
we also show in Figure VI-VIII our decomposition results
on images in the wild, which are collected from Google
Street View [41]. We use the MegaDepth [29] pretrained
model to estimate the depth maps from these street view
images, and the estimated depth maps are re-scaled and
transformed into log space as in Section I before generating
shape-dependent shading Sd.
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Fig. II. Detailed structures of the convolutional layer and the deconvolutional layer we used.
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Fig. III. Qualitative results on KITTI dataset [33]. Input images are the same as in Fig. 5. Compared to Yu et al. [14], our method can recover
shadow-free albedo with clearer details. Red boxes highlight regions where our method more correctly separates self-occlusion from shading.
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Fig. IV. Qualitative results on FSVG dataset [19].
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Fig. V. Qualitative results on FSVG dataset [19].
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Fig. VI. Qualitative results on images in the wild.
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Fig. VII. Qualitative results on images in the wild.
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Fig. VIII. Qualitative results on images in the wild.


