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Abstract

Low-light image enhancement (LLIE) aims to improve visi-
bility and signal-to-noise ratio in images captured under poor
lighting conditions. While deep learning has shown promise
in this domain, current approaches require extensive paired
training data, limiting their practical utility. We present a novel
framework that reformulates low-light image enhancement as
a zero-shot inference problem using pre-trained latent diffu-
sion models (LDMs), eliminating the need for task-specific
training data. Our key insight is that the rich natural image
priors encoded in LDMs can be leveraged to recover well-lit
images through a carefully designed optimization process. To
address the ill-posed nature of low-light degradation and the
complexity of latent space optimization, our framework intro-
duces an exposure-aware degradation module that adaptively
models illumination variations and a principled latent regular-
ization scheme with adaptive guidance that ensures both en-
hancement quality and natural image statistics. Experimental
results demonstrate that our framework outperforms existing
zero-shot methods across diverse real-world scenarios.

Code — https://github.com/Eileen000/LLIEDiff
Extended version —
https://github.com/Eileen000/LLIEDiff/raw/main/paper.pdf

Introduction
Low-light image enhancement (LLIE) stands as a critical
challenge in computer vision, fundamentally impacting ap-
plications from autonomous navigation to medical diagnos-
tics (Li et al. 2022). The complexity of this problem arises
from the non-linear degradation processes in low-light con-
ditions, which introduce multiple interrelated challenges: se-
vere noise contamination, compromised contrast, and signifi-
cant color distortion. These factors not only degrade visual
quality but also pose risks to downstream vision tasks.

Traditional LLIE approaches have primarily relied on ana-
lytical models and hand-crafted priors (Fu et al. 2016; Guo,
Li, and Ling 2017; Wei et al. 2018; Zhang, Zhang, and Guo
2019; Liu et al. 2021b). While theoretically grounded, these
methods struggle to capture the intricate statistics of natu-
ral images, resulting in limited effectiveness across diverse
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Figure 1: Comparison of LLIE results between state-of-the-
art unsupervised learning methods (b) QuadPrior (Wang et al.
2024), (c) ZeroDEC (Guo et al. 2020), and zero-shot learn-
ing methods (d) ZeroIG (Shi et al. 2024), (e) GDP (Fei
et al. 2023), and (f) the proposed one based on pre-trained
LDMs (Rombach et al. 2022).

real-world scenarios The advent of deep learning has dra-
matically advanced the field (Chen et al. 2018; Wang et al.
2019; Xu et al. 2020; Yang et al. 2020; Liu et al. 2021b;
Liang et al. 2023a), yet fundamental challenges persist: i)
The requirement for extensive paired training data presents a
significant bottleneck, as acquiring such data is both costly
and often impractical in real-world settings. Although unsu-
pervised methods (Jiang et al. 2021; Guo et al. 2020) attempt
to address this limitation, their dependence on large unpaired
datasets still constrains practical deployment. ii) The chal-
lenge of achieving robust generalization across diverse light-
ing conditions and scene types remains particularly critical
in high-stakes applications like forensic analysis and medical
imaging (Drozdowski et al. 2020; Abbasi-Sureshjani et al.
2020; Liang et al. 2022). This limitation fundamentally stems
from the difficulty of learning effective image priors from
quite limited training data.

Recent breakthroughs in latent diffusion models
(LDMs) (Rombach et al. 2022) offer a promising new
direction. These models learn a compressed latent space



that captures the manifold of natural images through a
diffusion process, enabling powerful generative capabilities
without pixel-space computation overhead. Their success
in solving various inverse problems without task-specific
training (Chung et al. 2023; Rout et al. 2023) suggests
particular promise for LLIE, where they could leverage
rich learned priors to handle diverse lighting conditions and
provide principled uncertainty estimates.

This observation motivates our novel approach: leverag-
ing pre-trained LDMs for zero-shot LLIE. This strategy of-
fers several compelling advantages: First, it eliminates task-
specific training by utilizing rich priors learned from massive
general-domain datasets, effectively transferring knowledge
from foundation models. Second, it capitalizes on substan-
tial existing computational investments in model pre-training.
Third, the probabilistic nature of generative models enables
principled sampling from the posterior distribution, naturally
mitigating the regression-to-mean artifacts common in deter-
ministic approaches.

However, adapting LDMs for zero-shot LLIE presents
unique technical challenges. The degradation process in low-
light imaging involves complex, spatially-varying interac-
tions between scene radiance, sensor characteristics, and
noise sources. These relationships become even more am-
biguous in the latent space of pre-trained LDMs. Furthermore,
balancing the preservation of input image content with the
generation of naturally-lit outputs requires careful consider-
ation - too strong a guidance towards the input may retain
unwanted low-light characteristics, while too weak a guid-
ance risks content modification or detail hallucination.

We address these challenges through the following strate-
gies: i) An exposure-aware degradation modeling module
that incorporates the bright channel as a representation of
illumination to model the degradation process with an image-
adaptive exposure factor. ii) A principled latent space regu-
larization scheme with adaptive guidance, which penalizes
latents whose decoded images fall outside the manifold of
natural images. Our framework demonstrates significant ad-
vantages: it eliminates the need for paired or unpaired train-
ing data and generalizes robustly across diverse scenarios.
As illustrated in Figure 1, our method outperforms existing
zero-shot and zero-reference approaches.

To summarize, this paper proposes the first zero-shot la-
tent diffusion-based LLIE framework using LDMs with the
following contributions:
• We develop an exposure-adaptive bright channel-based

degradation modeling module, adapting dynamically to
varying illumination conditions.

• We introduce a principled latent regularization term with
adaptive guidance that simultaneously optimizes enhance-
ment quality and maintains natural image statistics.

Related Works
The field of LLIE has witnessed remarkable progress, transi-
tioning from conventional hand-crafted methods to sophisti-
cated data-driven deep learning approaches (Li et al. 2022;
Liu et al. 2021a). In the following, we delve into a focused
review of the most relevant deep learning-based techniques.

Regression LLIE methods Deep learning-based regression
methods learn a mapping between low-light and normal-light
images by leveraging existing architectures or incorporating
problem-related information (Guo et al. 2020; Yang et al.
2020; Liang et al. 2021; Zhou et al. 2023). Examples include
HWMNet (Fan, Liu, and Liu 2022), which integrates half
wavelet attention with CNN, and IAT (Cui et al. 2022), a
lightweight illumination adaptive Transformer under differ-
ent light conditions. Retinex-based deep learning methods,
such as RUAS (Liu et al. 2021b), KinD (Zhang, Zhang, and
Guo 2019), and KinD++ (Zhang et al. 2021), have also been
proposed. While excelling in structure recovery and distortion
metrics, they tend to produce over-smoothed images lacking
high-frequency details, which harms perceptual realism.

Generative LLIE methods Generative methods are known
for their exceptional perceptual quality and ability to produce
high-frequency details (Jiang et al. 2021; Zhou, Yang, and
Yang 2023; Jiang et al. 2023). They differ in their underlying
generative models and learning principles. EnlightenGAN
integrates attention mechanisms with image-related regular-
ization (Jiang et al. 2021). Normalizing flow models, such as
LLFlow (Wang et al. 2022), have also been utilized. However,
GANs face challenges like training instability and artifact in-
troduction, while normalizing flows have limitations in their
expressive capacity.

Diffusion-based LLIE methods Diffusion models (DMs)
have revolutionized image generation, with main for-
mulations: Denoising Diffusion Probabilistic Models
(DDPMs) (Ho, Jain, and Abbeel 2020), Stochastic Differ-
ential Equations (SDE) (Song et al. 2021), and Noise Con-
ditional Score Networks (NCSN) (Song and Ermon 2020).
DDPMs consist of a noise-added diffusion process and a
noise removal-based reverse process, while NCSN mod-
els focus on score-based generative modeling for denois-
ing and enhancement. SDE-based models generalize these
concepts through forward and reverse SDEs (Huang, Lim,
and Courville 2021). DMs have been applied to various
tasks, such as image restoration in adverse weather condi-
tions (Özdenizci and Legenstein 2023), image shadow re-
moval (Guo et al. 2023), and low-resolution latent space
diffusion (Luo et al. 2023).

Diffusion-based LLIE approaches employ a noise estima-
tion network for the reverse process (Yin et al. 2023; Jiang
et al. 2023; Zhou, Yang, and Yang 2023). Basic DDPMs (Ho,
Jain, and Abbeel 2020) lack spatial adaptation and may fail to
preserve fine details in complex textures. PyDiff (Zhou, Yang,
and Yang 2023) enhances low-light images by progressively
increasing resolution and globally correcting degradation,
while DiffLL (Jiang et al. 2023) uses wavelet transforma-
tion. A diffusion-based post-processing framework has also
been proposed (Panagiotou and Bosman 2023). LLDiffu-
sion (Wang et al. 2023a) integrates image degradation and
priors. CLEDiff offers enhancement and region-specific con-
trollability (Yin et al. 2023). There is also a zero-reference
method (Wang et al. 2024) that leverages pre-trained DMs,
whose weights are fine-tuned with simulated data.
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Figure 2: Illustration of the proposed zero-shot LLIE framework, which leverages the power of pre-trained LDMs, i.e., Stable
Diffusion (Rombach et al. 2022), for superior image priors. The latent and pixel spaces are connected via the encoder E and
decoder D: X = D(Z), Z = E(X). Starting with pure Gaussian noise ZT ∼ N (0, I), we iteratively estimate the latent
representation Z0|t of the desired result using the pre-trained neural network εθ, ensuring the generation adheres to natural image
characteristics. Given a low-light input image Y and its estimated illumination map L (defining the degradation modelH and its
inverseH†), we ensure fidelity to the input via minimization of objectives derived from the low-light image likelihood p(Y |Zt) at
each timestep t. These objectives include regularizations Lmeas, Linv, and Llatent defined in Eqs. (18) to (20), respectively, where a
blurring operation G is incorporated to emphasize the low-frequency information. Finally, at timestep t = 0, the enhanced image
is obtained via X0 = D(Z0).

Methodology
In this section, we present our framework for zero-shot la-
tent diffusion-based LLIE, leveraging LDMs pre-trained
on massive data. The overall pipeline is shown in Fig-
ure 2. Our approach builds upon the recent advancements
in diffusion-based generative models, particularly the Stable
Diffusion (Rombach et al. 2022), which has demonstrated re-
markable performance in various image generation tasks. We
extend this approach to the problem of LLIE by introducing
several novel components that address the specific challenges
associated with this task.

Degradation Model
Given a low-light image Y ∈ RH×W×3, our goal is to esti-
mate the corresponding normal-light image X ∈ RH×W×3.
We assume that the degradation processH can be modeled
as an element-wise multiplication between the normal-light
image and an illumination map L ∈ RH×W :

Y = H(X) = X�Lβ +N, (1)

where � denotes the element-wise multiplication, β is an
exposure factor, and N models the additive noise. This degra-
dation model is motivated by the physical properties of light
and has been widely adopted in the literature on LLIE (Guo,
Li, and Ling 2017; Li et al. 2018), which is built upon the
Retinex model. Here, L represents the illumination map. We
assume that for color images, three channels share the same
illumination map. Based on the Maximum a Posterior (MAP)
framework,

X∗ = argmaxX p(X|Y,L)

= argmaxX p(Y,L|X)p(X),
(2)

where p(Y,L|X) is the likelihood corresponding to the data
fidelity, and the priors p(X) model the latent normal-light
image.

Estimating the illumination map is a crucial step in our
framework, as it provides a representation of the low-light
conditions in the input image. To achieve this, we employ
the bright channel prior (Guo, Li, and Ling 2017), which is
effective in capturing illumination information. The bright
channel is defined as the maximum value among the three
color channels for each pixel:

L0(i, j) = max
c∈{R,G,B}

Y c(i, j), (3)

where Y c represents the c-th color channel of the low-light
image Y , and (i, j) denotes the pixel location. To obtain a
smooth and spatially consistent illumination map, we apply
a Gaussian filter G to the bright channel:

L = G(L0). (4)

It helps to remove high-frequency noise and artifacts that may
be present in the bright channel, resulting in a more reliable
estimation of the illumination map.

Assuming there is no noise, we can recover the normal-
light image X by simply performing an inverse operationH†
of the forward operation in Eq. (1):

X̂ = H†(Y ) =
Y

Lβ
. (5)

Posterior Based on Latent Diffusion
In LDMs such as Stable Diffusion (Rombach et al. 2022),
the diffusion occurs in the latent space. The latent and pixel
spaces are connected via the encoder E(·) : RH×W → Rk and
decoder D(·) : Rk → RH×W

: X = D(Z), Z = E(X). We
consider how to construct the posterior distribution in Eq. (2)
given the prior distribution p(X) of natural images through
their latent p(Z) modeled by LDMs.

In the score-based perspective, the forward diffusion pro-
cess of the data Zt, t ∈ [0, T ] is defined with a linear SDE

dZ = −f(Z, t)dt+ g(t)dw, (6)



where w is the standard Brownian motion. During sampling,
starting with pure Gaussian noise ZT ∼ N (0, I), the reverse
diffusion process is run and then a normal-light image X0
can be obtained by passing Z0|ZT through the decoder D.
Then, the corresponding reverse SDE is given by

dZ = [−f(Z, t)− g2(t)∇Zt log pt(Zt)]dt+ g(t)dw, (7)

where∇Zt log pt(Zt) is the time-dependent score function,
typically approximated with denoising score matching (Song
et al. 2021)

min
θ

Et,Zt,Z0 [‖εθ(Zt, t)−∇Zt log p(Zt|Z0), ‖22], (8)

where neural network εθ(Z, t) is trained to predict the score
∇Z log p(Z) of a diffusion process. Once θ∗ is acquired by
training, one can use the approximation ∇Zt log pt(Zt) ≈
εθ∗(Zt, t) as a plug-in estimate to replace the score function
in Eq. (7), and solve by discretization (e.g., ancestral sam-
pling of Ho, Jain, and Abbeel (2020)), effectively sampling
from the prior distribution p(Z0).

Given low-light image Y modeled on the latent Z0 of
normal-light image X0 by Eq. (1), the posterior distribution
p(Z0|Y ) can be sampled by running a modified Reverse SDE
that depends on the unconditional score ∇Zt log p(Zt) and
the term ∇Zt log p(Y |Zt):

dZ =[−f(Z, t)− g2(t)(∇Zt log p(Zt)

+∇Zt log p(Y |Zt))]dt+ g(t)dw,
(9)

where we have used the fact that

∇Zt log pt(Zt|Y ) = ∇Zt log p(Zt) +∇Zt log p(Y |Zt), (10)

based on Bayes’ rule. To compute the former term involving
p(Zt), we can simply use the pre-trained score function εθ∗ .
The latter term captures how much the current iterate explains
the observed low-light image Y , it is hard to acquire in closed-
form due to the dependence on the time t, as there only
exists explicit dependence between low-light image Y and
estimated normal-light image D(Z0). The term p(Y |Zt) can
be factorized as

p(Y |Zt) =

∫
p(Y |Z0, Zt)p(Z0|Zt)dZ0

=

∫
p(Y |Z0)p(Z0|Zt)dZ0.

(11)

Noted that for the case of DMs such as variance preserving
(VP) SDE or DDPM, the forward diffusion can be simply
represented by

Zt =
√
ᾱtZ0 +

√
1− ᾱtz, z ∼ N (0, I), (12)

so that we can obtain the specialized representation of the pos-
terior mean through Tweedie’s approach as follows (Chung
et al. 2023):

Z0|t = E[Z0|Zt]

=
1√
ᾱt

(Zt + (1− ᾱt)∇Zt log pt(Zt)),
(13)

where the last term ∇Zt log pt(Zt) can be replaces by
εθ∗(Zt). Given the posterior mean Z̄0 that can be efficiently
computed at the intermediate steps, we propose to provide
a tractable approximation for p(Y |Zt) such that one can

use the surrogate function to maximize the low-light im-
age likelihood p(Y |D(Z0|t)) between the low-light image Y
and estimated normal-light image D(Z0|t)-yielding approxi-
mate posterior sampling. Specifically, given the interpretation
p(Y |Zt) = EZ0∼p(Z0|Zt)[p(Y |D(Z0))] we use the following
approximation in Chung et al. (2023):

p(Y |Zt) ≈ p(Y |Z0|t := D(E[Z0|Zt]))

= p(Y |D(Z0|t)�Lβ).
(14)

Essentially, such an approximation substitutes the unknown
normal-light image Z0 with its conditional expectation given
the noisy input, E[Z0|Zt]. Under this approximation, the term
p(Y |Zt) becomes tractable.

Low-light Image Likelihood
In a probabilistic setting, where the random noise N is as-
sumed to follow Gaussian distributions with standard devia-
tion σ, the maximization of the likelihood in (14) of observ-
ing the low-light image Y , given an estimated normal-light
image D(Z0|t) and illumination map L can be expressed as
minimizing

L =
1

σ2
‖Y −D(Z0|t)�Lβ‖22. (15)

Plugging in the score function into Eq. (10), we can obtain

∇Zt log pt(Zt|Y ) = εθ∗(Zt, t)− s∇ZtL, (16)

where s denotes the scale of guidance from the given Y .
To impose constraints in the latent space of pre-trained

LDMs, we propose a latent regularization term to guide the
diffusion process towards latent that explains measurements
and remains fixed points of the decoder-encoder composition,
ensuring generated samples stay on the data manifold. The
overall objective L to maximize the likelihood is defined as

L =
1

σ2
p
Lmeas +

1

σ2
i
Linv +

1

σ2
l
Llatent +

1

σ2
c
Lcol, (17)

where σs are scaler for balancing different terms,

Lmeas = ‖Y −D(Z0|t)�Lβ‖22, (18)

Linv = ‖ Y
Lβ
−D(Z0|t)‖22, (19)

and
Llatent = ‖E(G(

Y

Lβ
))− Z0|t‖22, (20)

respectively. These terms serve as the regularization in differ-
ent aspects, which is particularly important in the context of
LLIE, where the increased ambiguity in the latent space can
lead to artifacts and unnatural-looking images if not properly
constrained. By incorporating this term into the optimiza-
tion objective, we effectively regularize the solution space
and improve the overall quality of the enhanced images. Fur-
thermore, to maintain the inter-relationship between image
color channels during the sampling process and to avoid color
shifts, we have also incorporated a channel consistency loss:

Lcol =
∑

∀(p,q)∈Ω

(
D(Z0|t)p −D(Z0|t)q

)2
, (21)

where (p, q) denotes a pair of channels sampled from Ω =
{(R,G), (R,B), (G,B)} and Dp(Z0|t) represents the pixel
values of the p-th channel of D(Z0|t).



Table 1: Comparisons of state-of-the-art methods on the
real-world dataset proposed by Wei et al. (2018). Yellow, or-
ange, and red highlights indicate the best-performing method
among the dataset-based supervised ( SL ) and unsupervised
( UL ) learning methods, and the zero-shot ( ZS ) methods
learned from the input test image only. ↑ (↓) indicates that
higher (lower) values are better.

Type Method PSNR↑ SSIM↑ LPIPS↓

SL

KinD (Zhang, Zhang, and Guo 2019) 17.65 0.775 0.171
DRBN (Yang et al. 2020) 16.29 0.551 0.260
KinD++ (Zhang et al. 2021) 14.71 0.799 0.207
RetinexNet (Yang et al. 2021) 17.65 0.648 0.379
URetinexNet (Wu et al. 2022) 19.80 0.826 0.128
SNR-Aware (Xu et al. 2022) 24.61 0.840 0.151
DiffLL (Jiang et al. 2023) 21.84 0.871 0.202
GSAD (Hou et al. 2024) 22.96 0.917 0.104

UL

EnlightenGAN (Jiang et al. 2021) 17.48 0.652 0.322
PairLIE (Fu et al. 2023) 19.15 0.736 0.248
NeRCo (Yang et al. 2023) 19.74 0.832 0.234
CLIP-LIT (Liang et al. 2023b) 12.39 0.663 0.382
ZeroDCE (Guo et al. 2020) 14.58 0.736 0.401
RUAS (Liu et al. 2021b) 16.40 0.771 0.270
SCI (Ma et al. 2022) 14.78 0.710 0.339
QuadPrior (Wang et al. 2024) 18.34 0.859 0.213

ZS

ExCNet (Zhang et al. 2019) 13.88 0.648 0.370
GDP (Fei et al. 2023) 15.83 0.688 0.338
ZeroIG (Shi et al. 2024) 17.63 0.632 0.390
Ours 19.82 0.841 0.242

Adaptive Guidance Scale
During the sampling, it is observed that the optimal guidance
scale in Eq. (16) may vary depending on the specific image
content and the current state of the optimization. Therefore,
another key component of our framework is the adaptive
guidance scale, which dynamically adapts and controls the
strength of the guidance from the low-light image during the
denoising process.

To adaptively adjust the fidelity introduced by the guidance
from the given low-light image Y , we propose to adapt the
guidance scale based on the distance between the current
estimation and the previous one in the latent space. We define
the adaptive guidance scale as:

st =
‖Zt − Zt−1‖22

(∇ZtL −∇Zt−1L)(Zt − Zt−1)
. (22)

The adaptive guidance scale plays a crucial role in balancing
the influence of the low-light image and the prior knowledge
captured by the diffusion model. By dynamically adjusting
the guidance strength, our framework can effectively handle
a wide range of low-light conditions and image contents,
leading to more robust and visually appealing results.

Experiments
Experimental Settings
Datasets We conduct experiments on two widely used
datasets with paired low-light and normal-light images, LOL-
v1 (Wei et al. 2018) and LOL-v2 (Yang et al. 2020). We

Table 2: Evaluations of low-light enhancement performance
on the real-world dataset proposed by (Yang et al. 2020).

Type Method PSNR↑ SSIM↑ LPIPS↓

SL

KinD (Zhang, Zhang, and Guo 2019) 14.74 0.641 0.447
DRBN (Yang et al. 2020) 20.13 0.830 0.147
RetinexNet (Yang et al. 2021) 18.33 0.723 0.365
URetinexNet (Wu et al. 2022) 21.16 0.840 0.196
SNR-Aware (Xu et al. 2022) 21.48 0.849 0.193
DiffLL (Jiang et al. 2023) 23.47 0.882 0.189
GSAD (Hou et al. 2024) 20.16 0.890 0.112

UL

EnlightenGAN (Jiang et al. 2021) 18.23 0.617 0.308
PairLIE (Fu et al. 2023) 19.89 0.778 0.291
NeRCo (Yang et al. 2023) 19.67 0.777 0.270
CLIP-LIT (Liang et al. 2023b) 15.18 0.697 0.368
ZeroDCE (Guo et al. 2020) 18.06 0.744 0.312
RUAS (Liu et al. 2021b) 15.33 0.745 0.309
SCI (Ma et al. 2022) 17.30 0.721 0.307
QuadPrior (Wang et al. 2024) 20.24 0.831 0.232

ZS

ExCNet (Zhang et al. 2019) 15.50 0.574 0.410
GDP (Fei et al. 2023) 14.36 0.630 0.364
ZeroIG (Shi et al. 2024) 15.66 0.607 0.408
Ours 19.95 0.781 0.272

Table 3: Ablation studies on the regularization term. Red
highlights indicate the best-performing settings.

Lmeas Linv Llatent G PSNR↑ SSIM↑ LPIPS↓

7 3 7 3 12.47 0.514 0.781
3 7 7 3 16.59 0.607 0.720
7 7 3 3 18.69 0.735 0.535
3 7 3 3 18.88 0.743 0.541
3 3 7 3 10.57 0.453 0.858
7 3 3 3 19.18 0.766 0.461
3 3 3 7 18.91 0.703 0.411
3 3 3 3 19.15 0.767 0.452

also provide visual comparisons on datasets without ground
truth (DICM (Lee, Lee, and Kim 2013), MEF (Ma, Zeng,
and Wang 2015), NPE (Wang et al. 2013), and LIME (Guo,
Li, and Ling 2017)) in supplementary materials.
Metrics We evaluate the performance of each method us-
ing various metrics, including Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index Measure (SSIM), and
Learned Perceptual Image Patch Similarity (LPIPS).
Implementation Details Our method is implemented using
PyTorch and run on a single NVIDIA GTX 3090 Ti GPU. In
all experiments, we use DDIM sampling (Song, Meng, and
Ermon 2020) with T = 1000 steps. To further enhance local
contrast in the degradation model, we apply pixel-wise ex-
posure β(i) = L(i)exp (L(i)−φ) adaptive to the illumination
map L at each pixel i, where φ is a hyperparameter set to
0.3. The Gaussian blur filter G applied to the bright channel
in Eq. (4) uses a kernel size of 5× 5 with standard deviations
1.5. To address input with resolutions different from the pre-
trained model’s training resolution, we employ the method
proposed in Wang et al. (2023b).
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Figure 3: Comparison results on real data in the LOL-v1 dataset (Wei et al. 2018).

(a) Input (f) Zero-DCE(b) GT (c) GSAD (d) DiffLL (e) NeRCo

(g) RUAS (h) SCI (i) GDP (l) Ours(j) ZeroIG (k) QuadPrior

Figure 4: Comparison results on real data in the LOL-v2 dataset (Yang et al. 2020).

Comparison with State-of-the-Art Methods
We compare our method with several state-of-the-art LLIE
methods on the LOL-v1 and LOL-v2 datasets, including
eight supervised methods (KinD (Zhang, Zhang, and Guo
2019), DRBN (Yang et al. 2020), KinD++ (Zhang et al. 2021),
RetinexNet (Yang et al. 2021), URetinexNet (Wu et al. 2022),
SNR-Aware (Xu et al. 2022), DiffLL (Jiang et al. 2023),
and GSAD (Hou et al. 2024)), four unpaired learning meth-
ods (EnlightenGAN (Jiang et al. 2021), PairLIE (Fu et al.
2023), NerCo (Yang et al. 2023) and CLIP-LIT (Liang et al.
2023b)), four zero-reference methods (Zero-DCE (Guo et al.
2020), RUAS (Liu et al. 2021b), SCI (Ma et al. 2022) and
QuadPrior (Wang et al. 2024)), and two zero-shot methods
(ExCNet (Zhang et al. 2019), GDP (Fei et al. 2023) and
ZeroIG (Shi et al. 2024)).

The quantitative results are presented in Table 1 and Ta-
ble 2, showing that our method achieves superior perfor-
mance on both datasets. As shown in Table 1, our method
significantly outperforms existing zero-shot approaches on
the LOL-v1 test set in terms of PSNR, SSIM, and LPIPS.
Compared to unpaired training and zero-reference methods,

ours achieves higher PSNR and well-performing SSIM and
LPIPS, reaching the performance levels of some supervised
methods. The reason we cannot surpass the current best-
supervised methods in SSIM and LPIPS is that supervised
methods typically learn the data distribution bias through
paired training sets. As shown in Table 2, our method con-
tinues to significantly outperform zero-shot techniques in
terms of PSNR, SSIM, and LPIPS on the LOL-v2 test set,
with SSIM even exceeding that of unpaired learning meth-
ods. This indicates that our approach is capable of generating
high-quality images and effectively addressing real-world
scenarios.

We present visual comparisons of our method and compet-
itive methods on the paired datasets in Figure 3 and Figure 4.
It can be seen that previous methods result in noise amplifica-
tion, under or overexposure, or color distortion. However, our
method removes noise, reconstructs texture details, and pro-
duces well-illuminated images. For example, in Figure 3 our
method not only brightens the trademarks on objects within
the red box but also removes noise and restores the texture
details. In contrast, zero-reference and zero-shot methods fail
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Figure 5: Comparison of results generated by using different
settings of regularization terms. (a) Input. (b) Ground truth.
(c) Ours. (d) W/ Lmeas. (e) W/ Linv. (f) W/ Llatent. (g) W/o
Lmeas. (h) W/o Linv. (i) W/o Llatent.

(a) (b) (c)

Figure 6: Comparison of results generated with (a) constant
(st = 0.7), (b) adaptive guidance scale, and (c) ground truth.

to handle this area correctly. Additionally, the blue box in Fig-
ure 4 generated by our method is closer to the Ground Truth
compared to GSAD (Hou et al. 2024), indicating our effec-
tiveness in addressing color shifts. This demonstrates that our
method significantly enhances visibility in the dark region,
achieving results close to those of supervised methods.

Ablation Study
We conduct ablation studies on the LOL-v1 dataset to in-
vestigate the effectiveness of our main contributions. All
experiments in this section were conducted with inputs of
256× 256 resolution to accelerate the sampling process.
Regularization term in the latent space By comparing our
full model with a variant that does not include the regulariza-
tion term, we study their effect maintaining the naturalness
of the results. It is noted that Lcol is not included in these
experiments. The experimental results in Table 3 indicate that
the regularization term helps in preserving the naturalness

(a) (b) (c)

Figure 7: Comparison of results generated by using degrada-
tion model defined by (a) gamma correction with γ = 0.7, (b)
the proposed degradation model defined by bright channel,
and (c) ground truth.

and avoiding artifacts in the enhanced images. As illustrated
in Figure 5, Lmeas alone can convert low-light images to non-
low-light ones but at the cost of missing image content. Both
the Linv and Llatent can enhance texture details, as shown in
the red box. However, the combinations of these terms in
pairs do not yield optimal results. When all three terms are
combined, the image details are further enriched, as seen in
the green box with correctly generated wrinkles. This high-
lights the significance of enforcing a prior distribution in the
latent space for generating visually pleasing results.

As shown in the last two rows in Table 3, using the low-
frequency extraction operation G in Llatent leads to significant
improvements. This validates it can effectively remove image
noise while appropriately preserving texture.
Adaptive guidance scale We investigate the impact of the
adaptive guidance scale, which balances the effects of guided
low-light images during the denoising process. The visual re-
sults in Figure 6 show clearer edges and colors that are closer
to the Ground Truth, demonstrating that the adaptive guid-
ance scale enables our method to effectively handle different
levels of noise and distortions in low-light images.
Bright channel for degradation modeling We evaluate the
impact of using the bright channel to model the degradation
process in low-light images. As illustrated in Figure 7, after
applying the bright channel prior, the edges of the bowl in the
red box and the corner of the cabinet in the green box become
clearer, indicating that the method can effectively handle
local regions. In contrast, using a constant illumination value
leads to a loss of contrast information. This demonstrates the
importance of explicitly modeling the degradation process in
the brightness domain for effective LLIE.

Conclusion
We presented the first zero-shot framework that leverages
pre-trained latent diffusion models as powerful image pri-
ors, eliminating the need for task-specific training data or
architectural modifications. The key technical innovations
- the exposure-adaptive bright channel prior and principled
latent space regularization with adaptive guidance - address
core challenges in utilizing generative priors for enhancement
tasks. Through extensive experiments on challenging real-
world datasets, we demonstrated that our method not only
outperforms existing zero-shot approaches but also exhibits
superior generalization across diverse lighting conditions.
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Algorithm 1: Zero-Shot Latent Diffusion-based LLIE.
Require :εθ, E ,D, T , {γt}Tt=1, {σt}Tt=1 from the pre-trained

diffusion models, G, degradation model parameter
φ, regularization parameters σp, σi, σl, σc.

Input :Low-light input image Y .
Output :Enhanced normal-light image X0.

1: L← G(maxc∈{R,G,B} Y
c(i, j)) . Eqs. (3), (4)

2: β(i) = L(i)exp (L(i)−φ),∀pixel i
3: X̂ ← Y

Lβ
. Eq. (5)

4: ZT ∼ N(0, I)
5: ᾱ0 = 1
6: for t = 1 to T do
7: αt ← 1− γt.
8: ᾱt ← αtᾱt−1

9: end for
10: for t = T to 1 do
11: Z0|t ← 1√

ᾱt
(Zt + (1− ᾱt)εθ∗(Zt, t)) . Eq. (13)

12: X0|t ← D(Z0|t)
13: z ∼ N(0, I)

14: Z ′t−1 ←
√
αi(1−ᾱt−1)

1−ᾱt Zt +
√
ᾱt−1γt
1−ᾱt Z0|t + σ̃tz

15: Lmeas ← ‖Y −X0|t�Lβ‖22 . Eqs. (1), (18)
16: Linv ← ‖X̂ −X0|t‖22 . Eq. (19)
17: Llatent ← ‖E(G(X̂))− Z0|t‖22 . Eq. (20)

18: Lcol ←
∑

pixel i
∑

colors p,q

(
X0|t,p(i)−X0|t,q(i)

)2
. Eq. (21)

19:

∇ZtL ←
1

σ2
p
∇ZtLmeas +

1

σ2
i
∇ZtLinv+

1

σ2
l
∇ZtLlatent +

1

σ2
c
∇ZtLcol

. Eq. (17)

20: st ← ‖Zt−Zt−1‖22
(∇ZtL−∇Zt−1

L)(Zt−Zt−1) . . Eq. (22)

21: Zt−1 ← Z ′t−1 − st∇ZtL
22: end for
23: X0 ← D(Z0)
24: return X0

More Implementation Details
Pseudo-codes The pseudo-codes of the proposed zero-shot
LLIE framework are shown in Algorithm 1.
Pre-trained LDMs We utilize the Stable Diffusion 1.5
model (Rombach et al. 2022) pre-trained on the LAION-
2B dataset. Specifically, we employ the Exponential Moving
Average (EMA) weights of the εθ, E ,D. During testing, the
weights of the pre-trained model remain frozen. The noise
schedule follows a linear rule, with γ values linearly spaced
between γmin = 0.0001 and γmax = 0.02. The classifier-free
guidance scale is set to 0.0.
Regularization term The regularization term incorporates
parameters {σ2

p , σ
2
i , σ

2
l , σ

2
c }, which are weighted to adapt

to the characteristics of different datasets. σp controls the
fidelity to the given low-light image. However, as the contrast
of the low-light image is very low, the error tends to be small,
and can not well regularize the fidelity. σi emphasizes the er-
ror in darker regions, benefiting retain details from the input,
however, it also emphasizes the noise. σl ensures the injec-
tivity of the estimated latent between pixel space and latent
space, however, it is very sensitive to the noise. σc adjusts the
weight of the color constancy constraint. These adjustments
balance the influence of the different regularization terms
and prevent excessive noise or blurriness in the enhanced
images. The default values are set to {1.0, 1.0, 1.0, 0.1}. The
LOL-v2 dataset exhibits lower low-light severity and noise
levels compared to LOL-v1. The adjusted parameter set is:
{σ2

p , σ
2
i , σ

2
l , σ

2
c } = {10.0, 2.0, 1.0, 0.1}. For real-world un-

paired test sets characterized by uneven lighting, we increase
the parameters to mitigate overexposure. The adjusted param-
eter set is: {σ2

p , σ
2
i , σ

2
l , σ

2
c } = {20.0, 15.0, 10.0, 0.1}. The

low-frequency extraction operation G within the Llatent reg-
ularization term in Eq. (20) uses a kernel size of 5× 5 with
standard deviations 1.5.

Limitations
While our proposed method achieves significant improve-
ments for zero-shot LLIE, there are some limitations.
Handling extreme low-light regions Our method faces
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Figure 8: A failure case on the LOL-v2-sync dataset. (a)
Ground truth, (b) Input, (c) Our result. While avoiding over-
exposure in bright regions, our method struggles to enhance
extremely dark areas or completely suppress noise patterns.

Table 4: Computational complexity of different methods in
terms of FLOPs (G) and number of parameters (M).

Type Method PSNR↑ FLOPs (G) #Param. (M)

SL DiffLL 21.84 102.60 702.15
SL GSAD 22.96 86.91 37.45
UL EnlightenGAN 17.48 114.35 67.80
UL CLIP-LIT 12.39 110.98 428.00
ZS GDP 15.83 209.17 763.00
ZS Ours 19.82 106.93 859.00

challenges in extreme low-light regions where the image
contains very little visible information. In such cases, the
enhanced images may still suffer from low contrast and resid-
ual noise. Figure 8 shows a failure case. Future work can
explore incorporating additional priors or leveraging more
source signals to handle extreme low-light scenarios.
Computational overhead While the computational over-
head of pre-trained LDMs is justified by their superior en-
hancement quality, it presents practical constraints for real-
time applications. Table 4 shows comparisons of FLOPs (G),
and the number of parameters (M) of different methods on
images of 256 × 256 resolution. It is noted that compared
to GDP, another method based on pre-trained models, our
GFLOPs are lower, and we achieve better qualitative and
quantitative results. While our method introduces some com-
putational overhead due to the iterative sampling process,
it also provides significant flexibility and adaptability in a
zero-shot setting. It can accommodate alternative diffusion
models of varying complexity—whether lightweight or high-
performance models—based on application needs, thus en-
abling scalability without compromising zero-shot capabili-
ties. For example, lower-parameter models can be substituted
for resource-sensitive tasks, while higher-parameter models
can be applied where higher-quality output is required. Fu-
ture research could explore model compression techniques
or efficient sampling strategies to reduce computational re-
quirements while maintaining enhancement performance.

More Experimental Results
Effect of adaptive guidance scale To validate the effective-
ness of the proposed adaptive guidance scale, we conducted
a quantitative comparison between with and without it on the

Table 5: Analysis of the adaptive guidance scale (AGS).

Setting PSNR↑ SSIM↑ LPIPS↓

w/o AGS 19.01 0.762 0.489
w/ AGS 19.15 0.767 0.452
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Figure 9: PSNR and SSIM values for intermediate normal-
light image estimations D(Z0|t) at different timesteps (from
t = 1000 to t = 0) using various strategies of guidance scale
st during iterative denoising.

LOL-v1 dataset, as shown in Table 5. Incorporating the adap-
tive guidance scale shows improvements in PSNR, SSIM, and
LPIPS, supporting its contribution to performance. While the
quantitative improvements are moderate, the qualitative ben-
efits are more evident as shown in Figure 6 of the main text.
It enhances local details, such as the sharper edges in the red
and green boxes, illustrating the effectiveness of managing
fine details within local regions. We also compare the per-
formance of the proposed adaptive guidance scale and those
with constant guidance scales of 1.0 and 10.0. The quantita-
tive results of intermediate normal-light image estimations,
denoted as D(Z0|t), are evaluated at different timesteps from
t = 1000 to t = 0. Figure 9 shows that the adaptive guidance
scale exhibits faster convergence compared to the constant
guidance scales. This dynamic adjustment based on image
content leads to better denoising performance and cleaner,
enhanced images at timestep t = 0.
Effect of channel consistency loss Lcol To address poten-
tial color shifts, we introduce a channel consistency loss Lcol.
While Lcol shows minimal impact on conventional quan-
titative metrics (PSNR, SSIM), its effects are particularly
notable in preserving white balance and preventing color
over-saturation. We conduct ablation studies to analyze its ef-
fectiveness across various lighting conditions and scene types.
As shown in Figure 10, the channel consistency loss signif-
icantly reduces color distortions, especially in challenging
scenarios with extreme illumination variations.
Effect of the brightness channel L We evaluate the ef-
fectiveness of our bright channel-based degradation model
in Figure 11. The heatmap visualizations reveal that our
method achieves significantly closer alignment with ground
truth illumination patterns, particularly in preserving local
contrast variations and avoiding over-saturation artifacts com-



(a) (b) (c)

Figure 10: Analysis of channel consistency loss: (a) Input, (b)
w/o Lcol, (c) w/ Lcol. The improved color rendition demon-
strates its effectiveness.

(a) (b) (c)

Figure 11: Analysis of bright channel-based degradation
model, which shows heatmap visualizations of estimated
illumination maps using (a) ground truth from paired data,
(b) gamma correction (γ = 0.7), and (c) our proposed bright
channel-based model.

mon in gamma correction.
Effect of adaptive exposure β We conduct an ablation
study to investigate the effectiveness of the adaptive expo-
sure β in modeling the degradation process. Different con-
stant β values (0.4, 0.5, 0.6, 0.7, 0.8, and 0.9) are compared
against the proposed adaptive approach. Figure 12 presents
the qualitative results. When β is less than 0.8, image quality
improves as β increases. However, when β exceeds 0.8, the
image quality declines, and overexposure becomes appar-
ent. The adaptive β consistently produces superior results,
preserving the local structure, contrast, and overall visual
quality. Quantitative results are provided in Table 6. The
adaptive β significantly outperforms the constant β settings
across all metrics. This highlights the efficacy of the adaptive
approach in leveraging local information from the low-light
input images to preserve structure and contrast.
Effect of low-frequency extraction in Llatent We examine
the effect of the low-frequency extraction operation G within
the Llatent regularization term in Eq. (20). G aids in removing
noise while preserving texture in the latent space. We exper-
iment with different kernel sizes for G: 3× 3, 5× 5, 7× 7,
and 9× 9. Figure 13 demonstrates that the 5× 5 kernel size
we used achieves the best balance between noise suppression
and texture preservation across various input image sizes.
Analysis to input spatial resolution The impact of input
image resolution on the quality of the enhanced outputs is an-
alyzed with and without low-frequency extraction. Figure 14
shows that resizing the input image to 256× 256 results in
reduced texture clarity and noise removal compared to pro-
cessing at the original 512× 512 resolution. This highlights
the importance of processing images at appropriate resolu-

Table 6: Quantitative comparison of the proposed adaptive
exposure β against constant exposure mask values.

Metric PSNR↑ SSIM↑ LPIPS↓

β = 0.4 10.32 0.556 0.585
β = 0.5 11.76 0.624 0.547
β = 0.6 13.68 0.671 0.535
β = 0.7 16.17 0.725 0.515
β = 0.8 17.57 0.750 0.496
β = 0.9 16.88 0.734 0.515
Adaptive β 19.15 0.767 0.452

tions to fully leverage the pre-trained model’s capabilities.
The results with or without the low-frequency extraction for
different input sizes are also shown, which demonstrates that
it is more effective when the input size is larger.
More qualitative comparison Figure 15 show another vi-
sual comparison in LOL-v2 dataset (Yang et al. 2020). We
provide visual comparisons on datasets DICM (Lee, Lee, and
Kim 2013), MEF (Ma, Zeng, and Wang 2015), NPE (Wang
et al. 2013), and LIME (Guo, Li, and Ling 2017) that are with-
out ground truth normal-light images: Figure 16 for DICM,
Figs. Figures 17 and 18 for MEF, Figure 19 for NPE, Figs.
Figures 20 and 21 for LIME. These datasets encompass a
wide spectrum of challenging scenarios, including varying
illumination conditions, scene compositions, and object com-
plexities. These results demonstrate the robustness and gen-
eralizability of our proposed LLIE method across diverse
low-light conditions and image characteristics. To further
validate real-world applicability, we perform comparative
analysis on challenging scenes from the MEF (Ma, Zeng, and
Wang 2015) and NPE (Lee, Lee, and Kim 2013), as shown
in Figure 22. While existing approaches often introduce arti-
facts or inappropriate exposure adjustments in homogeneous
regions when attempting to enhance structural details, our
method maintains a natural appearance while preserving both
global illumination consistency and local detail fidelity.
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Figure 12: Qualitative comparison of adaptive exposure (β) against constant exposure masks on the LOL-v1 dataset
[wei2018deep]. (a) Input, (b) β = 0.4, (c) β = 0.5, (d) β = 0.6, (e) Adaptive β, (f) Ground truth. Increasing the fixed
β value primarily improves brightness without significantly enhancing contrast. Adaptive β shows significant improvements in
both brightness and contrast, evident in the clearer bowl edges (red box) and the enhanced light-dark contrast at the cabinet
corner (green box).

(a) (f)(b) (c) (d) (e)

Figure 13: Ablation study on the impact of different kernel sizes for the low-frequency extraction operation (G) within the
regularization term Llatent, evaluated on the LOL-v1 dataset (Wei et al. 2018). (a) Input, (b) G size = 3× 3, (c) G size = 5× 5, (d)
G size = 7× 7, (e) G size = 9× 9, (f) Ground truth. Larger G sizes effectively remove noise but introduce unwanted blurring
of details. As our method utilizes a pseudo-normalized light image with rich texture details as guidance, the Gaussian blur
applied in the latent space aims to primarily remove noise while preserving essential low-frequency information. Kernel sizes of
G = 5× 5 or G = 7× 7 achieve the best balance between noise removal and detail preservation.

(a) (f)(b) (c) (d) (e)

Figure 14: Visual comparison of different input image sizes and the effect of using G within the regularization term Llatent on
enhancement quality on the LOL-v1 datasett (Wei et al. 2018). (a) Input, (b) w/o G on 256 × 256, (c) w/ G on 256 × 256,
(d) w/o G on 512 × 512, (e) w/ G on 512 × 512, (f) Ground truth. (256 × 256 and 512 × 512 represent the pixel processing
sizes of pre-trained models). The comparison between (b) and (c), and between (d) and (e) demonstrates the denoising benefit
of incorporating the guidance term in the latent space. Furthermore, comparing (c) and (d) highlights the positive correlation
between input image size and the sampling quality of Stable Diffusion; larger input images lead to higher sampling quality.
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Figure 15: Comparison of enhancement results on the LOL-v2 dataset (Yang et al. 2020). (a) Input, (b) Ground truth, (c)
GSAD (Hou et al. 2024), (d) DiffLL (Jiang et al. 2023), (e) NeRCo (Yang et al. 2023), (f) Zero-DCE (Guo et al. 2020), (g)
RUAS (Liu et al. 2021b), (h) SCI (Ma et al. 2022), (i) GDP (Fei et al. 2023), (j) ZeroIG (Shi et al. 2024), (k) QuadPrior (Wang
et al. 2024), (l) Ours. Our approach excels in reconstructing fine textures (e.g., the castle toy in the blue box) and mitigating
noise in challenging areas (red box). Specifically, our method outperforms both supervised and unsupervised techniques in
preserving intricate line details and effectively removing noise while avoiding overexposure and artifacts often present in
alternative approaches.

(a) (f)(b) (c) (d) (e)

(g) (h) (i) (l)(j) (k)

Figure 16: Comparison results on real data in the DICM dataset (Lee, Lee, and Kim 2013). (a) Input, (b) KinDPlus (Zhang et al.
2021), (c) DiffLL (Jiang et al. 2023), (d) NeRCo (Yang et al. 2023), (e) Zero-DCE (Guo et al. 2020), (f) RUAS (Liu et al. 2021b),
(g) SCI (Ma et al. 2022), (h) QuadPrior (Wang et al. 2024), (i) CLIP-LIT (Liang et al. 2023b), (j) ZeroIG (Shi et al. 2024), (k)
PairLIE (Fu et al. 2023), (l) Ours. Our proposed method effectively addresses the overexposure and color shift issues commonly
observed in some supervised and zero-shot approaches, resulting in enhanced visual quality.
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Figure 17: Comparison results on real data in the MEF dataset (Ma, Zeng, and Wang 2015). (a) Input, (b) KinDPlus (Zhang et al.
2021), (c) DiffLL (Jiang et al. 2023), (d) NeRCo (Yang et al. 2023), (e) Zero-DCE (Guo et al. 2020), (f) RUAS (Liu et al. 2021b),
(g) SCI (Ma et al. 2022), (h) QuadPrior (Wang et al. 2024), (i) CLIP-LIT (Liang et al. 2023b), (j) ZeroIG (Shi et al. 2024), (k)
PairLIE (Fu et al. 2023), (l) Ours.
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Figure 18: Comparison results on real data in the MEF dataset (Ma, Zeng, and Wang 2015). (a) Input, (b) KinDPlus (Zhang et al.
2021), (c) DiffLL (Jiang et al. 2023), (d) NeRCo (Yang et al. 2023), (e) Zero-DCE (Guo et al. 2020), (f) RUAS (Liu et al. 2021b),
(g) SCI (Ma et al. 2022), (h) QuadPrior (Wang et al. 2024), (i) CLIP-LIT (Liang et al. 2023b), (j) ZeroIG (Shi et al. 2024), (k)
PairLIE (Fu et al. 2023), (l) Ours.
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(a)

Figure 19: Comparison results on real data in the NPE dataset (Wang et al. 2013). (a) Input, (b) KinDPlus (Zhang et al. 2021),
(c) DiffLL (Jiang et al. 2023), (d) NeRCo (Yang et al. 2023), (e) Zero-DCE (Guo et al. 2020), (f) RUAS (Liu et al. 2021b), (g)
SCI (Ma et al. 2022), (h) QuadPrior (Wang et al. 2024), (i) CLIP-LIT (Liang et al. 2023b), (j) ZeroIG (Shi et al. 2024), (k)
PairLIE (Fu et al. 2023), (l) Ours. Our method effectively enhances image quality while avoiding overexposure and color shifts,
demonstrating superior noise removal capabilities compared to other techniques.

(c)(b) (d) (e) (f)

(l)(g) (h) (i) (j) (k)

(a)

Figure 20: Comparison results on real data in the LIME dataset (Guo, Li, and Ling 2017). (a) Input, (b) KinDPlus (Zhang et al.
2021), (c) DiffLL (Jiang et al. 2023), (d) NeRCo (Yang et al. 2023), (e) Zero-DCE (Guo et al. 2020), (f) RUAS (Liu et al. 2021b),
(g) SCI (Ma et al. 2022), (h) QuadPrior (Wang et al. 2024), (i) CLIP-LIT (Liang et al. 2023b), (j) ZeroIG (Shi et al. 2024), (k)
PairLIE (Fu et al. 2023), (l) Ours.
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Figure 21: Comparison results on real data in the LIME dataset (Guo, Li, and Ling 2017). (a) Input, (b) KinDPlus (Zhang et al.
2021), (c) DiffLL (Jiang et al. 2023), (d) NeRCo (Yang et al. 2023), (e) Zero-DCE (Guo et al. 2020), (f) RUAS (Liu et al. 2021b),
(g) SCI (Ma et al. 2022), (h) QuadPrior (Wang et al. 2024), (i) CLIP-LIT (Liang et al. 2023b), (j) ZeroIG (Shi et al. 2024), (k)
PairLIE (Fu et al. 2023), (l) Ours.

(a) (e)(b) (c) (d)

Figure 22: Comparison results between different unsupervised LLIE methods on challenging real-world scenes from MEF (Ma,
Zeng, and Wang 2015) (top row) and NPE (Lee, Lee, and Kim 2013) (bottom row) datasets. (a) Input, (b) NeRCo (Yang et al.
2023), (c) SCI (Ma et al. 2022), (d) ZeroIG (Shi et al. 2024), (e) Ours. For each scene, we present split-view comparisons where
one half shows the original input and the other half shows the enhanced result.


