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Figure 1. Comparison between the proposed EventPS and its frame-based counterpart, i.e., FramePS. Bottom: FramePS estimates the
surface normal (h) by analyzing images of an object illuminated from multiple directions (e). It involves capturing a series of exposure-
bracketing images2 (f, g), a process that is not only time-consuming but also demands substantial bandwidth for processing. Top: In
contrast, EventPS estimates the surface normal by analyzing the events triggered by a continuously rotating light source (a). The unique
attributes of event cameras, e.g., low latency, high dynamic range, and low redundancy in data representation (b), enable EventPS, a rapid
and highly efficient real-time solution (c, d), which significantly reduces the bandwidth usage while maintaining comparable performance
to FramePS.

Abstract

Photometric stereo is a well-established technique to es-
timate the surface normal of an object. However, the re-
quirement of capturing multiple high dynamic range images
under different illumination conditions limits the speed and
real-time applications. This paper introduces EventPS, a
novel approach to real-time photometric stereo using an
event camera. Capitalizing on the exceptional temporal
resolution, dynamic range, and low bandwidth character-
istics of event cameras, EventPS estimates surface nor-
mal only from the radiance changes, significantly enhanc-
ing data efficiency. EventPS seamlessly integrates with

∗Corresponding author: Boxin Shi
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both optimization-based and deep-learning-based photo-
metric stereo techniques to offer a robust solution for non-
Lambertian surfaces. Extensive experiments validate the
effectiveness and efficiency of EventPS compared to frame-
based counterparts. Our algorithm runs at over 30 fps in
real-world scenarios, unleashing the potential of EventPS
in time-sensitive and high-speed downstream applications.

1. Introduction

Photometric Stereo (PS) [53], a technique that estimates the
orientation of surface normals by analyzing images of an
object illuminated from various directions, is distinctive by
its ability to reconstruct high-resolution and precise surface
details, especially under controlled lighting conditions.

https://codeberg.org/ybh1998/EventPS


Due to deviations from an ideal Lambertian image
formation model such as shadows, specular reflections,
and various types of noise [17], it is complex and time-
consuming to achieve a robust normal estimation in tradi-
tional Frame-based PS (FramePS). As shown in Fig. 1 (f),
typically, this process requires capturing a series of expo-
sure bracketing images2 using a stationary camera under
the illumination of multiple, sequentially lit distant light
sources (e.g., around 100 lights [40, 45]). This laborious
process hinders real-time applications of PS.

Recent efforts in pushing real-time PS fall into two cat-
egories. One group of methods utilizes multi-spectral cam-
eras to simultaneously obtain observations of objects in
varying oriented multi-spectral lighting conditions [4, 8, 10,
23–25, 30, 36, 47]. Despite the single-shot data-capturing
process, the ambiguity between the colors of the lights and
the object poses challenges in normal estimation. Another
direction involves high-speed cameras synchronized with
carefully controlled light sources, which aims to expedite
the image-capturing process [5, 32, 49]. However, this
setup requires a high data throughput capability in cam-
eras and experimental facilities, which becomes a barrier
to their practical implementation in real-time applications,
especially with limited power and cost.

Event cameras, characterized by their high temporal res-
olution, high dynamic range, and low bandwidth require-
ments, have recently been recognized as a promising so-
lution for real-time vision applications [6]. Unlike tradi-
tional frame-based cameras, event cameras only record log-
arithmic scene radiance changes. This characteristic is ad-
vantageous in many scenarios. For example, it swiftly es-
tablishes the temporal correspondences and spatial dispari-
ties for multi-view stereo [38] or 3D reconstruction under
structured light [33, 34]. However, their nature of radi-
ance changes instead of absolute values deviates from the
FramePS problem. The exploration of how to effectively
utilize the unique attributes of event cameras for real-time
PS remains an open question.

In this paper, we propose a reformulation of the PS
problem to observations derived solely from scene radiance
changes under varying lighting conditions, which specifi-
cally tailors to advantageous characteristics of event cam-
eras. As shown in Fig. 1 (a), an object is illuminated by a
high-speed rotating light source (up to 1800 revolutions per
minute, rpm) that continuously induces radiance changes
and triggers event signals. Each event is associated with the
lighting direction of the triggering timestamp (Fig. 1 (b)).
Assuming the Lambertian reflectance model (we will re-
lease this assumption later), each pair of consecutive events
is transformed into a vector orthogonal to the surface nor-
mal, named “null space vector” (Fig. 1 (c)). The surface

2 High Dynamic Range (HDR) images are usually required in FramePS for
accurately observing the specular regions on the object surface.

normal for each pixel is then determined from at least two
linearly independent null space vectors without ambigu-
ity (Fig. 1 (d)). Owing to the unique attributes of event
cameras, this process enables the capturing of observations
with a high dynamic range under rapidly changing light-
ing, while maintaining economical data efficiency. This ap-
proach, termed EventPS, allows us to harness the inherent
strengths of event cameras for achieving real-time PS.

For real scenes where events are noisy, surface normals
are obtained more robustly by solving a least squares mini-
mization problem using all null space vectors. By integrat-
ing Singular Value Decomposition (SVD) [7] with EventPS,
our method notably achieves 30 frames per second (fps)
in normal estimation. Additionally, acknowledging the in-
herent challenges in handling non-Lambertian surfaces, we
propose deep learning variants [2, 13] under our EventPS
formulation. We develop a custom validation platform that
demonstrates the feasibility of our approach and highlights
the potential of EventPS in high-speed, time-sensitive ap-
plications such as real-time 3D reconstruction. Our ex-
periments show that EventPS matches the performance of
FramePS while using only 31%3 of the bandwidth, a testa-
ment to its effectiveness and efficiency. The key contribu-
tions of our work are summarized as follows:
• We are the first to formulate that the surface normals

can be estimated from continuous radiance changes w.r.t.
lighting recorded by an event camera, which achieves a
significant bandwidth reduction compared to FramePS.

• We propose EventPS integrated with both optimization-
based and deep-learning-based approaches to handle
Lambertian and non-Lambertian surfaces.

• We build up a validation platform with a high-speed ro-
tating light source, showcasing that the proposed EventPS
estimates surface normals in real-time with 30 fps output.

2. Related Works
2.1. Photometric Stereo Methods

Since the PS was proposed in the 1980s [53], both
optimization-based and deep-learning-based [40] methods
have been proposed to enhance performance. Most rep-
resentative optimization-based methods have been compre-
hensively discussed in [45], so we focus on reviewing deep-
learning-based solutions in the following part.

Recent PS methods predominantly adopt deep-learning-
based approaches, which are divided into two categories:
all-pixel and per-pixel [56]. All-pixel methods [2, 3] com-
bined the global information from observed images and
light directions, while per-pixel methods [13, 43, 55] took
the observations of each pixel under various light directions
to estimate the surface normal.
3Average bandwidth of three algorithms. More details are described in
Sec. 4.3.



To improve the performance of deep-learning-based PS
methods, researchers combined the advantages from per-
pixel and all-pixel methods [54], augmented the observa-
tion maps for modeling global illumination [28], and uti-
lized inverse rendering to estimate surface normal [26, 48].
Besides, advanced learning models and techniques [21]
were also introduced to handle realistic complexity, such
as attention-based weight [20, 22], transformer [14], and
differentiable modeling [27]. Furthermore, general lighting
and feature representation [15] reshaped the deep-learning-
based PS and achieved comparable performance with 3D
scanners [16]. However, a significant number of images un-
der various illuminations are still necessary. The serialized
capturing process considerably limits PS application in dy-
namic scenarios.

The key to accelerating the imaging process of PS
lies in optimizing the observation process [46] with high-
speed cameras and synchronized illumination [24]. How-
ever, the cost greatly rises with the frame rate increasing
Other researchers introduced multi-spectral imaging sys-
tems [25, 36, 47] to observe the object under varying direc-
tional illuminations with a single shot, which significantly
enhances the efficiency of PS. However, the limitations of
multi-spectral cameras [8, 23], such as the number of bands,
the crosstalk and intensity inconsistency (e.g., unknown il-
lumination, surface reflectance, camera’s spectral response)
across different colors, introduce additional challenges to
surface normal estimation [19].

2.2. Event Camera based 3D Reconstruction

Event cameras detect radiance changes in the scene, which
could be induced by camera/object movement or illumi-
nation changes. We divide the related research into two
categories: motion-based and active illumination-based
methods. For motion-based methods, EMVS [38] and
EvAC3D [51] treated individual events as rays to estimate a
semi-dense 3D structure and an object mesh from an event
camera with known trajectory. Besides, event-based neural
radiance fields (NeRF) [1, 12, 29, 31, 37, 41] have emerged
as a significant breakthrough in leveraging the event signals
with high temporal resolution for constructing volumetric
scene representations. Please refer to the comprehensive
survey [11] for a summary of event-based SLAM methods.
For active illumination-based methods, researchers applied
structured light [33, 34] and maximized the spatio-temporal
correlation between the projector and an event camera for
depth sensing. EFPS-Net [42] interpolated the sparse event
observation maps and incorporated them with the RGB im-
ages to predict the surface normal maps under ambient light.
There are also methods using global illumination changes
(e.g., turning on the light in a darkroom [9] or applying ro-
tating polarizer [35]) to reconstruct iso-contour or estimate
surface normals.

3. Proposed Method
3.1. Problem Formulation
Photometric stereo. Assuming an object illuminated by
an ideal distant light source, the radiance of the light source
is constant and the direction is described as a normalized
lighting vector function L(t) w.r.t. time t. For a pixel at im-
age coordinate x = (x, y) with normal vector nx and dif-
fuse albedo ax, under Lambertian assumption, the reflected
radiance of this pixel Îx(t) is:

Îx(t) = max [0, ax(nx · L(t))] . (1)

Event formation model. Event cameras capture scene ra-
diance changes on a logarithmic scale. Each pixel measures
the radiance changes asynchronously. When the changes
of logarithmic radiance at the pixel x reaches a trigger-
ing threshold C, an event {x, p, t} will be triggered, where
t is the timestamp, and p ∈ {−1,+1} is the polarity
which represents the decrease or increase of radiance. As-
sume there are totally K events triggered at pixel x dur-
ing a short period of time. These events are represented as
Ex = {x, pk, tk}, where k = {1, 2, ...,K}. The change of
radiance value in pixel x from tk−1 to tk becomes:

log(Ix(tk) + ϵ) = log(Ix(tk−1 + η) + ϵ) + pkC, (2)

where ϵ is a small offset value to avoid taking the logarithm
of zero, and η is the refractory time of the pixel [6]. By
omitting the offset value and refractory time in Eq. (2) and
performing exponentiation on both sides, we obtain the fol-
lowing equation:

Ix(tk) = exp(pkC) · Ix(tk−1). (3)

Substituting Eq. (1) into Eq. (3), we obtain:

max [0, ax(nx · L(tk))] =
exp(pkC) ·max [0, ax(nx · L(tk−1))] .

(4)

Given the captured events Ex at pixel x and lighting di-
rection L(t), our goal is to find the following function f that
estimates the surface normal n̂x at pixel x as close to nx as
possible:

n̂x = f(Ex,L(t)). (5)

3.2. EventPS Model

In this subsection, we start from a static object with a Lam-
bertian surface captured by an event camera using ideal
event-triggering mechanisms to explain how the EventPS
model works. The proposed algorithms based on the
EventPS model in the following subsections (Sec. 3.3 and
Sec. 3.4) deal with all the non-ideal effects in real scenarios
(generic BRDF, noisy events, and dynamic scenes).

As shown in Fig. 2, we observe that there are three prop-
erties for the event signals triggered in the PS setting that
make EventPS possible:
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Figure 2. The key observations on event signal characteristics.
(1) Albedo invariance: Surface albedo patterns at the bottom are
not visible from the events on the top. (2) No events in attached
shadow: For light directions on the right half circle, the current
pixel is in the attached shadow and does not trigger any event.
(3) Linear-independent null space vectors: The null space vectors
spanning a tangent plane uniquely determines a surface normal.

Observation 1: Albedo invariance. Event signals are ir-
relevant to surface albedo ax. Since there are ax on both
sides of Eq. (4), we remove the ax. It means the surface
albedo does not affect the event triggering given the same
changes in lighting directions. Thus, Eq. (4) can be sim-
plify it as:

max [0,nx · L(tk)] =
exp(pkC) ·max [0,nx · L(tk−1)] .

(6)

Observation 2: No events in attached shadow. From
Eq. (2), we infer that the derivative of Ix(tk) must be non-
zero at tk. Otherwise, there will be no events triggered. This
property indicates that the event signal does not contain re-
dundant information for pixels in the attached shadow re-
gion and Î should be greater than 0 at any event timestamp
tk. Therefore, we remove the max operator from both sides
of Eq. (6) and obtain:

nx · L(tk) = exp(pkC)(nx · L(tk−1)),

i.e., nx · (L(tk)− exp(pkC) · L(tk−1)) = 0.
(7)

For each pixel, we convert each pair of successive event
signals into a vector that lies in the tangent plane of the
object surface at this pixel, which is perpendicular to the
surface normal. We call these vectors null space vectors,
which are represented as zk, where k = {1, 2, ...,K − 1}:

zk = L(tk+1)− exp(pk+1C)L(tk). (8)

Combining Eq. (7) and Eq. (8), we verify that null
space vectors are perpendicular to the surface normal, i.e.,
{z1, z2, ..., zK−1} ⊥ nx.
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maps for (a) a Lambertian sphere with ideal event triggering model
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Observation 3: Linear-independent null space vectors.
To determine the surface normal of each pixel, at least 2 null
space vectors that are linearly independent are required. If
all null space vectors are linearly correlated, there would
be infinite surface normal vectors perpendicular to all null
space vectors. When applying convex curves at each round
as the scanning pattern, any 3 points on this curve are not on
the same line, which means all the null space vectors should
not be linearly dependent:

zi ̸= γzj , ∀i ̸= j and γ ̸= 0. (9)

Therefore, for each pixel, as long as we have obtained 2 null
space vectors, the tangent plane is determined, and then we
can calculate the unique surface normal at that pixel.

We use two examples in Fig. 3 to verify the validity of the
EventPS formulation. In case (a), we show a point on the
sphere with Lambertian surface and the ideal event trigger-
ing model. We visualize the positive and negative null space
vectors computed from Eq. (8). As visualized in Fig. 3 (a),
all of the null space vectors are perfectly lying on the tan-
gent surface (gray transparent plane), which determines the
unique normal direction (yellow arrow). In case (b), we
show the scenario with non-Lambertian surface captured by
a real event camera (more details about the experiment setup
will be introduced in Sec. 4.1). As visualized in Fig. 3 (b),
even with offsets caused by non-ideal reflectance model and
noise events, the null space vectors are still around the tan-
gent plane.

To demonstrate that surface normal can be clearly de-
scribed by the profile of event signals, we show an exam-
ple in Fig. 4. We plot the radiance changes and event sig-
nals triggered along the rotation of light direction using 4
points in different directions. When the light source is ro-
tating with the azimuth angle ϕL sweeping from 0◦ to 360◦,
the radiance of blue, orange, and green points decreases.
The red point has a 90◦ delay due to the difference in sur-
face normal azimuth angle. As the elevation angle increases
(blue-orange-green points), the change of radiance becomes
smoother and the number of events triggered monotonically
decreases. The unique events triggering pattern (i.e., times-
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Figure 4. Given 4 points with coordinates (elevation angle θ,
azimuth angle ϕ) of blue: (30◦, 0◦), orange: (45◦, 0◦), green:
(60◦, 0◦), and red: (60◦, 90◦) on a sphere, and a light source ro-
tating in a clockwise circle, the radiance changes (top) and events
triggered (bottom) of the 4 points w.r.t. light direction changing are
plotted. The bottom part shows event number determines the nor-
mal elevation angle (comparing blue, orange, and green points),
while the zero-crossing point determines the normal azimuth an-
gle (comparing green and red points).

tamp and number) at each point clearly reflects the radiance
changes. Therefore, we can directly get the normal vector at
each point solely from event signals without any ambiguity.

Next, we will introduce the optimization-based and
deep-learning-based EventPS solutions to estimate the sur-
face normal from the noisy null space vectors robustly.

3.3. EventPS by Optimization

For each pixel, we combine all the null space vectors into
a 3 × (K − 1) matrix Zx. Theoretically, at least 3 events
are required to get a rank-2 matrix Zx for surface normal
estimation. Given sufficient events (i.e., K > 3), we define
the optimization target to estimate the surface normals n̂x

as minimizing the following mean square error (MSE):

argmin
n̂x

∥Z⊤
x n̂x∥2. (10)

This optimization problem is solved by SVD. We calcu-
late the eigenvector corresponding to the smallest eigen-
value of the matrix ZxZ

⊤
x , then we obtain the surface nor-

mal n̂x. We name this method Event Photometric Stereo
OPtimization (EventPS-OP).

It has been verified on a benchmark [44] that adding a
threshold to filter out the brightest region (most likely in
specular highlight) and the darkest region (most likely in
attached/cast shadow) effectively improves the PS accuracy
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Figure 5. EventPS-FCN structure. The events triggered within
each time bin are summed up and converted to null space vectors.
Then the null space vector maps are fed into the PS-FCN [2] in
replacement of the images.

solved by least squares [45]. In EventPS, due to the lack
of absolute radiance information, we can hardly add such a
threshold to the event signals. However, events are trig-
gered at a high frequency when intensity variations with
high contrast are observed. In PS settings, this usually hap-
pens when a point is crossing shadow boundaries (includ-
ing attacked shadows and cast shadows) or specular high-
lights. By setting a threshold on event triggering frequency,
we can achieve a similar goal as adding a threshold to the
least squares method in the frequency domain. The filtered
null space vector Ẑ is:

Ẑ = {zk | k > 1 and tk > tk−1 + δ} , (11)

where δ is the time threshold and δ ≥ η. With a larger δ
more null space vectors are removed by this filter, resulting
in a stricter filtering on the EventPS-OP algorithm.

3.4. EventPS by Deep Learning

In FramePS, deep-learning-based methods [2, 13] demon-
strate higher robustness against shadows, specular reflec-
tion, and inter-reflection thanks to the prior learned from
the large-scale synthetic training dataset. To improve the
robustness and generalization of EventPS, we adapt two
frame-based deep learning methods, i.e., PS-FCN [2] and
CNN-PS [13]4 to the modality of event signals.

The original PS-FCN [2] applies convolution layers to
each individual image under specific lighting and merges
multiple image features by max pooling. As illustrated in
Fig. 5, we adapt PS-FCN [2] to event modality (named as
EventPS-FCN) by constructing null space vector images
as the input to maintain the intra-pixel relationship. We
first divide the scanning time period of interest (typically
a whole circle) into N bins. The events are converted to
null space vectors using Eq. (8). The null space vector im-
ages are formed by summing up all the null space vectors
4According to the survey paper [56], these approaches represent two typi-
cal categories of deep-learning-based PS formulated in “all-pixel” [2] and
“per-pixel” [13] manner, respectively.
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in each pixel within each time bin, which share the light
direction changes. We follow the original PS-FCN [2] de-
sign by adding a light direction L̂i channel to each null
space vector image for feature extraction. Since event fea-
tures are much sparser than image features and the differ-
ences between the adjacent time bins are not distinct, we
add two temporal convolution layers to extract temporal fea-
tures from events of adjacent bins. Then features from all
bins are max-pooled together to estimate surface normal.

The original CNN-PS [13] treats each pixel individually
by extracting a 32×32 observation map from each pixel and
applying convolution layers on such an observation map.
Similarly, the conversion from event signals into null space
vectors using the proposed EventPS formulation is also per-
formed on a per-pixel basis. As illustrated in Fig. 6, we
modify the definition of observation map to adapt the origi-
nal CNN-PS [13] to the event modality (named as EventPS-
CNN). In our event observation maps, we increase the num-
ber of channels from 1 (gray-scale image) to 3 (x, y, z axis
of the null space vector). Each pixel represents a null space
vector at the corresponding lighting direction. In this way,
all the null space vectors at each pixel are gathered in this
event observation maps and fed to the original CNN-PS [13]
model. Compared to the time bins in EventPS-FCN, the ob-
servation map contains more information for each pixel. As
a result, more details about each individual null space vector
are preserved in EventPS-CNN.

4. Experiment

4.1. Implementation Details
Algorithms implementation. To demonstrate the real-
time performance of our method, we implement the event
pre-processing part (for EventPS-OP, EventPS-FCN, and
EventPS-CNN) and SVD part (for EventPS-OP only) with
GPU acceleration written in Rust and OpenCL. We imple-
ment an asynchronous pipeline for EventPS-OP to keep
updated with the latest incoming events for lower latency,
and synchronous pipelines for EventPS-FCN and EventPS-
CNN to wait and process all the events for better quality.

The EventPS-FCN neural network is fine-tuned and eval-
uated with the checkpoint from the original PS-FCN [2]
using PyTorch. For EventPS-CNN, we implement a Py-
Torch version similar to the original CNN-PS [13] and train
it from scratch. More details can be found in the released
source code (upon acceptance of this paper).

Validation platform. To verify the performance of the al-
gorithms on real-world objects, we design a high-speed il-
lumination and capturing validation platform. There is a
green LED light source powered by an in-suit Lithium-ion
battery. The LED is mounted on a rotating axis and driven
by a synchronous belt-wheel system with a DC motor at
up to 1800 rpm, resulting in the high-speed “circle” scan-
ning pattern. A Hall effect angular sensor is installed to
detect the LED position, which is sent to the event camera
for synchronization. We use a Prophesee EVK4 HD cam-
era (with an IMX636 sensor) to capture event signals during
rotation. The two “contrast sensitivity threshold biases” are
set to −20, and the “dead time bias” is set to −20, resulting
in about 580 µs refractory time.

4.2. Datasets
Synthetic dataset. To train the deep-learning-based algo-
rithms for systemic and controllable comparison, we build a
pipeline to render a synthetic dataset and generate simulated
event streams. We choose all the objects from the Blobby
dataset [18] and 15 objects from the Sculpture dataset [52].
For each object, we add random transformation and random
BRDF textures similar to previous deep-learning-based PS
methods [2, 13]. We choose three types of scanning patterns
for lighting in the synthetic dataset: “circle” for mechanical
feasibility, “hypotrochoid” to avoid blind area, and “DiLi-
GenT” for compatibility of the following semi-real dataset.
Then we pick a scanning pattern with random parameters
and use a ray-tracing renderer to render 600 dense images
under rotating lighting for 6 rounds. These images are con-
verted to event streams with an event simulator ESIM [39].

Semi-real dataset. Popular real datasets for
FramePS [40, 45, 50] only contain images captured
under several discrete lighting directions. We select
the images at the out-most border light directions from
DiLiGenT dataset [45] and convert them to event streams
with event simulator [39] to generate this semi-real dataset
named DiLiGenT-Ev.

Real dataset. To validate the performance of the pro-
posed EventPS methods, we fabricate 5 objects and cap-
ture a real dataset with ground truth normal maps. The real
dataset covers simple geometry (BALL), spatially-varying
albedo (BALLCVPR), and shapes with moderate details
(BUNNY) and complex details (HORSE, TIGER). Each ob-



Table 1. Full comparison results of EventPS and FramePS meth-
ods on DiLiGenT-Ev dataset. The second row is the number (#)
of events per round for each data. The middle three rows show
the MAE of our EventPS. The last three rows show the percent-
age of data rate that EventPS requires to achieve the same MAE
compared to the FramePS counterparts.
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Figure 7. Comparison of data rate and MAE between FramePS
and EventPS. On the left, the data rate for FramePS increases lin-
early as the number of images increases. In contrast, EventPS
has a low and constant data rate paramount to about 2 frame im-
ages. On the right, the MAE for FramePS decreases with more
images. EventPS achieves comparable MAE as about 7.9 images
(for EventPS-OP), 8.9 images (for EventPS-CNN), and 4.9 im-
ages (for EventPS-FCN).

ject is captured using our validation platform (rotating at
240 rpm in a darkroom for better quality5).

4.3. Comparison with FramePS

We conduct a quantitative comparison of the proposed
EventPS with the FramePS counterparts on the DiLiGenT-
Ev dataset. To compute the data rate required by the event
input and frame input, we assume that the event streams
employ 16-bit Prophesee EVT 3.06 format, and frame im-
ages are captured as 8-bit gray-scale images with 3 ex-
posure bracketing. For the three FramePS algorithms i.e.
TH28 [45] (least square method with [20%, 80%] thresh-
olding, counterpart of EventPS-OP), CNN-PS [13] (coun-
terpart of EventPS-CNN), and PS-FCN [2] (counterpart of
EventPS-FCN), we randomly select images from 96 light
directions in DiLiGenT dataset [45]. For three EventPS al-
5The impact of rotation speed on normal estimation quality can be found
in the supplementary material.

6https://docs.prophesee.ai/stable/data/encoding_
formats/evt3.html
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Figure 8. Results on DiLiGenT-Ev dataset. The first row shows
the preview of our objects. The second row displays ground truth
surface normals and simulated events. The last three rows plot the
estimated surface normals (with MAE on the top right corner) and
the corresponding angular error maps.

gorithms, different numbers of events are generated for each
scene. The Mean Angular Error (MAE) and data rate com-
parison are shown in Tab. 1. On average, EventPS reduces
the required data rate to around 25.9% (for EventPS-OP),
39.8% (for EventPS-FCN), and 26.6% (for EventPS-CNN).

As shown in Fig. 7, FramePS shows a linear increase in
data rate as the number of input images increases, accom-
panied by a decrease in normal MAE. In contrast, the pro-
posed EventPS has a constant data rate and MAE. For each
algorithm, the cross point of data rate is on the left, while
the cross point of MAE is on the right. This indicates that
EventPS achieves smaller MAE with better data efficiency.
For qualitative evaluation, we show three object examples
in Fig. 8, which indicates that the error distributions of the
proposed EventPS evenly across the object.

4.4. Evaluation on Real Camera
Results on static objects. We evaluate the performance
of EventPS on real data. The results are shown in Tab. 2. On
average, our EventPS achieve MAE of 18.8 (for EventPS-
OP), 14.7 (for EventPS-FCN), and 17.6 (for EventPS-
CNN), which demonstrates the effectiveness of utilizing
only event signals for PS. We show 3 object examples and
normal estimation results in Fig. 9. The left example shows
a ball with spatially varying albedo. We can hardly see the
“CVPR” words in the captured event signals and the esti-
mated normal map, demonstrating the “albedo invariance”
property of EventPS. The MAEs are higher in the bound-
aries of the normal estimation results, which is due to the
near-light effects (only around 12 cm light-object distance)
and coarsely aligned lighting.

https://docs.prophesee.ai/stable/data/encoding_formats/evt3.html
https://docs.prophesee.ai/stable/data/encoding_formats/evt3.html
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Figure 9. Results on real dataset. The first row shows the preview
of our objects. The second row displays ground truth surface nor-
mals and captured events. The last three rows plot the estimated
surface normals and the corresponding angular error maps.

Table 2. Results of EventPS on real dataset.

BALLCVPR BALL BUNNY HORSE TIGER Average

EventPS-OP 12.9 14.2 19.7 24.8 22.4 18.8
EventPS-FCN 8.5 10.6 14.7 21.2 18.5 14.7
EventPS-CNN 13.8 12.2 17.1 25.3 19.5 17.6

(b) RUBBER(a) FINGER

T
im

e

Figure 10. Results on dynamic objects. (a) A human finger move-
ment. (b) The hand-pinching process of a soft rubber toy7.

Results on dynamic objects. To adapt the EventPS
model to the dynamic objects in real-world scenarios, we
add exponentially decreasing weights on all the null space
vectors to prioritize the latest events. In Fig. 10, we show
real-time PS on (a) fingers and (b) rubber toys using our val-
idation platform (rotating at 1800 rpm full speed for lowest
latency). We can see the fine-grained details like fingerprint
and rubber deformation in real-time7, which demonstrates
the superiority of EventPS in recovering fine-grained de-
tails. The processing speeds of EventPS algorithms are over
1000 fps (for EventPS-OP), about 2 fps (for EventPS-FCN),

7Please refer to the video in supplementary material for full animation.
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Figure 11. Results on DiLiGenT-Ev dataset with different level
of noises. The mean event triggering threshold is 0.15, and the
standard deviations are 0.05, 0.1, and 0.2.

and about 0.1 fps (for EventPS-CNN).

5. Conclusion and Discussion

In this paper, we propose EventPS, a novel real-time PS
approach using a single event camera. Our method demon-
strates the remarkable advantages of speed and data effi-
ciency, which shows great potential to extend the capability
for real-time sensing in the dynamic scenes and rapid mea-
surement of the object surface normal.

Robustness to event noise. In both optimization and
deep-learning-based methods, there are designs concerning
noise robustness: We collect events from a sliding window
and aggravate them with SVD (for EventPS-OP in Eq. (10))
or sum them up as neural network input (for EventPS-FCN
in Fig. 5 and EventPS-CNN in Fig. 6). In this way, the noise
in each pixel is reduced. During the training stage of the two
deep-learning methods. By adding event triggering noise
with the variable noise levels, we conduct hyperparameter
analysis experiment about noise level in Fig. 11 to demon-
strate the robustness of our method. All three EventPS al-
gorithms are robust as the noise level increases.

Limitation. Firstly, the scanning patterns of lighting have
their limitations: the “circle” pattern leaves a blind area
for high elevation angle surface normal, and the “hypotro-
choid” pattern is difficult to implement mechanically. Sec-
ondly, as the scanning speed of lighting increases, the qual-
ity of event signals gradually degrades due to frequency
response [6]. Achieving diverse scanning patterns, imple-
menting non-mechanical illumination devices, and improv-
ing event signal quality under high-speed illumination is
worth exploring as further work.
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Figure 12. Three types of scanning patterns used in our experi-
ments. All the “circle”, “hypotrochoid”, and “DiLiGenT” patterns
are used on the synthetic dataset for training.
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Figure 13. Normal estimation results with blind area (at the center
of each sphere). As the event triggering threshold increases, the
size of the blind area will also become larger.

6. Scanning Pattern and Blind Area

According to Sec. 4.1, we implement 3 scanning patterns
for illumination. These scanning patterns are shown in
Fig. 12. We chose the “circle” scanning pattern in our real
validation platform for its mechanical feasibility. However,
a blind area issue exists in this pattern.
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Figure 14. Blind area simulation results for a sphere object. Left:
Blind area angle threshold w.r.t. event triggering threshold. Right:
Rotation speed w.r.t. blind area angle threshold. Under limited
event triggering rate, reducing the rotation speed allows us to set
a lower event triggering threshold, achieving a higher blind area
angle threshold (smaller blind area size) and better normal estima-
tion sensitivity.

Blind area. According to Fig. 4, using the “circle” scan-
ning pattern, the radiance change becomes smaller as the
elevation angle of the surface normal increases. When the
radiance change is smaller than the triggering threshold of
the event camera, no event is triggered. In this situation, we
can only infer that the elevation angle is above a specific
threshold. However, we cannot determine the exact normal
direction. We call the part of the surface under this situation
the blind area. As shown in Fig. 13, there is a blind area at
the center of each sphere, where the normal elevation angle
is above a threshold θt. The size of the blind area is re-
lated to the event triggering threshold. The elevation angle
threshold θt of the blind area is the solution of the following
equation:

cos (θt − θL) = exp(2C) cos(π − θt − θL), (12)

1



where θL is the elevation angle of the light source, and C
is the event triggering threshold. The brightest reflection
(cos (θt − θL)) and the dimmest reflection (cos(π − θt −
θL)) differ by 2C, where 2 positive events (and 2 negative
events) are triggered, which is the minimal requirement to
satisfy the condition to solve Eq. (10). When the elevation
angle of the surface point θ is greater than the threshold θt,
fewer than 2 null space vectors are generated, resulting in
the blind area with unsolvable surface normal. We show
an example simulation result in Fig. 14. From the left fig-
ure, we can see that the blind area elevation angle thresh-
old decreases as we decrease the event triggering threshold.
The more advanced “hypotrochoid” does not suffer from
the blind area issue. Thanks to the varying lighting eleva-
tion angle design, events are triggered even with a flat plane.
However, it is more difficult to implement on the real vali-
dation platform.

PS quality w.r.t. rotation speed. According to Sec. 4.2,
we limit the light source rotation speed to 240 rpm in real
dataset capturing for better quality. To reduce the blind
area size, we need to decrease the event-triggering thresh-
old. As a result, more events are triggered, reaching the
event rate upper bound of the camera (100 M events per
second). There are two limitations on rotation speed: ro-
tor bound (It is unsafe to push this rotor beyond 1800 rpm.
Otherwise, the high-speed moving parts may cause injury to
the experiment operator if they rupture.), and camera bound
(This camera generates at most 100 M events per second).
In Fig. 14, we show a simulation result with sphere in the
right figure. The rotation speed requires to be decreased
for higher blind area elevation angle threshold (smaller bind
area size) to prevent event dropping. We limit the rotation
speed in compensation for a better normal estimation sen-
sitivity. The theoretical blind area elevation angle threshold
is about 87◦ at 240 rpm.

7. FramePS trilemma
In the photometric stereo experimental setup, the data rate
of a frame-based camera is the joint effect of three terms:
the number of exposure bracketing images, the number of
light directions per round, and the light scanning speed.
However, the frame-based camera can never achieve op-
timal configuration of these three terms at the same time
due to its limited bandwidth. As shown in Fig. 15, we ana-
lyze the trilemma of frame-based camera in details: (TL1)
Capturing a significant number of exposure bracketing im-
ages along with various light directions per round is time-
consuming. Consequently, object movement during this pe-
riod results in motion blur in the recovered normal map.
(TL2) To balance a good number of light directions per
round and scanning speed, we have to disable exposure
bracketing. With the limited dynamic range, the result

Scanning
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Number
of Light

Directions

Data Efficiency

FramePS (TL1)
FramePS (TL2)

FramePS (TL3)
EventPS

FramePS (TL1) FramePS (TL2)

FramePS (TL3) EventPS

Figure 15. Left: Performance comparison between FramePS un-
der three configurations (TL1 - TL3) and EventPS. Right: Esti-
mated normal maps for all cases. The results demonstrate the
trilemma of FramePS: (TL1) scanning speed, (TL2) HDR, and
(TL3) number of light directions cannot be fulfilled simultane-
ously. In contrast, the proposed EventPS satisfies all three criteria
with the best bandwidth efficiency.

would be affected by surface albedo. (TL3) To achieve ef-
ficient scanning speed and exposure bracketing, the number
of light directions per round must be reduced. As a result,
the quality of the estimated normal maps degrades for the
lack of information. When a frame-based camera tries to
optimize two of these factors, it has to compromise on the
third one, which affects the quality of the estimated normal
maps.

In our EventPS, the HDR advantage and compression
capability of an event camera allow us to fulfill all three
criteria while maintaining bandwidth efficiency. Therefore,
compared to FramePS, EventPS shows more advantages in
practical scenarios.

8. Dynamic Scene Validation
Validation platform. In Fig. 16, we present a detailed de-
piction of the equipment utilized for dynamic scene valida-
tion. We transfer the rotation of the DC motor to a synchro-
nized hollow drum rotor using a timing belt. In this way,
we can place the event camera view point in the middle of
the scanning pattern to observe the object through the cen-
tral hole. Most of the frames and parts are 3D printed and
the corresponding 3D mesh files will be released upon the
acceptance of this paper.

Dynamic scene video. The video is available as a sepa-
rate file named “EventPS supp video.mp4”. During the dy-
namic scene real-time demo, we set the parameters of the
event camera as follows: The “bandwidth bias (bias fo)” is
set to −35, the two “contrast sensitivity threshold biases”
are both set to −10, and the “dead time bias” is set to −20.

9. Complete Evaluation Results
We show all the objects used in our experiments in Fig. 17
and the complete estimated normal map and error map in
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Figure 16. Components of the proposed validation platform. The rendered image (left) aligns with the viewpoint of the photographed real
platform (right) and is consistent with the supplementary video.
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Figure 17. All the objects used in our experiments. Upper: Static
objects in the real dataset for quantitative experiments. Lower:
Rotating or deformable objects used for dynamic scene qualitative
experiments.

Fig. 18 (on DiLiGenT-Ev semi-real dataset) and Fig. 19 (on
the real dataset).



BALL

BUDDHA

CAT

COW

GOBLET

HARVEST

POT1

POT2

READING

Ground Truth
EventPS-OP 

Normal
EventPS-OP 

Error
EventPS-FCN 

Normal
EventPS-FCN 

Error
EventPS-CNN 

Normal
EventPS-CNN 

Error

0

5

10

15

20

25

30

35

40

45

18.73 18.13 16.79

12.74 11.42 11.88

26.51 20.61 20.60

18.43 18.07 16.44

36.06 26.05 25.26

13.78 12.83 12.93

15.75 16.59 15.54

24.61 15.16 18.19

10.99 7.49 10.44

Figure 18. Complete evaluation results on the DiLiGenT-Ev semi-real dataset. The results demonstrate consistent and stable performance
among all objects of our EventPS algorithms.
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Figure 19. Complete evaluation results on the real dataset. The results demonstrate consistent and stable performance among all objects of
our EventPS algorithms.
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