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Abstract—Reconstruction of high dynamic range image from a single low dynamic range image captured by a conventional RGB
camera, which suffers from over- or under-exposure, is an ill-posed problem. In contrast, recent neuromorphic cameras like event
camera and spike camera can record high dynamic range scenes in the form of intensity maps, but with much lower spatial resolution
and no color information. In this paper, we propose a hybrid imaging system (denoted as Neurlmg) that captures and fuses the visual
information from a neuromorphic camera and ordinary images from an RGB camera to reconstruct high-quality high dynamic range
images and videos. The proposed Neurlmg-HDR+ network consists of specially designed modules, which bridges the domain gaps
on resolution, dynamic range, and color representation between two types of sensors and images to reconstruct high-resolution, high
dynamic range images and videos. We capture a test dataset of hybrid signals on various HDR scenes using the hybrid camera,
and analyze the advantages of the proposed fusing strategy by comparing it to state-of-the-art inverse tone mapping methods and
merging two low dynamic range images approaches. Quantitative and qualitative experiments on both synthetic data and real-world
scenarios demonstrate the effectiveness of the proposed hybrid high dynamic range imaging system. Code and dataset can be found

at: https://github.com/hjynwa/Neurlmg-HDR

Index Terms—High dynamic range imaging, neuromorphic sensor, hybrid camera, image fusion.
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1 INTRODUCTION

IGH Dynamic Range (HDR) images are desired in

modern cameras (or camera phones) because they cap-
ture a much wider range of scene radiance variation. A lot
of HDR imaging techniques have been developed in recent
decades by the computer vision and graphics community,
as summarized in [1]. Traditional methods include taking
multiple Low Dynamic Range (LDR) images under different
exposures, then merging them with different weights to
reproduce an HDR image [7], [28]. Another approach is
inverse tone mapping (iTMO) [2], which hallucinates texture
details from a single LDR image. iTMO is obviously an ill-
posed problem, which relies on predicting badly exposed re-
gions from neighboring areas [47] or priors learned through
deep neural networks [9], [10], [27], [42].

In recent years, some specially designed neuromorphic
cameras, such as DAVIS [3] and Vidar [15], have drawn
increasing attention of researchers. Neuromorphic cameras
have unique features different from conventional frame-
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based cameras, they are particularly good at sensing very
fast motion and high dynamic range scenes (1xs and 120
dB for DAVIS346). The latter characteristic can be utilized to
form an intensity map, which encodes useful information lost
in conventional imaging by a dynamic range capped camera
due to over- and/or under-exposure. Despite the distinctive
advantages in dynamic range, neuromorphic cameras gen-
erally bear low spatial resolution (260 x 346 for DAVIS346)
and do not record color information, resulting in intensity
maps less aesthetically pleasing than LDR photos captured
by a modern camera. It is therefore interesting to study
the fusion of LDR images and intensity maps with mutual
benefits being combined for high-quality HDR imaging.

To realize the fusion of hybrid images for HDR recon-
struction, a “Neurlmg” fusion pipeline was firstly intro-
duced in [14], which merged visual information from a
Neuromorphic camera and a conventional camera (usually
as RGB Image) by the intensity map guided HDR network.
We denote such an approach as “NeurImg-HDR”. It suc-
cessfully took two types of images as input and bridged
the great domain gaps on spatial resolution, dynamic range,
color representation and so on to reconstruct a high-quality
HDR image. A hybrid camera was built to demonstrate
that Neurlmg-HDR [14] is applicable to real cameras and
scenes. Although the Neurlmg-HDR [14] naturally supports
HDR video, directly applying it in a frame-by-frame manner
shows “flickering” artifacts due to the lack of temporal
constraint. The simulation of intensity maps in previous
NeurImg-HDR [14] tried to integrate different types of
neuromorphic signals (e.g., events and spikes) into one type
of data, which affected the performance of the proposed
method when applying to real data. Due to the mismatching
on spatial resolution of two input images fed for training
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Figure. 1. The “Neurlmg” hybrid images fusion framework merges a low-
resolution, grayscale intensity map captured by a neuromorphic camera
with a high-resolution, colorful LDR image from a conventional camera.
Previous Neurlmg-HDR [14] only supports HDR images at the resolution
of 512 x 512. The improved Neurlmg-HDR+ can produce HDR videos
with higher spatial resolution up to 3200 x 2000.

the network, the previous approach easily encounters bot-
tleneck when reconstructing high-resolution HDR images
(e.g., only supports 512 x 512 resolution).

In this paper, we extend the NeurImg-HDR pipeline
in [14] from several aspects including HDR video generation
and higher-resolution reconstruction, denoted as “NeurImg-
HDR+” shown in Fig. 1. For HDR video reconstruction,
we design a new chrominance compensation network with
implicit color fusion and recurrent architecture to improve
the quality of color restoration and the smoothness of HDR
video over time. We introduce an upsampling network for
intensity maps to match the spatial resolution of LDR im-
ages and achieve high-resolution reconstruction. At last, we
analyze the limitations of merging two LDR images on dy-
namic range recovery and detailed information preservation
to demonstrate the superiority of the proposed NeurImg
fusion strategy. Our major contributions of this paper are
summarized as follows:

1) We improve the chrominance compensation net-
work and achieve temporal consistent HDR video
reconstruction. We use the hybrid camera to capture
a dataset named Hybrid Events & Spikes HDR
(HES-HDR) dataset for testing, which consists of
hybrid neuromorphic signals and ordinary LDR
frames with spatial alignment and temporal syn-
chronization.

2) We propose an improved architecture with three
sub-networks according to the Neurlmg fusion
pipeline. The new upsampling network supports
8x super-resolution of intensity maps and achieves
high-resolution HDR reconstruction up to 3200 x
2000 on real data. The new chrominance compensa-
tion network implicitly compensates U, V channels
and converts them to RGB frames in feature space.

3) We compare the proposed method to the state-of-
the-art approach of merging two LDR images with
different exposures. It demonstrates the limitations
on dynamic range recovery and details preservation
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of the LDR-only approach, while fusing neuromor-
phic images can overcome such bottlenecks.

2 RELATED WORK

Image-based HDR reconstruction. The classic HDR imag-
ing method was proposed by Mann and Picard [25], which
merges several photographs under different exposures.
However, aligning different LDR images may lead to ghost-
ing in the HDR results due to misalignment caused by
camera movement or changes in the scene. This problem
incurs a lot of research on deghosting in HDR images [20],
[36]. Instead of merging multiple images, inverse tone map-
ping was proposed by Banterle et al. [2], whose intent is to
reconstruct visually convincing HDR images from a single
LDR image. This ill-posed problem was attempted to be
solved by several optimized approaches [25], [30].

In recent years, Convolutional Neural Networks (CNNs)
have been applied to plenty of HDR image reconstruc-
tion tasks. Several works [17], [40] merged images under
different exposure by feeding them to a neural network
to reconstruct an HDR image. As for iTMO, Eilertsen et
al. [9] used a U-Net like network to predict the saturated
areas, and applied a mask to reserve non-saturated pixels in
LDR images, then fused the masked image with predicted
image to get the HDR results. Some approaches [10], [24]
predicted the LDR images under multiple exposures, then
merged these LDR images using classic method [7]. Liu et al.
proposed the single-image HDR reconstruction method [27]
by learning the reverse camera pipeline. Santos et al. [42]
conditionally applied convolutional layers on the saturated
pixels by using a feature masking mechanism to get the
HDR results.

For HDR video reconstruction, Kalantari et al. [19] pro-
posed a patch-based optimization method to reconstruct
the missing details in HDR videos. Li et al. [26] treated
this problem as a maximum posterior estimation. They
split background and foreground via a multi-scale adaptive
kernel regression to tackle misalignment. Learning-based
methods [5], [18] generated HDR video using convolutional
networks that merge a sequence of frames with alternating
exposures.

Computational HDR imaging. HDR imaging problem
would become less ill-posed by using computational ap-
proaches or even unconventional cameras that implicitly
or explicitly encode expanded dynamic range of the scene.
Nayar et al. [35] added an optical mask on a conventional
camera sensor to get spatially varying pixel exposures.
Some approaches [22], [46] modified the inner structure of
cameras to implement an HDR-video system, which used
beam splitters to simultaneously capture multiple images
with different exposure levels, then merged them into an
HDR image. Zhou et al. [54] used a modulo camera [51] that
wrapped the high radiance of an HDR scene periodically
and saved as modulo information, then proposed UnMod-
Net to unwrap and predict the HDR scene radiance pixel-
wisely. Merzler et al. [31] optimized the image signal pro-
cessor (ISP) by placing a diffractive optical element (DOE)
that encoded the saturated pixel values into nearby pixels.
They used the information from the encoded measurements
to recover clipped information.
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Figure. 2. The conceptual pipeline of Neurlmg fusion process, which consists of four steps: color space conversion of the LDR image, spatial
upsampling of the intensity map, luminance fusion to produce HDR image in luminance domain, and chrominance compensation that refills the

color information to get a colorful HDR result.

There are bio-inspired neuromorphic sensors such as
DAVIS [3] (Dynamic and Active Pixel Vision Sensor),
ATIS [39] (Asynchronous Time-based Image Sensor), and
spike camera (Vidar) [15] detecting the scene radiance asyn-
chronously. This series of non-conventional sensors surpass
conventional frame-based cameras in various aspects [11]
including high dynamic range. Images reconstructed from
raw event data have shown great potential in recovering
very high dynamic range of the scene [41], [55]. Different
from event data that is generated in a differential manner,
spike data directly reflects the scene radiance by integrating
asynchronously in each pixel [15]. Images reconstructed
from spikes [52] can also recover high dynamic range due
to the different densities of spike generation.

Hybrid fusion for HDR reconstruction. Combining neu-
romorphic data with conventional images to produce more
visually pleasing HDR photos with higher resolution and
realistic color appearance is becoming an interesting topic in
recent years. Images captured by different types of sensors
provide distinctive information of the scene. The fusion of
hybrid signals can compensate each other for HDR recon-
struction. The guided event filtering (GEF) [8] unified RGB
images and event data via a motion compensation model
to achieve high-resolution, noise-robust imaging. Wang et
al. [48] integrated events based on event double integral
(EDI) model [37] and merged to intensity frames for inter-
polation, then dealt with noise and artifacts using a variant
of Kalman filter.

3 PROPOSED METHOD
3.1

As illustrated in Fig. 1, our goal is to reconstruct HDR
frames given the input of LDR frames I from a conventional
camera and intensity maps X captured by a neuromorphic
camera. We assume that the LDR frames do not suffer from
the blurry artifact. Such a fusion pipeline can be conceptu-
ally illustrated using Fig. 2, which contains four key steps:

Neurlmg Fusion Pipeline

Color space conversion. Most conventional cameras record
color images in RGB format and each channel contains pixel
values represented by 8-bit integers. There exists a nonlinear
mapping between scene radiance and the pixel values in the

camera pipeline, so we have to firstly map LDR images to
the linear domain via the inverse camera response function
(CRF) f~1. To fuse with the one-channel intensity map, we
then convert the color space of LDR image from RGB to
YUV. The Y channel Iy indicates the luminance of I which
is in the same domain of X, and U, V channels contain the
color information. We use Iy to fuse with intensity map
and reserve U, V channels as chrominance information to
be added back later.

Spatial upsampling. To bridge the resolution gap between
X and Iy, we need to enlarge the spatial resolution of the
intensity map to make it have the same size as Iy. The
upsampling operation S(-) is defined as follows:

X = §(X), M)
where X% is the upsampled intensity map. S(-) can be
any upsampling operator such as the nearest neighbor or

bicubic interpolation, or a pre-trained neural network for
super-resolution.

Luminance fusion. To expand the dynamic range of Iy
under the guidance of X SE an intuitive solution is to define
a weighting function, which indicates the pixels that should
be retained for fusion and those should be discarded. This
can be implemented by adopting a similar merging strategy
proposed by Debevec and Malik [7]. The fused value of Hy
is calculated as follows:

wlly + wX X5E

Hy = W(Iy, X*1) = — T wX

; 2

where w! and w¥ € [0, 1] indicate corresponding weights
for different types of input signals. A straightforward way to
determine the weight values is to set a threshold 7 (e.g., 7 >
0.5) manually. Pixel values (normalized to [0, 1]) lying in the
effective range [1 — 7, 7] are given larger weights to retain
the information, while values out of the range are either too
dark (under-exposed) or too bright (over-exposed), hence
smaller weights are given to discard such information. A
binary mask could be calculated based on the threshold,
which is the simplest way to get a weight map. Another
option is to set weights as a linear ramp, which is similar



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

1.0

£
ﬁ X D'S +
== —

LDR image I Weight map

Weight value \ / 1

1o~ - \\ /I Weighted result

Pixel
value

1-1 710

Weighting function Intensity map X

Figure. 3. A real example of fusing an intensity map and an LDR image
using a linear ramp as the weighting function. Such a straightforward
fusion strategy results in various unpleasant artifacts, such as color
distortion in the insets.

to the pixel-wise blending in [9]. Such a weighting function
can be expressed as
0.5 —max(|I; —0.5],7 —0.5)

1 .

1—71

®)

We use a real-captured sample to illustrated the weighting
function in Eq. (3). The fusion result is shown in Fig. 3.

Chrominance compensation. After fusion in the lumi-
nance domain, Hy now contains HDR information in high-
resolution, but without color information. The color can be
compensated from U, V channels of I, (i.e., I;, Iy). Denote
C(+) as the color compensation operator, this procedure can
be represented as

H:C(HY7IU7[V)7 (4)

which combines Hy with Ij;, Iy, and converts it back to
RGB color space. Due to the dynamic range gap between
Hy and Iy (Iy), directly combining them leads to unnatural
color appearance, as shown in the weighted result in Fig. 3.
We should use some color correction methods to recover the
realistic color appearance.

The example in Fig. 3 demonstrates that simply applying
the conceptual pipeline in Fig. 2 may not achieve a satisfying
HDR image. The dynamic range gap between two images
and limited color information lead to unrealistic HDR re-
sults.

To address these issues, we translate the pipeline in Fig. 2
as an end-to-end network F(-):

H=CW(f'(Iy),8(X)) , Iy, Iv) = F(I,X;0), (5

where 6 denotes parameters of the network. We will next
introduce the specific concerns in realizing each of the four
steps using deep neural networks.

3.2 Neurlmg-HDR+ Network

In this subsection, we describe the details of the proposed
network, whose architecture is shown in Fig. 4. Our model
takes LDR frame I and intensity map X as the input
and contains three consecutive sub-networks: upsampling
network, luminance fusion network, and chrominance com-
pensation network.

First of all, inverse CRF and color space conversion
are conducted offline as a pre-processing to I. Then for
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each pixel in the input Iy, the proposed network learns to
extend the bit-width under the guidance of the information
encoded in X. We design specific modules in the network
in accordance with the remaining three steps described in
Sec. 3.1. Spatial upsampling of X is realized by the newly
added upsampling network, instead of concatenating multi-
scale feature maps as the preliminary work [14]. It learns to
super-resolve X to match the resolution of I with multiple
scales. The luminance fusion process can be realized by
attention gates and skip connections in the luminance fusion
network. Therefore, we design the network with U-Net
architecture that consists of double encoders (encoder of
Iy and X°%) and one decoder. Finally, the chrominance
information is compensated from Iy, Iy, by the chrominance
compensation network. The detailed architecture of three
sub-networks will be introduced as follows.

Upsampling network. Compared with ordinary RGB cam-
eras with tens of millions of pixels, the intensity maps cap-
tured by neuromorphic cameras are in low spatial resolution
due to the restriction from currently available sensors. In
order to fuse with LDR frame I, we should firstly upsample
the intensity map X to the same size of I. We perform an
upsampling operation by a super-resolution network with
residual dense connections. Dense connections can preserve
detailed information from shallow to deep layers and fuse
features in different scales for image reconstruction. The
dense block outputs residuals between SR result X°F and
the interpolated input X. Thus, the final X% is the sum-
mation of intensity residuals and interpolated X. Compared
to a naive upsampling operation S(-), the convolutional
layers learn a comprehensive representation from image
context to realize upsampling operation by end-to-end back
propagation, rather than simply rely on interpolation from
nearby pixels. Considering that LDR frames have much
higher resolution than the intensity maps (e.g., 2448 x 2048
vs. 346 x 260), for different resolution of I, we add different
number of pixel shuffle layers [44] to the network for 2,
4x and 8x SR.

Luminance fusion with attention masks. The fusion of
pixel values in the luminance domain is the key step for
dynamic range expansion. The proposed architecture ap-
plies skip-connections, which transfer feature maps between
encoders and decoder to incorporate both rich textures in
Iy and HDR information in X“F. However, simply con-
catenating feature maps from two encoders is expected to
be influenced by the dynamic range gap between the two
input images. So we fuse the concatenated tensor by a 1 x 1
convolution before passing it to the next layer.

As stated in the luminance fusion part of Sec. 3.1, a
weighting function W(-) is added to determine the weight
of each pixel, which can be implemented by introducing
attention mechanism in the network. We choose to use the
self-attention gate [43] as a mask added on Iy that assigns
different importance to different pixels of an image. The
attention mask is computed by 1x 1 convolution on the skip-
connected feature maps from Iy encoder, and the feature
maps from the last layer in the decoder. Then the convolved
feature maps are activated by a non-linear function. The
element-wise multiplication of attention mask and input
feature map from Iy helps to filter the badly exposed pixels
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compensation network.

'

Attention mask LDR image Reconstruction  Ground truth

Figure. 5. Examples of attention mask calculated from self-attention
module, which assigns different weights for each pixel and reserves
useful information for fusion.

and preserve areas with valid information for reconstruc-
tion. Compared to assigning weights intuitively like Eq. (2),
our attention mask is computed from feature maps of two
input images, and the learnable parameters can be trained
end-to-end to find suitable weights for different input im-
ages.

As Fig. 4 indicates, we add attention gates only to the
first skip-connections, instead of to all of them. We find that
removing attention masks from the inner skip-connections
results in better reconstruction. Figure 5 shows two exam-
ples of attention mask and the fusion results in luminance
domain.

Chrominance compensation network. Given the HDR im-
age in luminance domain Hy, we combine it with chromi-
nance information Iy and Iy from the LDR image, then
convert it to RGB color space to recover color appearance.
Figure 5 shows that almost perfect reconstructions in the
luminance domain can be obtained by the luminance fu-
sion network, while the chrominance compensation process
with prior of U, V channels from I is more difficult when
converted back to RGB color space. In our preliminary
work [14], we concatenate [Hy, Iy, Iy] and convert it to
RGB color space using the following function:

R 1 0 1.140 1 [Y
G| =1 -0394 —0581| |U (6)
B 1 2.032 0 1%

However, the directly converted Hrgp may suffer from
color distortion due to the dynamic range gap between Hy
and Iy (Iy). Because the luminance values of Y channel are
stored in high precision format (e.g., float), while the values
in U,V channels directly inherited from I are still in the 8-bit
integer format. Thus, the converted Hrgp tends to be col-
orless especially after tone mapping. And it becomes more
difficult for chrominance compensation network to restore
the vivid color appearance, because the loss of precision has
diffused into all three channels of Hgrgp.

Therefore, we propose to make implicit color space con-
version in the feature domain. The key problem is precision
gap between Y channel and U, V channels, we compute
residuals Resy and Resy respectively under the guidance
of Y channel, which are added to U, V channels to compen-
sate the precision gap. Then we convert features from YUV
to RGB by fusing different source channels. According to
Eq. (6), features of R channel come from Y and V channels,
while features of G channel come from Y, U, and V channels.

To reconstruct temporally consistent HDR videos, we
exploit the correlation between consecutive input frames by
introducing a recurrent structure after the fusion of RGB
features. It maintains a hidden state that is computed from
current input as well as the encoded past states from the
previous input. With recurrent structure, the temporal com-
plementary and redundant information through time can
be well exploited to alleviate flickering artifacts and reduce
noise in HDR video reconstruction. Details of recurrent
block are described in Sec. 3.3.

For a natural appearance of HDR results H, we apply
Generative Adversarial Networks (GANSs) [13] architecture
to perform chrominance compensation. The network de-
scribed above is viewed as a generator that learns to re-
cover realistic color appearance in HDR images. We train a
discriminator simultaneously that accepts the output of the
generator and the corresponding real HDR images. It dis-
tinguishes the reality of color appearance, then propagates
adversarial loss back to both the generator and discrimina-
tor.

3.3 Extension to HDR Video Reconstruction

We extend the preliminary NeurImg-HDR [14] to HDR
video reconstruction by introducing the recurrent block.
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' Hidden state

Since the proposed method merges two images captured
by two different sensors simultaneously, it can be treated as
operating in the “single-shot” mode, which is readily to be
applied to HDR video capture and reconstruction. We split
the video sequence into a series of frames and reconstruct
the HDR image frame-wisely. However, naively applying
the NeurImg-HDR pipeline [14] in a frame-by-frame man-
ner leads to abrupt and incoherent changes from frame to
frame. Because the differences between consecutive frames
can be regarded as small disturbances like translations or
noise added to the same image, which may cause the trained
neural networks to output quite unstable results [53]. Such
disturbance and instability inevitably introduce temporal
inconsistencies when merging a sequence of frames to gen-
erate video. Therefore, dense motion estimation such as
optical flow between frames is required to enforce temporal
coherence [23], or alternatively, a temporal hidden state
should be preserved to maintain the coherence between
consecutive frames [32].

As illustrated in Fig. 6, we design a recurrent block with
a hidden state in the chrominance compensation network,
which takes the last state from the previous frame and fuses
it with the RGB feature map to reconstruct the HDR result
for current frame. During the training process, the hidden
state is initialized to zero. The recurrent block maintains a
temporal window to update the hidden state and accumu-
late gradients step by step. Due to the limit of GPU memory
size, we set the window size to 10. For inference process, the
hidden state is initialized at the beginning of a video and the
size of temporal window is infinite.

3.4 Loss Functions

We first introduce two basic loss functions: pixel loss
Lyizer and perceptual loss [16] Lyere that all the three sub-
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networks use. Pixel loss computes the ¢; norm distance
between network prediction F(z) and ground truth ¢:

Epimel = H]:(JL') - :')”1 . (7)

The perceptual loss is defined based on the feature maps of
images extracted by the VGG-16 network [45] pre-trained
on ImageNet:

2
B

2
‘2’

where ¢, denotes the feature map convoluted from h-th
layer of the VGG-16 [45], Gf is the Gram matrix of feature
maps ¢, of two input images. Both of the two parts are
computed by ¢ norm. We use the layers ‘relul_2’, ‘relu2_2’,
‘relu3_3" and ‘relu4_3" of VGG-16 network [45] in our exper-
iments to compute perceptual loss.

Lpere = (on(F(@)) = én()

h

+||ler(F @) - 6w

®)

Loss functions of upsampling network and luminance
fusion network. The upsampling network learns to super-
resolve intensity maps to the corresponding resolution of
LDR images. We define the loss function of upsampling
network as:

)

where o and ay are the weights for different parts of loss
function. We set a; = 100.0 and a5 = 3.0.

The luminance fusion network reconstructs images in
the linear luminance domain, which covers a wide range of
values. Directly calculating losses between the output image
Hy and ground truth ﬁy may cause the loss function to
be dominated by large values (bright pixels) of Hy, while
the effect of small values (dark pixels) tends to be ignored.
Therefore, it is reasonable to compute the loss function
between Hy and Hy after tone mapping. The range of pixel
values are compressed by the following function proposed
by [17] after normalized to [0, 1]:

Ly = O‘lﬁpixel + Of2£perc,

_ log(1 4 pHy)
U= Pogtim

where T (-) is the tone mapping operator and u (set to
be 5000) denotes the amount of compression. The tone
mapping operator is computationally effective and differ-
entiable, thus easy for back-propagation.

The loss function of luminance fusion network is similar
to that of the upsampling network, except for calculating
the distance between T (Hy ) and T (Hy):

; (10)

‘CL = 043£piwel + a4['perc- (11)

We set a3 = 100.0 and ooy = 3.0in L.

Loss functions of chrominance compensation network.
As for the chrominance compensation network, in addition
to pixel loss and perceptual loss, we introduce adversarial
loss from the discriminator. The losses of generator and
discriminator are inherited from traditional GANSs [13]:

‘Cgene = EHYUV[(D(Q(HYUV)) - 1)2]7 (12)
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£disc = % (EH[D(H) - 1)2}

+ Emyoy [(DG(Hyuv)))?) (13)

where G and D are generator and discriminator, and E is the
expectation function. We denote the input of chrominance
compensation network [Hy, Iy, Iy] as Hyyy and the final
output HDR image as H. The total loss of chrominance
compensation generator is:

£C = a5£pia:el + a6£perc + a7£gene~ (14)

We set a5 = 100.0, ¢ = 3.0, and a7 = 10.0. The weighting
parameters «; in loss functions balance the contributions of
different parts of losses. Please refer to supplementary mate-
rial for detailed analysis of how these weighting parameters
are determined.

3.5 Dataset Preparation

Learning-based methods rely heavily on training data.
However, there are no appropriate large-scale real HDR
image datasets suitable for our purpose. Therefore, we
collect HDR images from various image sources and video
sources. Since the proposed network has two different types
of images as input, we analyze the data formation process of
different input and simulate each of them. For LDR images,
we synthesize them from HDR images like taking photos
with a virtual camera [9]. The formation process of LDR
image I from HDR image consists of 4 main steps: dynamic
range clipping, noise simulation, non-linear mapping, and
quantization. As for intensity maps, we simulate them in
accordance with the data generation mechanism of two
different types of neuromorphic cameras. Please refer to
supplementary material for more details of data simulation.

3.6 Training Strategy

The proposed network is implemented by PyTorch, and
we use ADAM optimizer [21] during the training process
with a batch size of 2. We use instance normalization with
the activation function of LeakyReLU in the luminance
fusion network. The output of the network is activated by
a Sigmoid function that maps pixel values to the range
of [0,1]. Both of the three networks are initialized with
Xavier initialization [12]. During training, we apply phase-
to-phase training for better learning efficiency, instead of
learning all from scratch in an end-to-end manner. We
train the upsampling network firstly with the input of low-
resolution intensity maps X and ground truth X%, Then
we fix the upsampling network and train the luminance
fusion network with the input of Iy and X SR, Finally, we
fix the previous two networks and train the chrominance
compensation network with the input of [Hy, I7, Iy/]. 600
epochs of training enables the networks to converge. The
initial learning rate is 1075, during the first 400 epochs it
is fixed, in the next 200 epochs, it decays to 0 with a linear
strategy.

4 HyYBRID CAMERA AND HES-HDR DATASET
4.1 System Setup

In order to demonstrate the effectiveness of the proposed
method on real-world scenarios, we build a hybrid cam-
era, which is composed of a conventional RGB camera

Input
Scene radiance
Beam [ :
splitter

Conventional

NeurImg-HDR
camera

network

Figure. 7. The prototype of our hybrid camera, which is composed of
a conventional RGB camera and a neuromorphic camera. Radiance
information is recorded simultaneously by two sensors.

TABLE 1
The detailed specifications on spatial resolution, frame rate (FR) and
dynamic range (DR) of our hybrid camera. In our implementation, the
neuromorphic camera could be either an event camera (DAVIS346) or
a spike camera (Vidar) [15].

Conventional Camera | Neuromorphic Camera
Camera Model
FLIR Chameleon 3 DAVIS346 ‘ Vidar
Resolution 2448 %2048 346 %260 400%250
ER (fps) 35 up to 1M 40K
DR (dB) 60 120 100

and a neuromorphic camera (DAVIS346, or spike camera
(Vidar) [15]) with the same lens. The prototype and spec-
ifications are illustrated in Fig. 7 and Table 1. There is a
beam splitter (Thorlabs CCM1-BS013) with 50% splitting in
front of the two sensors, which splits the incoming light
and sends them to different sensors with the same view. We
write a synchronization script to trigger two sensors simul-
taneously. Furthermore, the mobility of our hybrid system
allows us to take photos both indoor and outdoor, which
helps to validate that the proposed method is applicable to
various scenarios.

4.2 Dataset Collection

We build a dataset named Hybrid Event & Spike HDR
(HES-HDR) dataset using the hybrid camera to evaluate
the fusion of neuromorphic and RGB hybrid signals. We
capture HDR images and videos for various scenarios and
collect two types of hybrid signals (e.g., event-RGB or spike-
RGB) for each scene with spatial alignment and temporal
synchronization. HES-HDR dataset includes both outdoor
and indoor HDR scenarios. All the videos include global
motion and/or local motion. In total, there are 20 video
sequences, including 10 of event-RGB HDR videos and 10
spike-RGB HDR videos. Detailed introduction of the HES-
HDR dataset can be found in the supplementary material

5 EXPERIMENTS
5.1 Quantitative Evaluation using Synthetic Data

We compare two state-of-the-art deep learning based iTMO
methods: Liu et al. [27] and Santos et al. [42]. The previous
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TABLE 2
Quantitative evaluations of the proposed Neulmg-HDR+ and comparing methods. These scores are averaged across all images in the whole test
dataset. 1 () represents the higher (lower) the better results. The best results are in red, and the second best results are in blue.

Method PSNR-put  SSIM-put  PSNR-tt  SSIM-tt  LPIPS-t] HDR-VDPt  HDR-VOM| TCM7tT
NeurImg-HDR+ 26.31 0.754 24.01 0.905 0.199 9.215 0.288 0.778
NeurImg-HDR [14] 2221 0.709 20.01 0.858 0.204 7.400 0.451 0.721
Liu et al. [27] 18.08 0.568 17.75 0.726 0.229 5.219 0.338 0.706
Santos et al. [42] 9.66 0.311 11.28 0.612 0.288 3.361 0.265 0.453
LDRx2 [5] 17.14 0.596 16.49 0.712 0.337 5.806 0.425 0.584

Ground truth

LDR image

Neurlmg-HDR+

Neurlmg-HDR

Liu et al. Santos et al. LDRx2

Figure. 8. Comparison between the proposed method and state-of-the-art deep learning based inverse tone mapping methods: Liu et al. [27] and
Santos et al. [42]. We also compare with Neurlmg-HDR [14] and a state-of-the-art approach [5] of merging two LDR images, denoted as LDRx 2.
The Q-Scores of HDR-VDP [33] are displayed in each image. Please zoom-in on the electronic versions for better details.

NeurImg-HDR [14] and a state-of-the-art method denoted
as LDRx2 [5] that merges an over- and an under-exposed
images are also included in comparison. The results are
shown in Table 2 and Fig. 8. For LDRx2 method, we
generate two LDR images with different exposure time from
the HDR ground truth. We test different exposure ratios A
for the whole test dataset, and find that A = 4 achieves
the highest performance. Therefore, we choose the optimal
A as the comparison results in our experiments. Detailed
analysis about the limitations of merging two LDR images
can be found in Sec. 8 in the supplementary material. For the
sake of fairness, we omit the comparison to merging three
or more LDR images with different exposures.

Thanks to the extended dynamic range information pro-

vided by intensity maps, the proposed approach is able to
recover rich texture details in the HDR results. For example,
in the second row of Fig. 8, the outline of the intense light
source (red inset) is clearly visible in our results, while this
is not the case for other iTMO methods. Although merging
two LDR images extends the dynamic range (more reliable
than single-image solutions), it easily suffers from noise
artifact due to the limited dynamic range covered by two
LDR images, as shown in the man’s face in the first case.
It is hard to obtain both HDR and detailed scene radiance
using merely two LDR images.

Besides visual comparison, we conduct quantitative
evaluations using various metrics as shown in Table 2. In
the linear domain, we conduct the widely adopted HDR-
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Figure. 9. Comparisons on quality maps calculated from HDR-VDP
evaluation metrics [33]. Visual differences increase from blue to red in
the quality maps.

VDP-3 [33] (range in [0, 10]) for images. For HDR videos,
we use HDR-VQM [34] and TCM [49] metrics (both range in
[0, 1]) to evaluate the HDR restoration quality and temporal
consistency. In the perceptually uniform pixel domain [29],
we compute peak signal-to-noise ratio (PSNR-pu), and
structural similarity (SSIM-pu). Besides, we evaluate HDR
images after tone mapping using Eq. (10) by conducting
PSNR-t, SSIM-t, and learned perceptual image patch simi-
larity (LPIPS-t) [50] metrics.

The HDR-VDP metrics [33] compute visual difference
and predict the visibility and quality between the recon-
structed and ground truth HDR images. It produces the
quality map and Q-Score for each HDR image to indi-
cate the quality of HDR reconstruction. Figure 9 shows
the quality maps of different methods, which display the
difference probability between a predicted HDR image and
the ground truth. We set the peak luminance (in cd/m?) to
200 and display contrast as 1000 : 1 when conducting HDR-
VDP [33] evaluation. Both visual comparisons and quanti-
tative evaluation results show that the proposed approach
achieves much higher quality in HDR image reconstruction
compared to other state-of-the-art methods.

We test the proposed method and the comparing ap-
proaches on 13 different HDR video sequences with the
number of frames varies from 151 to 834. Compared to
iTMO methods [27], [42], videos from Neurlmg-HDR+ re-
cover much more details on both over-exposed and under-
exposed regions. For LDRx2 [5], we set video frames with a
short-long exposure mechanism following the frame gener-
ation process in their paper. However, videos reconstructed
from LDR X2 [5] suffer from noise and “flickering” artifacts
due to the exposure gap between consecutive frames. Please
refer to the supplementary video for more results.

5.2 Results on Real-world Images and Videos

We capture photos and videos for both indoor and outdoor
high dynamic range scenes to evaluate the effectiveness
of the proposed method. HDR event streams are firstly
converted to intensity maps using E2VID [41]. While for
spikes, we apply a time window [15] to integrate spikes
to get intensity maps. Figure 10 shows HDR results recon-
structed on our HES-HDR dataset on both event camera
(DAVIS346) and spike camera (Vidar). The input images
are firstly fused in the luminance domain (denoted as
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TABLE 3
Quantitative comparison on real-world data.
Method PSNR-tt SSIM-tt LPIPS-t, HDR-VDPt

NeurImg-HDR+
NeurImg-HDR [14]

23.25
21.22

0.952
0.936

0.164
0.247

7.847
5.552

Hy in Fig. 10) and then compensated by the chrominance
information to get the final colorful HDR images. Results
show that the proposed method can successfully fuse the
input I and X to reconstruct high-quality HDR images.
For example, the texture of dome building (the second
case of Vidar) is over-exposed due to the strongly reflected
sunlight, but the detailed texture could be captured by the
neuromorphic cameras, and recovered in the fusion results
using our method. We conduct the quantitative evaluation
on real-world images by capturing multiple LDR images
with exposure-bracketing. We merge LDR images as the
ground truth and compute PSNR-t, SSIM-t, and LPIPS-t
for tone mapped results, and HDR-VDP [33] in the linear
domain, the results are shown in Table 3.

Thanks to the high temporal resolution property of
neuromorphic cameras, we extend our model to high-
frame-rate (HFR) video reconstruction. The misalignment
on temporal domain can be alleviated by deformable con-
volution (DCN) [6], which introduces diverse offsets in
multiple feature levels. DCN achieves implicit alignment
and reduces warping errors effectively compared to explicit
flow-based alignment [4]. Besides, DCN is a plug & play
module without much modification to the original network
architecture. Thus, we plug DCN in the luminance fusion
network that aligns features from RGB frames to those from
intensity maps before fusion, which achieves HFR HDR
video reconstruction in the luminance domain. Please refer
to the supplementary video for more HDR and HFR videos
on our HES-HDR dataset.

5.3 High-resolution Reconstruction

The proposed model can handle higher spatial resolution
(a typical DLSR or camera phone image with millions of
pixels) once we upsample the low-resolution intensity to the
corresponding resolution of LDR image. We trained upsam-
pling network with different scaling factors (2x,4x,8x) to
bridge the huge spatial resolution gap between intensity
maps and LDR frames.

We show HDR results with different resolutions (de-
noted as 2x, 4x and 8x) on both synthetic data and real-
captured images in Fig. 11. The proposed method takes
high-resolution LDR frames as input to achieve detailed
textures in reconstruction. For example, the contour of the
sculpture (green box in the top right case) and the edges of
windows (red box in the bottom left case) are much clearer
in 8x results, which preserves the high-resolution details
from LDR input. We can reconstruct up to 3200 x 2000
HDR results on Vidar-based and 2768 x 2080 on DAVIS-
based hybrid camera. The spatial resolution is limited by
the sensor size of neuromorphic cameras. If we use neuro-
morphic camera with a larger sensor size, such as Prophesee
Gen 4 [38] with 1280 x 720 pixels, achieving even higher
resolution could be possible.
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X (DAVIS)

10

X (Vidar)

Figure. 10. Real data results reconstructed by Neurlmg-HDR+. The LDR images are captured by conventional cameras and the intensity maps are
acquired by DAVIS (the left three cases) and spike camera (the right three cases), respectively.

result

HDR
result

LDR
input

HDR
result

Figure. 11. High-resolution reconstruction in different scales. The top samples are synthetic images, and the bottom two samples are real data. The
insets are the HDR results of 2x, 4x, and 8x SR for intensity maps. Please zoom-in on the electronic version for better details.

However, when handling extremely large spatial resolu-
tion gap (e.g., 8x SR), some blurry artifacts are unavoidable
in completely saturated regions, such as the blur windows
contour (red box in the bottom left case). Because these
saturated regions in LDR images are filtered by the attention
masks, and the HDR result can only rely on low-resolution
intensity maps in these regions.

5.4 Ablation Studies

In this section, we conduct extensive ablation experiments
to analyze the design of network structure and combina-
tion of loss functions by comparing with different variants.

Quantitative comparison for different variants is shown in
Table 4.

Comparison with NeurImg-HDR. The major differ-
ences in network architecture between NeurImg-HDR+ and
NeurImg-HDR [14] are the encoder of X SE and chromi-
nance compensation network. We propose an independent
upsampling network to super-resolve the intensity map to
different resolutions corresponding to I, instead of concate-
nating multi-scale feature maps in the decoder of luminance
fusion network like [14]. We convert the color space from
YUV to RGB in feature space in the chrominance compensa-
tion network to overcome the dynamic range gap between
color channels. The discriminator added on the chrominance
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TABLE 4
Quantitative comparison of different variants of the proposed method. The best results are in red, and the second best results are in blue.

PSNR-put SSIM-put PSNR-tt SSIM-tt LPIPS-t] HDR-VDP{

Method

NeurImg-HDR+ 26.31 0.754
NeurImg-HDR [14] 22.21 0.709
w /o attention masks 24.15 0.710
single encoder 21.27 0.622
end-to-end training 24.95 0.742
Lpizel loss 22.86 0.603
Lpizel + Lperc loss 26.09 0.748
Loy + Lperc + Lado loss 26.27 0.747

24.01 0.905 0.199 9.215
20.01 0.858 0.204 7.400
22.48 0.891 0.204 8.493
20.30 0.836 0.305 7.781
22.83 0.893 0.206 8.890
20.77 0.848 0.422 8.295
23.46 0.901 0.205 9.208
23.57 0.900 0.205 9.196

compensation network provides the adversarial loss for
compensating chrominance information, which makes HDR
results more natural compared to NeurImg-HDR [14].

Without attention masks. We validate the effectiveness of
the attention mask module by removing it and then com-
pare the reconstruction results with the complete network.
Without attention masks, it is difficult for the network to
accurately distinguish the information to reserve or discard,
hence leads to some artifacts and low-quality reconstruction.
The over-exposed regions cannot fully take advantage of the
HDR intensity map to recover structural details.

Single encoder architecture. We compare our network with
a single encoder architecture, which removes the encoder of
X5 in the luminance fusion network. This can be achieved
by concatenating X% and Iy at first, then sending the 2-
channel tensor to a single encoder. In this case, two images
from different domains are directly combined instead of
fused at multi-scale feature space, which causes perfor-
mance to drop a lot.

End-to-end training. The proposed network is trained in
a phase-to-phase manner. If we train three sub-networks
simultaneously in an end-to-end manner, they cannot be op-
timized for their own objectives effectively, which makes it
difficult for the whole network to converge simultaneously.
However, put the loss function variants aside, the variant
with end-to-end training has relatively better performance
than other variants. It is because there are no architecture or
loss function changes. Different training mechanism has less
impact on the final performance of the proposed network.

Loss functions. We investigate the effect of different terms
in loss functions. The loss functions we used in the proposed
NeurImg-HDR+ is Lyizei + Lpere + Lady- The variants are
trained with only pixel loss (denoted as L,;z¢i), removing
adversarial loss (denoted as Lpizer + Lperc), and replacing
pixel loss with £, norm (denoted as £, + Lypere + Lado)- Re-
sults show that removing adversarial loss has the minimum
effect that achieves 3 runner-ups in Table 4.

Without recurrent block. To validate the effectiveness of re-
current block in maintaining temporal consistency of videos,
we remove the recurrent block in chrominance compensa-
tion network, and test on 13 synthetic HDR videos. The vari-
ant without recurrent block achieves 0.326 in HDR-VQM
metrics (lower is better) and 0.693 in TCM metrics (higher
is better). Compared to the model with recurrent block, it is
11.7% and 12.3% worse in these two metrics, respectively.
HDR videos reconstructed with recurrent block achieves

better temporal consistency and less flickering artifacts.

6 CONCLUSION

We propose an HDR imaging method using the hybrid
camera, which fuses the LDR frames and the intensity maps
to reconstruct visually pleasing HDR videos. The prelim-
inary NeurImg-HDR approach [14] has been improved in
various aspects to achieve more natural color appearance,
higher resolution reconstruction, and HDR video genera-
tion. Besides, we analyze the limitations of merging two
LDR images and validate the superiority of the Neurlmg
fusion approach. Extensive experiments on synthetic data
and the HES-HDR dataset captured by our hybrid camera
demonstrate that the proposed method outperforms state-
of-the-art comparing methods.

Limitation and discussion. We have tried to conduct frame
interpolation and generate HFR videos in the luminance
domain when capturing fast-moving scenes. It verifies that
it is potentially possible to generate HFR HDR videos with
the proposed method. However, for color restoration in HFR
HDR videos, there is unsatisfactory color distortion due to
the huge loss of chrominance information in both spatial
and temporal domains. Since there are no HFR chrominance
channels as references, the chrominance compensation re-
sults may degrade.
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7 DATA SIMULATION PROCESS

The simulation of different types of data is important to
make the trained neural network generalize to real data.
The conventional RGB cameras and neuromorphic cameras
operate in quite different manners, and output data with dif-
ferent mechanisms and formats. For example, RGB cameras
capture images or videos with shutter to control the incident
light. While event cameras and spike cameras respond to
scene brightness asynchronously in each pixel. Therefore, it
is necessary to analyze and model the data generation pro-
cess and noise pattern of RGB cameras and neuromorphic
cameras when conducting accurate simulation. We build our
training and testing dataset by collecting HDR images from
various image sources [1], [2], [9], [12], [13], [30], [37] and
video sources [3], [4], [11], [24], [35]. The data simulation
process is described as follows.

71

For LDR images, we synthesize them from HDR images like
taking photos with a virtual camera [8]. Given the radiance
of a scene I and exposure time At, the HDR image H is
formed by H = E x At. Then the formation process of LDR
image I from HDR image consists of 4 main steps: dynamic
range clipping, noise simulation, non-linear mapping, and
quantization, which is denoted as:

LDR Image Simulation

I =255 f(max(min(H,1),0) +n)], (17)

where f is camera response function and n represents
noise. Therefore, we simulate LDR images according to
the formation pipeline denoted in Eq. (17). The irradiance
values of HDR images are firstly rescaled to [0, 1], then
multiplied by random exposure time At. We clip pixel
values larger than 1.0 as the saturated regions. By modeling
photon sensing with Poisson distribution and the remaining
stationary disturbances with Gaussian distribution, we add
Poisson-Gaussian noise [10] to generate noisy LDR images.
In our simulation, darker regions in LDR images suffer from
more severe noise, which is consistent with real images from
conventional RGB cameras. Finally, we apply non-linear
mapping with different camera response curves from the

random
trajectory

video events intensity maps

A A ! !

video
frame

generate

spike
frames
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Figure. 12. The simulation process of event-based and spike-based
intensity maps. (a) Event-based intensity maps simulation. (b) Spike-
based intensity maps simulation.

database of response functions (DoRF) [
them as 8-bit LDR images.

] and quantize

7.2

As for the intensity maps, we simulate them in accordance
with the data generation mechanism of two different types
of neuromorphic cameras.

Intensity Map Simulation

Event-based intensity map. Event cameras detect the
changes of brightness' and output a sequence of event

1. We use brightness as a perceived quantity, which refers to log
intensity for scenes with uniform light.
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Figure. 13. Visual comparison of both LDR images (upper part) and intensity maps (bottom part) between synthetic data real data. The difference
maps are computed from real LDR images subtract their corresponding synthetic LDR images. Since we have to switch the neuromorphic camera
of hybrid camera, there exists misalignment in the intensity map from event camera (DAVIS [5]).

streams that contains timestamp, location, and polarity of
brightness changes. Thanks to the HDR property of event
sensors, the HDR radiance is recorded in a differential man-
ner by event cameras. To simulate events, we generate a
randomly moving trajectory for each HDR image and move
it along the trajectory to get an HDR video. Then we use the
event simulator (V2E) [7] to simulate event streams based
on the movement between two consecutive frames. We set
the threshold of event triggering to 0.18 with a variance
of 0.03. The leak noise and temporal noise rates are set to
0.01 and 0.001, respectively. The parameters of V2E [7] are
in accordance with real event cameras for more accurate
simulation.

Intensity maps are then reconstructed from sparse event
streams in an “integration” manner [23] or by a trained
neural network [20], [31], [32], [36], [40]. Among those
methods of reconstructing intensity maps from events, we
choose the E2VID [32] network to transfer event streams into
intensity maps. The process of events and intensity maps
simulation is illustrated in Fig. 12 (a). Due to the limited
resources of HDR videos, we use such a way to generate a
large scale training event data.

Spike-based intensity map. Intensity maps can also be
acquired from a spike camera (Vidar) [18]. Each pixel of the
spike camera accumulates luminance independently, and
outputs temporally asynchronous spikes. The accumulator
at each pixel gathers luminance digitalized by the A/D

converter. Once the accumulated intensity reaches a pre-
defined threshold, a spike (indicated as a pixel value of 1) is
fired at this time stamp, then the corresponding accumulator
is reset in which all the charges are drained. If there are
no spike fired at this timestamp, we get 0 for this pixel.
Thus, spike cameras output spike frames with binary val-
ues in a high-temporal resolution (40000 spike frames per-
second). We can easily find that the HDR scenes can be well
recorded in an integrated manner by spike cameras due to
the independent spiking mechanism. The bright regions will
trigger dense spike streams because high luminance means
a high frequency of spike firing, and vice versa. We first
rescale pixel values of HDR frames to [0, 1], then simulate
spike frames for each HDR frame by regarding the pixel
luminance values as spikes firing probabilities. Since Vidar
suffers from dark current noise in low light intensity, we
add fixed pattern noise [39] on each spike frame to achieve
more realistic simulation.

To get the intensity map from spike frames, we apply
a moving time window to integrate the spikes in a specific
period, and the intensity map can be computed by counting
these spikes pixel-wisely [18], as shown in Fig. 12 (b).

7.3 Similarity between Synthetic Data and Real Data

To demonstrate the effectiveness of our simulation, we show
the similarity between our synthetic data and real-captured
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Figure. 14. Comparison between merging two LDR images with different exposure values and our approach of merging one LDR image and an
intensity map using a real data example. (a) Merging two images with a large exposure ratio: The short-exposed image suffers from large noise in
the low radiance area, while the long-exposed image is truncated in the region of sky and ground. The merged HDR image cannot preserve detailed
information in both high radiance and low radiance regions. (b) Merging two images with a small exposure ratio: It reduces the noise, but loses
information in the region around the reflection on the car and the ground because both LDR images are saturated in this area. (c) The fusion of
RGB image and neuromorphic data achieves high-quality HDR reconstruction with broader dynamic range recovery and better details preservation
by fusing HDR information encoded in intensity map and structural details in LDR image.

data in Fig. 13. We capture multiple LDR images with ex-
posure bracketing and merge them to reconstruct the HDR
image as ground truth. The camera response function (CRF)
is estimated during the process. Then, we conduct our data
simulation process to generate LDR images and intensity
maps. For LDR images, we can easily get the exposure ratios
by computing the linearized LDR images divided by HDR
ground truth. We select three pairs of synthetic and real
LDR images, and compute the difference maps between
them. For intensity maps, we use both the spike camera
(Vidar [18]) and the event camera (DAVIS346 [5]) to capture
the same scenario. The intensity maps are reconstructed by
integration of spike frames from Vidar [18], or by E2VID [32]
from event streams. The results demonstrate our simulation
is quite similar to real data on both LDR images and inten-
sity maps.

8 WHY NOT MERGE TWO LDR IMAGES?

Since we combine images from two different cameras, it is
natural to consider why not replacing the neuromorphic
camera with a much cheaper conventional camera and
merging two LDR images to get an HDR result. In this
section, we analyze the advantages of combining with an
intensity map comparing with an additional LDR image.
For an extreme case, if we capture two images (for sim-
plicity, we use LDR images that are captured using cameras
with a linear CRF) with an exposure ratio of 256 : 1, which
means the saturation pixels in the short exposed image is
set to be the darkest pixel in the long exposed image, covers
the dynamic range up to 96 dB according to [29]. When

the dynamic range of a scene is not very high, which can be
well covered by two LDR images, merging these two images
can achieve reasonably good results. However, two LDR
images cannot cover very high dynamic range scenarios. In
such a case, the advantage of Neulmg-HDR fusion naturally
appears. An intensity map captured by a neuromorphic
camera covers a much higher dynamic range (e.g., 120 dB for
DAVIS346) than any LDR image. However, images captured
by a conventional camera suffer from noise or saturation
if the exposure time is too short or too long. We analyze
merging two LDR images with different exposure ratios A,
and demonstrate that the results from the NeurImg fusion
method outperform that from merging two LDR images in
very high dynamic range situation.

When merging two LDR images for HDR reconstruction,
artifacts from noise and saturation are unavoidable. We pro-
vide such analysis using an example illustrated in Fig. 14.
Firstly, we use our hybrid camera to capture a sequence of
LDR images with different exposure time, while fixing other
parameters like aperture and ISO. Then the only variable
is shutter speed. So we can get the ground truth HDR
image by merging these LDR images. Finally, we merge the
selected two LDR images to acquire an HDR image using a
state-of-the-art weighting and averaging method [26].

For case in Fig. 14 (a), we select LDR images with the
shortest exposure time and longest exposure time to cover
both very bright information (the outline of the distant
building), and very dark details (the motorbike in the right
side) to reconstruct a very high dynamic range scene. The
image with long exposure (green line) has a large area of
saturation while the image with a short exposure (blue line)
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is mainly influenced by noise. However, a too large exposure
ratio brings the loss of detailed information, such as the
artifacts on the car and ground. The merged result is mainly
influenced by the too large exposure gap.

In contrast, if we try to preserve the detailed information
accurately, it is inevitable to sacrifice the dynamic range
due to the limit of conventional CMOS or CCD sensors, as
shown in Fig. 14 (b). We choose LDR images with a smaller
exposure ratio A to recover more accurate details. But the
very high radiance area in the scene cannot be captured by
either of the two differently exposed images. As a result,
although the detailed information reconstructed by such an
exposure ratio is less noisy than the case in Fig. 14 (a), it
is impossible to recover the scene radiance out of dynamic
range bound (e.g., the reflection on the car and the ground).
The merged result in this situation is dominant by saturation
artifact in the over-exposed region. Since taking a good
trade-off to suppress both noise and saturation artifacts
by only merging two LDR images is practically difficult,
existing exposure bracketing HDR approaches usually need
more than three LDR images.

The proposed Neurlmg fusion approach essentially dif-
fers from merging two LDR images. As shown in Fig. 14
(c), since the neuromorphic cameras capture intensity maps
with a much higher dynamic range than any ordinary LDR
image, we do not need to worry about how to balance
the ratio of exposure time between two LDR images. The
LDR image just needs to be exposed in an appropriate
setting (neither too bright nor too dark) to the keep ma-
jority of chrominance information valid. Although intensity
maps are noisy and low-resolution, the NeurImg fusion
pipeline bridges domain gaps between the LDR images
and the intensity maps as stated in Sec. 3 to realize HDR
reconstruction. The zoom-in boxes show that the proposed
method achieves much higher quality in both high (with
little saturation, green inset) and low radiance (with little
noise, red inset) regions.

9 DiscuUsSION OF NETWORK ARCHITECTURE
9.1

We train the upsampling networks (2x, 4x, and 8x) to
bridge the spatial resolution gap between intensity maps
and LDR images. Compared to basic pixel interpolation
methods like bilinear or bicubic interpolation, the trained
upsampling network achieves better performance in final
results. When using basic pixel interpolation methods, the
noise in intensity maps will be preserved and enlarged in
interpolated results. However, the upsampling network is
trained with clean high-resolution intensity maps, which not
only achieves super-resolution, but also suppresses noise
in intensity maps. As shown in Table 5, the final results
with our upsampling networks outperform other basic pixel
interpolation methods.

Effectiveness of Upsampling Network

9.2

In chrominance compensation network, we use implicit
color space conversion from YUV to RGB. In the prelimi-
nary version of NeurImg-HDR [16], we used explicit color
space conversion, which ignored the dynamic range gap

Implicit vs. Explicit Color Space Conversion

TABLE 5
Quantitative comparison between the upsampling network and other
pixel-interpolation methods on the performance of final results. The
best values are in bold.

Method PSNR-tt SSIM-tt  LPIPS-t}
Upsampling net 24.01 0.905 0.199
2x SR Bilinear 23.55 0.903 0.200
Bicubic 23.55 0.899 0.204
Upsampling net 22.65 0.893 0.281
4x SR Bilinear 22.49 0.892 0.284
Bicubic 21.37 0.870 0.310
Upsampling net 23.94 0.951 0.260
8x SR Bilinear 23.86 0.951 0.265
Bicubic 23.68 0.944 0.276
YUV to RGB
Dynamic range
& 4
Precision gaps
"""""""""""""""" H RGB

Figure. 15. A real example of explicit color conversion.

and precision gap (e.g., 8-bit unsigned integer data vs. 32-
bit float data) between HDR luminance channel and LDR
chrominance channels. If we simply concatenate the HDR
luminance channel (Hy) and LDR chrominance channels
({7, Iv) as a 3-channel tensor [Hy, Iy, Iy], and explicitly
transfer it to RGB color space, the converted Hrgp loses
precision in all three channels (R, G, and B), and tends to
be colorless, especially after tone mapping, as shown in
the Hrep in Fig. 15. In this case, it becomes more difficult
for chrominance compensation network to restore the vivid
color appearance, because the loss of precision has diffused
into all three channels of Hrap.

However, the implicit color space conversion considers
the dynamic range gap and precision gap between lumi-
nance channel and chrominance channels by computing and
compensating the residuals for U, V channels. Then the
compensated chrominance channels I7, Iy have the same
precision scale with HDR luminance channel Hy. The Y,
U, and V channels are converted to R, G, and B channels
respectively in the feature levels. To properly assign weights
for features from different color channels, we apply squeeze
and excitation [17] operation in chrominance compensation
network when converting to RGB color space. The final
results demonstrate the advantages of implicit color space
conversion over explicit one on both visual and quantitative
evaluations.

9.3 Effectiveness of Recurrent Block

We use the recurrent block in chrominance compensation
network to suppress the flickering artifacts when recon-
structing HDR videos. Recurrent block has been proved to
be an effective way in relieving flickering artifacts in previ-
ous works of video construction [19], [21], [32]. The recur-
rent block can be integrated to the network by plugging in
a hidden state with chrominance compensation network as
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TABLE 6
Quantitative comparison between the proposed Neurimg-HDR+ with
recurrent block and DVP [25] on temporal consistency.

DVP [25]
0.666

Recurrent block
0.778

TCM?T

shown in Fig. 4 in the main manuscript. It doesn’t increase
the whole parameters and computation cost too much and
achieves good performance in relieving flickering artifacts.
In Table 6, we compare our recurrent-based network with
deep video prior (DVP) [25], which regards the flickering
artifacts as the noise in temporal domain, and use another
network trained independently to suppress this kind of
“noise”. We evaluate the temporal consistency of test videos
using temporal consistency metrics (TCM) metrics [35]. The
results show that recurrent block outperforms DVP [25] in
preserving temporal consistency when reconstructing HDR
videos.

10 ANALYSIS OF WEIGHTING PARAMETERS
Loss FUNCTIONS

In this section, we analyze how the weighting parameters
«; in loss functions for each sub-network are determined.
There are three basic loss functions: pixel loss Ly;zc1, percep-
tual loss [22] Lpere, and adversarial loss [14] L4y, that we
combine to optimize the network. Since the perceptual loss
is the sum of /3 norm of multiple layers from VGG-16 [34]
network, the value of perceptual loss at the beginning of
training is much larger than pixel loss, which is the £; norm
distance between two images normalized in the range [0, 1].
Since the pixel loss basically minimizes the distance between
the output and ground truth compared to perceptual loss,
it is necessary to enlarge the weighting parameter of pixel
loss to the same scale of perceptual loss to avoid that the
total loss function is dominated by perceptual loss. While
the adversarial loss for the generator is like an auxiliary
loss to make the results more natural and vivid for human
perception. So the scale of adversarial loss should be lower
than the other two. The losses after multiplied by weighting
parameters are plot in Fig. 16. If the weighting parameters
are not suitably set, it will be difficult for the network to
converge.

Besides the analysis above, we have conducted compre-
hensive ablation experiments to find an optimal combina-
tion of weighting parameters. As shown in Table 7, we
firstly analyze how to balance the weights between Lz
and Lper. in luminance fusion network?, which is optimized
by loss function L, expressed in Eq. (11). Since the initial
values of perceptual loss are much larger than pixel loss, we
only change the weighting parameter of pixel loss to balance
the weights between them. We find that the combination
of weighting parameters as 100.0 for L,;;; and 3.0 for
Lpere achieves the best results in comprehensive evalua-
tions. Then for chrominance compensation network, which
is optimized by loss function L expressed in Eq. (14), the
adversarial loss is an extra auxiliary loss compared to Ly,.

IN

2. Since the output of luminance fusion network are single-channel
images, we can not compute HDR-VDP [28] metrics for them.
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Figure. 16. The losses chart of the beginning 200 steps during training
process. All the basic losses are multiplied by their weighting parame-
ters, which are 100.0 for pixel loss, 3.0 for perceptual loss, and 10.0 for
adversarial loss, respectively. The transparent curves behind are losses
before smoothing.

TABLE 7
Quantitative comparison of variants with different weighting
parameters. The best values are in red, and the second best values are
in blue. The optimal variants are highlighted with gray.

Loss  Weighting parameters
Functions Lpizer Lperc Ladw PSNR-tf SSIM-t1 LPIPS-t| HDR-VDPt
1.0 30 - 18.77 0844  0.160 -
10.0 3.0 - 2356 0908  0.115 -
Ly, 100.0 3.0 = 2476 0932  0.136 =
1000.0 3.0 - 2599 0921  0.188 -
10000.0 3.0 - 2428 0911  0.232 -
100.0 3.0 1.0 23.71 0904 0.204 9.210
r 1000 30 10.0 2401 0905 0.199 91215
¢ 100.0 3.0 1000 2376 0904  0.202 9.206
100.0 3.0 1000.0 23.66  0.902  0.201 9.183

We fix the weighting parameters of Lp;ze; and Lper. the
same as L, and change the weights of £,q,. Results show
that chrominance compensation network has the optimal
performance when setting the parameter of L,q4, to 10.0.
Finally, the weighting parameters in loss functions are de-
termined by theoretical analysis and ablation experiments.

11 COMPUTATIONAL COST

In this section, we analyze the number of parameters, the
training time, and the inference speed of the proposed net-
work. The number of parameters of upsampling networks,
luminance fusion network, and chrominance compensation
network are 2.00M, 33.51M, and 8.46M, respectively. The
total number of parameters of our network is 43.98 M. Since
the proposed network has three sub-networks, and they are
trained phase-to-phase, the total training time is the sum
of three sub-networks, which is around 18 hours on an
NVIDIA Titan RTX graphics card. For inference speed, we
test our model on 70 HDR images, and compute the average
inference speed. For a 512 x 512 image, our approach
spends 101.55ms on an NVIDIA RTX 3080 Ti graphics card.
Compared with preliminary NeurImg-HDR [16], which has
42.80M parameters with a inference speed of 69.89ms per
image, the NeurImg-HDR+ has a comparable network size
and spends more time on inference phase though, there is
a huge improvement of the performance on restoring HDR
images and videos.
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12 HES-HDR DATASET

In this section, we describe the detailed information of the
collected Hybrid Event & Spike HDR (HES-HDR) dataset.
We use the hybrid camera to capture various scenarios and
build our dataset of RGB-neuromorphic video pairs. As
shown in Table 8, in total, there are 20 video pairs, including
10 videos captured using the event camera (DAVIS346 [5])
and 10 videos captured using the spike camera (Vidar [18]).
The HES-HDR dataset covers both indoor and outdoor HDR
scenarios with camera motion or/and scene motion. We put
a simple description to each video for easy reference. All
the RGB frames are provided in .jpg format. Event data
are provided in stream-like .txt format, and Spike data are
provided in spike frame-like .npz format.

13 GEOMETRIC CALIBRATION

In this section, we introduce the geometric calibration be-
tween two sensors of the hybrid camera. Since the two
different views captured by the hybrid camera contain in-
evitable misalignment, we address this issue by conducting
geometric calibration and cropping the center part from
two views to extract the well-aligned regions as I and
X for reconstruction. We consider homography and radial
distortion between two camera views. Since event camera
needs intensity changes to generate event signals, we choose
to use a blinking checkerboard pattern displayed on a
screen while keeping the hybrid camera system stationary.
In order to extract the angular points from event data, we
integrate the captured events over a time window (the time
window should be no longer than the blinking period)
to reconstruct the checkerboard image. As for the spike
camera, the checkerboard pattern should be fixed without
blinking and we just need to integrate a small period of
spikes (around 300 spikes) data to reconstruct the intensity
of the checkerboard.

It is easy for a conventional RGB camera to capture the
stable checkerboard pattern. Then we convert it to grayscale.
The angular points on the checkerboard are detected as
the key points for calibration. The 2D-based calibration
includes a homography transformation estimated based on
the central key points and an anti-distortion transforma-
tion estimated based on all the key points. We crop the
overlapped area of two images and force the height and
width of I to be even number multiples of those of X for
the purpose of following an upsampling operation by the
proposed network.

14 ADDITIONAL HDR RESULTS

In addition to Fig. 8 in the main paper, we provide
more comparisons on synthetic data between the proposed
NeurImg-HDR+ and other methods in Fig. 17, including
NeurImg-HDR [16], Liu et al. [27], Santos et al. [33], and
LDRx2 [6]. We also show more results on real data in
Fig. 18. More video results on synthetic data and real data
are shown in the supplementary video.
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LDR image Ground truth Neurlmg-HDR+  Neurlmg-HDR Liu et al. Santos et al. LDRX2

Figure. 17. More visual results on synthetic data.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

I X (DAVIS) Neurlmg-HDR Neurlmg-HDR+ I X (Vidar)  Neurlmg-HDR Neurlmg-HDR+

Figure. 18. More visual results on real data.
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TABLE 8
Details of our HES-HDR dataset.

10

serial neuromorphic # of £ spatial indoor/ | camera scene descripti

number camera ObITames | resolution | outdoor | motion | motion escription
#event_01 DAVIS346 164 260x346 outdoor v the sun shining on the ground
#event_02 DAVIS346 391 237 %329 indoor v v capturing the outside scene through windows
#event_03 DAVIS346 328 237x329 indoor v capturing the windows from indoor
#event_04 DAVIS346 389 237x329 outdoor v the wall reflecting the sunlight
#event_05 DAVIS346 378 237x329 outdoor v static car and fence with camera motion
#event_06 DAVIS346 396 237x329 outdoor v capturing the buildings with camera motion
#event_07 DAVIS346 212 237x329 indoor v capturing the windows from indoor
#event_08 DAVIS346 162 237 %329 indoor v capturing the outside scene through windows
#event_09 DAVIS346 311 237x329 outdoor v N a building reflecting the sunlight
#event_10 DAVIS346 350 237x329 outdoor v windows of a building reflecting the sunlight
#spike_01 Vidar 398 250%400 outdoor v v a car passing away
#spike_02 Vidar 397 250400 outdoor v v the sun shining on the ground
#spike_03 Vidar 387 250x400 outdoor v a static car
#spike_04 Vidar 145 250x 400 outdoor v a static car
#spike_05 Vidar 387 250x400 outdoor v a static car and bicycles
#spike_06 Vidar 135 250x400 | outdoor v a static car and fences
#spike_07 Vidar 397 250%400 outdoor v the roof of a building
#spike_08 Vidar 212 250400 indoor v a passenger going down the stairs (short)
#spike_09 Vidar 396 250x400 indoor v a passenger going down the stairs (long)
#spike_10 Vidar 397 250x 400 outdoor v capturing the sun directly
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