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Abstract—Existing diffusion models for low-light image en-
hancement typically incrementally remove noise introduced dur-
ing the forward diffusion process using a denoising loss, with the
process being conditioned on input low-light images. While these
models demonstrate remarkable abilities in generating realistic
high-frequency details, they often struggle to restore fine details
that are faithful to the input. To address this, we present a
novel detail-preserving diffusion model for realistic and faithful
low-light image enhancement. Our approach integrates a size-
agnostic diffusion process with a reverse process reconstruction
loss, significantly enhancing the fidelity of enhanced images to
their low-light counterparts and enabling more accurate recovery
of fine details. To ensure the preservation of region- and content-
aware details, we employ an efficient noise estimation network
with a simplified channel-spatial attention mechanism. Addi-
tionally, we propose a multiscale ensemble scheme to maintain
detail fidelity across diverse illumination regions. Comprehensive
experiments on eight benchmark datasets demonstrate that our
method achieves state-of-the-art results compared to over twenty
existing methods in terms of both perceptual quality (LPIPS)
and distortion metrics (PSNR and SSIM). The code is available
at: https://github.com/CSYanH/DePDiff.

Index Terms—Low-light image enhancement, conditional
patch-based diffusion models, detail-preserving, reverse
diffusion-based reconstruction, multiscale ensemble scheme.

I. INTRODUCTION

Achieving high-quality photography in real-world scenarios
frequently confronts the significant challenge of inadequate
lighting, particularly in indoor or nighttime settings where
illumination is often insufficient. Conventional solutions, such
as applying analog or digital gain, tend to amplify noise, while
extending exposure time can result in motion blur due to
camera shake or subject movement. This issue not only affects
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Fig. 1. Visual comparison results of existing diffusion-based LLIE methods
and the proposed one. It demonstrates the superior performance of our method
in preserving details and handling variations in brightness and noise.

the perceptual quality of photographs [4], [5] but also impedes
critical vision tasks like detection and tracking [6], [7].

Low-Light Image Enhancement (LLIE) is dedicated to
improving the quality of photographs captured under low-
light conditions, characterized by low signal-to-noise ratio
(SNR) and poor contrast [4], [5], [8]. The past few decades
have seen the emergence of LLIE methods [4], [9], evolv-
ing from traditional techniques [10]–[12] to deep learning-
based approaches [13]–[29]. Despite the advancements in
LLIE methods, significant challenges remain in achieving
high-quality image enhancement under low-light conditions.
Existing deep learning-based regression methods map low-
light images to normal-light images using metrics like mean
squared error. Although these methods optimize distortion
metrics such as PSNR, they tend to produce overly smoothed
predictions that lack high-frequency details essential for per-
ceptual realism [30]–[32]. These methods often struggle to
maintain the delicate balance between noise reduction and
detail preservation, leading to results that may appear visually
unrealistic or lacking in fine detail.

Diffusion models (DMs) have recently demonstrated con-
siderable potential in producing perceptually realistic high-
frequency details for LLIE [1]–[3]. These methods operate by
gradually transforming an image into a normal distribution by
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adding noise during the forward diffusion process, followed by
a reverse denoising step in which a neural network with the
low-light image as a condition is guided by a denoising loss.
However, as shown in Fig. 1, existing diffusion-based LLIE
methods face several notable challenges in detail preserva-
tion: Firstly, current diffusion-based LLIE methods prioritize
optimizing denoising loss rather than predicting normal-light
images against ground truth pixel-wisely. Although they excel
in data distribution fitting and realistic enhancements, their
ability to faithfully recover fine details may be limited. This
limitation is critical in applications requiring high-fidelity
detail preservation, such as medical imaging and security
surveillance. Secondly, the brightness distribution in low-light
images is highly variable. Existing methods often apply a
uniform enhancement approach, which may not adapt well to
the varying illumination conditions across different regions of
an image. An approach with locality-based brightness adapt-
ability is crucial for accurately identifying and differentiating
between noise and fine details in different regions of the input
low-light images. Last but not least, low-light images exhibit
non-uniform noise properties that vary across different scales
and regions. Current training and inference schemes in DMs
often target whole input images, limiting scale-agnostic detail
recovery and failing to address the diversity in real-world
textures and patterns. This issue becomes more pronounced
in real-world scenarios, where lighting conditions and noise
characteristics can vary significantly.

To mitigate these challenges, we introduce Detail-
Preserving Diffusion Models (DePDiff) for realistic and faith-
ful low-light image enhancement, which utilize the following
strategies for better detail preservation: i) Reverse diffusion-
based reconstruction loss: In the DDIM case, latent noises
converted from the input low-light images through a forward
diffusion can be nearly perfectly inverted to target normal-
light images using a reverse diffusion if the score function
for the reverse diffusion is retained the same as that of
the forward diffusion. To ensure detail preservation of the
predicted normal-light images to the targets, we constrain the
faithfulness by a reconstruction loss between them during
training, akin to GANs. This loss function helps maintain
high-frequency details while reducing noise. ii) Content and
region-aware architecture: To enhance spatial adaptability
for distinguishing between relevant image content and noise
in challenging low-light conditions, we equip the commonly-
used U-Net in DMs [33] with an activation-free architecture
and simplified channel-spatial attention, dubbed Content and
Region-Aware Network (CRANet). This architecture can adap-
tively focus on relevant features across both channels and
spatial dimensions, selectively enhancing important features
while suppressing less relevant information. The integration of
channel and spatial attention mechanisms allows the network
to better handle varying brightness and noise characteristics
across different locations. iii) Multiscale ensemble scheme:
For scale adaptivity, we adopt a patch-based training approach
to guide the denoising process in DMs with adaptive noise
estimates for overlapping patches and a multiscale ensemble
scheme to aggregate details from various scales. This scheme
allows our model to effectively capture and preserve details at

multiple scales, addressing non-uniform noise properties and
enhancing overall image quality.

By addressing these challenges, our proposed DePDiff
method offers a detail-preserving diffusion-based method in
the field of low-light image enhancement. Extensive experi-
ments demonstrate that the proposed method effectively bal-
ances noise reduction and detail preservation in low-light
images, achieving state-of-the-art performance on various
benchmarks. The contributions of our work include:

• Equipping conditional patch-based DMs with multiscale
ensemble scheme for scale-adaptive enhancement and
detail aggregation in low-light images;

• Proposing a reverse diffusion-based reconstruction loss
for more faithful enhancement for low-light image, akin
to GAN-based training schemes; and

• Introducing an efficient architecture with channel-spatial
attention for precise, localized enhancement from inputs
with non-uniform degradation levels.

II. RELATED WORK
The field of LLIE has seen considerable advancement in

the last few decades, evolving from traditional methods to
sophisticated deep learning techniques [4], [9], [10]. This
section outlines the development in LLIE, focusing on non-
learning and deep regression methods before delving into the
generative approaches, especially the diffusion-based ones.

A. Non-learning LLIE methods

Traditional non-learning LLIE methods leverage statistical
properties and established image priors, offering computa-
tional efficiency. Histogram equalization methods enhance
contrast by redistributing pixel intensities across the dynamic
range [10]. While recent advances integrate intuitionistic
fuzzy set theory [34], these methods often suffer from noise
amplification [9], [10]. Retinex-based methods, grounded in
color vision theory, focus on illumination enhancement [11],
exemplified by adaptive gamma correction in Retinex decom-
position [12]. Nonlinear transformation methods frame LLIE
as a direct mapping between lighting conditions [9], with
gamma correction serving as a classic example [12]. Despite
their efficiency, these traditional approaches struggle to handle
complex lighting scenarios [5], [35].

B. Regression LLIE methods

Deep learning-based approaches offer an effective alterna-
tive to traditional methods, enabling enhanced LLIE perfor-
mance [4]. These approaches learn direct mappings between
low-light and normal-light images [31], [36], leveraging ad-
vanced architectures such as transformers [3] and multiscale
networks [20], [24] to handle complex degradation patterns.
Recent architectural innovations have further advanced the
field. HWMNet [13] introduces a half-wavelet attention mech-
anism that effectively captures multi-scale features, while
the lightweight illumination-adaptive Transformer (IAT) [14]
demonstrates promising results in downstream tasks such as
object detection and semantic segmentation. RUAS [37] com-
bines classical Retinex theory with neural architecture search
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Fig. 2. Overview of DePDiff’s training and multiscale ensemble process. Left: Conditioned on x(i) extracted from low-light image x, y(i)
0 extracted from

target image y0 are gradually transitioning into normal-distributed noise during forward diffusion q(y
(i)
t |y(i)

0 ) (red arrow). Reconstruction loss Lrec and
denoising loss Ldiff are jointly optimized through reverse diffusion q(y

(i)
0 |y(i)

t ,x(i)) (blue arrow). Right: For each low-light patches x(i), CRANet estimates
noise pθ(y

(i)
t−1|y

(i)
t ,x(i), t) to progressively denoise the randomly sampled normal-distributed noise patches y(i)

T into the final output y0. The final enhanced
image ỹ0 is composed by merging these denoised patches processed at different scales.

TABLE I
COMPARISON OF PREVIOUS DIFFUSION-BASED LLIE METHODS AND THE

PROPOSED ONE.

Method Pixelwise
reconstruction

Locality-based
brightness adaptability

Scale-adaptive
sampling

WeatherDiff [8] ✗ ✗ ✓
CLEDiff [1] ✗ ✓ ✗
DiffLL [3] ✗ ✗ ✗
PyDiff [2] ✗ ✗ ✗

Ours ✓ ✓ ✓

to optimize network design, and unsupervised approaches us-
ing pseudo-labels [15] have emerged to address the scarcity of
paired training data. The techniques developed for LLIE share
methodological similarities with related image enhancement
tasks, including super-resolution [38] and underwater image
enhancement [39]–[41].

C. Generative LLIE methods

Generative methods, known for their exceptional percep-
tual quality, are adept at producing high-frequency details
reminiscent of the input low-light images [2], [32]. For in-
stance, EnlightenGAN integrates attention mechanisms with
image-specific regularization within a GAN framework [32].
Cross-image disentanglement for low-light enhancement [19]
leverages weak supervision in GANs to achieve enhancement
without paired training data. LLFlow [42] demonstrates the
potential of normalizing flows. Despite their effectiveness,
GANs face challenges like training instability and artifact
introduction, while normalizing flows show restricted expres-
siveness in modeling complex image distributions.

1) Diffusion models: DMs have recently revolutionized
image generation. The genetic framework of DMs includes
Denoising Diffusion Probabilistic Models (DDPMs) [33],
Stochastic Differential Equations (SDE) [43], and Noise Con-
ditional Score Networks (NCSN) [44]. DDPMs are inspired by
non-equilibrium thermodynamics, consisting of a noise-added
diffusion process and a noise-removal-based reverse process.

NCSN models focus on score-based generative modeling for
denoising and image enhancement. SDE-based models gen-
eralize these concepts through forward and reverse stochastic
differential equations [45]. Existing variants demonstrate the
versatility of DMs in addressing various computer vision
tasks [46]–[50]. For example, WeatherDiff, a patch-based dif-
fusion model, was developed for image restoration in adverse
weather conditions [8], and ShadowDiffusion was proposed
for image shadow removal [51]. Luo et al. designed a latent
diffusion model for low-resolution latent space diffusion [52].

2) Diffusion-based LLIE: Focusing on diffusion-based
LLIE, various approaches have been developed [1]–[3]. These
models enhance images by employing a noise estimation
network for the reverse process. The basic DDPMs [33] use
a noise estimation network for supervised reverse process
learning but lack spatial adaptation, potentially failing to
preserve fine details in complex textures. WeatherDiff [8] is
designed for image restoration in adverse weather conditions,
which can also applied to LLIE. CLEDiff [1] introduces a con-
trollable light enhancement diffusion model that offers region-
specific controllability. DiffLL [3] employs a wavelet-based
conditional diffusion model to enhance low-light images using
wavelet transformation; however, it does not address non-
uniform noise properties effectively due to its global approach
to noise estimation. PyDiff [2] enhances low-light images
by progressively increasing resolution and globally correcting
degradation. By using existing LLIE methods, a diffusion-
based post-processing framework was proposed [53]. Through
integration with the image degradation and priors, a diffusion-
based LLIE method (LLDiffusion) was designed [54]. These
different variants of DMs show promising prospects. By con-
trast, our method uniquely integrates a pixel-wise reconstruc-
tion loss to ensure detailed preservation, employs content and
region-aware attention mechanisms to improve locality-based
brightness adaptability, and uses a scale-adaptive sampling
scheme to enhance robustness to noise. Table I compare our
proposed methods with previous works.
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III. METHOD

To model the conditional distribution p(y|x) for image en-
hancement tasks involving a one-to-many mapping inherently,
we learn a parametric approximation through a stochastic
iterative process that maps a low-light image x to a normal-
light image y. Our approach employs conditional patch-based
DDPMs [8], which learn a Markov Chain to gradually convert
Gaussian noise into the data distribution of target images y,
conditioned on input images x.

A crucial aspect of effectively leveraging the capabilities
of DMs in LLIE is to generate perceptually realistic high-
frequency details while also faithfully recovering fine details
inherent in the input low-light images. To this end, we intro-
duce DePDiff, which employs reverse diffusion-based recon-
struction loss (left of Fig. 2) and smoothed noise estimation
for overlapping patches using a multiscale ensemble scheme
(right of Fig. 2) in a patch-wise, scale-agnostic manner. Our
network architecture with simplified channel-spatial attention,
CRANet, is tailored for content- and region-aware noise esti-
mation (Fig. 3).

A. Detail-preserving diffusion models

Considering an arbitrary-sized ground truth normal-light
image y and its corresponding low-light image x, we define
y(i) = Crop(P (i) ◦ y) and x(i) = Crop(P (i) ◦ x) as p × p
patches from the training image pair (x,y) where P (i) is
a binary mask matrix indicating the i-th patch location, and
Crop(·) extracts the specified patch. DePDiff extends condi-
tional patch-based DDPMs [8], generating a target image patch
in T diffusion time steps from pure noise y

(i)
T ∼ N (0, I).

The model iteratively refines the output image to eventually
achieve y0 ∼ p(y|x) through learned conditional distributions
pθ(y

(i)
t−1|y

(i)
t ,x(i)). We omit the patch location index i in this

subsection.
1) Forward diffusion process: The forward diffusion pro-

cess incrementally adds Gaussian noise to y0 according to a
variance schedule β1, · · · , βT , formulated as q(yt|yt−1). This
process, denoted by q(y1:T |y0), is represented as a Markov
chain:

q(y1:T |y0) =

T∏
t=1

q(yt|yt−1), (1)

q(yt|yt−1) = N (yt;
√
1− βtyt−1, βtI). (2)

With αt = 1 − βt, ᾱt =
∏t

j=0 αj , the state yt at time step t
is given by:

q(yt|y0) = N (yt;
√
ᾱty0, (1− ᾱt)I), (3)

which also can be expressed in closed form:

yt =
√
ᾱty0 +

√
1− ᾱtϵt, (4)

with ϵt ∼ N (0, I) as noise from a normal distribution.
Utilizing the denoising diffusion implicit model

(DDIM) [8], [55], we adopt a non-Markovian forward

Algorithm 1 Training of DePDiff
Input: Dataset containing low-light images x and normal-light
images y0.

1: repeat
2: Randomly sample a binary patch mask P (i)

3: y
(i)
0 = Crop(P (i) ◦ y0),x

(i) = Crop(P (i) ◦ x)
4: t ∈ Uniform{1, · · · , T}
5: ϵt ∼ N (0, I)
6: Take gradient descent step on

∇θLtrain using Eq. (17)
7: until converged
8: return θ

diffusion process for deterministic sampling acceleration. The
generalized non-Markovian forward process is formulated as:

q(y1:T |y0) = q(yt|y0)

T∏
t=2

q(yt−1|yt,y0),

qλ(yt−1|yt,y0) = N (yt−1; µ̃t(yt,y0, t), λ
2
tI),

(5)

with the mean value µ̃t(yt,y0, t) derived as:

µ̃t(yt,y0, t) =
√
ᾱt−1y0 +

√
1− ᾱt−1 − λ2

t ϵt. (6)

When λ2
t is expressed by:

λ2
t =

1− αt−1

1− αt
βt, (7)

the diffusion process formulated by Eq. (5) can not only
become Markov but also maintain the same training objective
as the diffusion process formulated by Eq. (2). According
to Eq. (4) and Eq. (6), the mean value µ̃t(yt,y0, t) can be
finally derived as:

µ̃t(yt,y0, t) =
√
αt−1(

yt −
√
1− αtϵt√
αt

)

+
√
1− αt−1 − λ2

t ϵt.

(8)

A deterministic implicit sampling approach can be achieved
by setting λ2

t = 0 [8], [55], which, following the generation
of an initial yT from normal distribution, renders subsequent
sampling deterministic.

2) Reverse diffusion process: Our model reverses the Gaus-
sian diffusion process to regenerate y0 through a reverse
Markov chain conditioned on x. This process involves itera-
tively reconstructing the signal from noise, to convert the diffu-
sive noise back to y0 using a noise estimator ϵθ. Unlike [33],
the reverse process of our model is conditioned on the patch-
based low-light image x. The conditioning on x leverages
the general features of the low-light image to improve image
quality, providing a more detailed and fine-grained learning
approach for better image enhancement. The reverse diffusion
process begins with an initial value p(yT ) = N (yT ;0, I). We
define the conditional reverse process pθ(y0:T |x) as a Markov
chain with learned Gaussian transitions:

pθ(y0:T |x) = p(yT )

T∏
t=1

pθ(yt−1|yt,x, t), (9)
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Fig. 3. Architecture of CRANet. Based on U-Net [56] with light configuration from [57], the network removes nonlinear activation functions for computational
efficiency. The Simplified Spatial Attention (SSA) module enables spatial adaptability, while the Simplified Channel-Attention (SCA) enhances the noise
estimation process through dual-dimension guidance. A multilayer perceptron (MLP) performs time embedding.

pθ(yt−1|yt,x, t) =

N (yt−1;µθ(yt,x, t),Σθ(yt,x, t)),
(10)

For simplicity, Σθ(yt,x, t) = σ2
t I , and µθ(yt,x, t) are

parameterized by a neural network with parameters θ.
To prevent the generation of differing normal-light im-

age patches for overlapping grid cells during conditional re-
verse sampling from neighboring overlapping low-light image
patches, we adopt the mean estimated noise for each pixel
across overlapping patch regions at denoising time step t. This
method ensures enhanced fidelity throughout the reverse sam-
pling process, harmonizing the contributions from all adjacent
patches. At each time step t during sampling, we calculate the
additive noise for every overlapping patch location i using
ϵθ(y

(i)
t ,x(i), t). These overlapping noise estimates at their

corresponding patch locations are aggregated into a matrix ϵ̃t
of the same size as the entire low-light image x, which is
then normalized based on the count of estimates received per
pixel. With DDIM for accelerated deterministic sampling by
setting λ2

t = 0 in Eq. (8), sample yt−1 ∼ pθ(yt−1|yt,x, t) is
formulated as follows:

yt−1 =
√

αt−1(
yt −

√
1− αtϵ̃t√
αt

) +
√

1− αt−1ϵ̃t, (11)

which starts from yT ∼ N (0, I) and is updated using the
smoothed whole-image noise estimate ϵ̃t . To expedite the
sampling process, we use a sub-sequence with equal intervals
from the overall sequence t1, t2, ..., tS ⊆ 1, 2, ..., T :

tj = (j − 1) · T/S + 1, j = 1, ..., S, (12)

where t1 denotes the final step of reverse sampling.

3) Optimizing with reverse diffusion-based reconstruction:
Unlike other generative models such as GANs, DMs prioritize
optimizing denoising loss rather than predicting normal-light
images against ground truth. For a given diffusion process
under implicit deterministic sampling, the noise ϵt added at
each diffusion step t is deterministic, enabling the training of
the noise estimation network ϵθ(yt,x, t). The denoising loss is
realized by optimizing the variational bound on negative data
log-likelihood Eq(y0)[− log pθ(y0|yt,x)], which is equivalent
to optimizing Ldiff:

Ldiff = ∥ϵt − ϵθ(yt,x, t)∥22, (13)

where
yt =

√
αty0 +

√
1− αtϵt. (14)

DMs trained with such denoising loss excel in data distri-
bution fitting and realistic enhancements; however, their capa-
bility in faithfully recovering fine details may be limited. To
address this, we introduce a reconstruction loss Lrec between
the enhanced image y0 and the ground truth y0. y0 is derived
directly from yt and the learned noise estimator ϵθ(yt,x, t)
in the reverse diffusion process:

y0 =
yt −

√
1− αtϵθ(yt,x, t)√

αt
. (15)

This formulation allows direct evaluation of the difference
between enhanced images and original normal-light ones:

Lrec = ∥y0 − y0∥22, (16)

optimizing the noise estimator in an image enhancement-
oriented supervised manner.
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Algorithm 1 outlines the training procedure. The DePDiff
optimizes both the denoising loss and the reverse diffusion-
based reconstruction, making it more effective for LLIE. The
overall training loss is a weighted sum of Ldiff and Lrec:

Ltrain = Ldiff + γLrec. (17)

where γ is a weighted coefficient.

B. Content and region-aware network for noise estimation

The inherent challenge in enhancing low-light images stems
from their non-uniform brightness distributions across scenes.
It demands adaptive methods that distinguish between noise
and genuine details based on local content and regional char-
acteristics. To address this, our network design incorporates
channel attention mechanisms to selectively amplify task-
relevant features, particularly useful in enhancing underex-
posed areas and recovering details obscured in shadows. By
weighting the channels according to their importance, the net-
work can focus more on features that enhance under-exposed
areas or details lost in shadows. It helps in understanding the
global context of the image, which is crucial for content-aware
processing, ensuring that the enhancements are uniform and
coherent across the entire image. Furthermore, spatial attention
mechanisms are integrated to enable the network to focus on
specific image regions that require enhanced processing. In
low-light conditions, this translates to the network dedicating
more resources to darker or shadowed areas that need bright-
ness adjustments, while conservatively handling well-lit sec-
tions. This approach is particularly beneficial for identifying
noisy regions and applying targeted noise reduction, thereby
preserving the integrity of smoother areas in the image.

Motivated by these considerations, we have tailored the
U-Net architecture within the DDPMs framework [33] by
incorporating an activation-free structure and a streamlined
channel-spatial attention mechanism [57]. This results in our
CRANet for noise estimation in DMs, specifically designed
to tackle the unique challenges posed by low-light image
enhancement.

As depicted in Fig. 3, CRANet maintains the core U-
Net [56] while introducing several key modifications. CRANet
incorporates the configuration from [57], removing nonlinear
activation functions to reduce computational cost. Unlike [57],
our architecture uses a multilayer perceptron (MLP) for time
embedding and introduces a new simplified spatial attention
(SSA) mechanism, combined with the simplified channel-
attention (SCA) to guide the noise estimation process.

During inference, the trained CRANet ϵθ(y
(i)
t ,x(i), t)

processes individual image patches through the denoising
pipeline. The denoised patches are then combined to construct
the whole image, using the mean estimated noise for pixels
within overlapping patches to perform reverse sampling for
the entire image enhancement.

C. Multiscale ensemble scheme

The varying noise properties and natural image patch scales
in low-light images necessitate adaptive receptive fields. Tra-
ditional training and inference schemes in DMs, which often

Algorithm 2 Multiscale Ensemble
Input: Dataset D containing low-light image x, pretrained
ϵθ(yt,x, t), number of implicit sampling steps S, N sampling
scales, number of bootstrap sample M , dictionary of D
overlapping patch locations.

1: for x ∈ D do
2: for n = 1 ..., N do
3: yT ∼ N (0, I)
4: for j = S ..., 1 do
5: t = (j − 1) · T/S + 1
6: tnext = (j − 2) · T/S + 1 if j > 1 else 0
7: M = 0, ϵ̃t = 0
8: for i = 1 ..., D do
9: x(i) = Crop(P (i) ◦ x)

10: y
(i)
t = Crop(P (i) ◦ yt)

11: ϵ̃t = ϵ̃+ P (i) ◦ ϵθ(y(i)
t ,x(i), t)

12: M = M + P (i)

13: end for
14: ϵ̃t = ϵ̃t ⊘M
15: compute ytnext using Eq. (11)
16: end for
17: x(n) = ỹ0

18: end for
19: end for
20: for m = 1 ...,M do
21: create bootstrap sample Dm containing {x(n)}Nn=1

22: optimize {ηm,n}Nn=1 using Eq. (18) and Eq. (19)
23: compute x̃(m) using Eq. (18)
24: end for
25: compute ỹ0 from x̃(m) using Eq. (20) and Eq. (21)
26: return ỹ0

focus on entire images, are limited in their ability to recover
details across different scales and fail to capture the diversity
in real-world textures and patterns. To address this, we utilize
a multiscale ensemble scheme, allowing for the effective
aggregation of details from various scales and enhancing the
overall image quality, as shown in Fig. 4.

1) Multiscale ensemble-based image fusion: The core of
multiscale image fusion involves performing a weighted sum
on images generated at different patch sizes, thereby achieving
image enhancement. We employ a bagging-based ensemble
scheme for this purpose. Suppose that there are N image
patches of different sizes (p1, p2, ..., pN ) extracted from a
low-light image x. Pre-trained diffusion models are used
on the training set to generate N types of enhanced col-
lections. For the low-light image x, the corresponding en-
hanced images using N different patch sizes are denoted as
x(1),x(2), · · · ,x(N). The enhanced images in the training set
are randomly selected with a certain probability σ to form
a bootstrap sample that consists of images using N different
patch sizes (p1, p2, ..., pN ).

After obtaining M bootstrap samples, they are used to inde-
pendently train M base models, simplified by using weighted
sum operation. Each bootstrap sample is used to train a base
model, essentially learning optimal weighting coefficients η.
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Fig. 4. Pipeline of multiscale patch processing. The input image is
divided into patches of varying sizes, processed through CRANet ϵθ , and
reconstructed via sliding window averaging. Enhanced images from different
scales are integrated through the multiscale ensemble scheme.

For the m-th model (m ∈ 1, 2, · · · ,M), the enhanced image
is computed as:

x̃(m) = ηm,1x
(1) + ηm,2x

(2) + ...+ ηm,Nx(N). (18)

The weighted coefficients η are optimized iteratively using the
loss function Lmul:

Lmul = ∥y0 − x̃(m)∥22. (19)

Compared to randomly generated parameters, the parameters
predicted by our lightweight network avoid significant random
errors. During inference, each base model processes samples
of different sizes to produce N weighted images. The M mod-
els generate corresponding sets of combination weights, yield-
ing M fused images, as shown in Fig. 4. Taking advantage of
patch size-agnostic image enhancement, images of different
patch sizes can be generated inexpensively. The designed
learning strategy can then effectively utilize the information
from the different patch size-based generated images to learn
and fuse details from different scales, ultimately achieving
faithful enhancement.

2) Image histogram difference-based aggregation predic-
tion: Selecting the final enhanced image from the M out-
puts of the base models is achieved by analyzing histogram

differences between the enhanced images and the original low-
light image x. Image histograms, representing pixel inten-
sity distributions, serve as an efficient and invariant measure
for assessing light intensity variations. The image among
x̃(1), x̃(2), ..., x̃(M) with the maximum histogram difference
from x is selected as the final enhanced image ỹ0:

ỹ0 = x̃(m∗), (20)

where
m∗ = argmax

m∈[1,M ]

∆(Hist(x̃(m)),Hist(x)), (21)

with Hist(x̃(m)) and Hist(x)) denote the histograms of x̃(m)

and x, respectively, and ∆(.) calculates the histogram differ-
ence. Algorithm 2 outlines the multiscale ensemble scheme.

IV. EXPERIMENTS

Our experiments are divided into three parts: within-dataset
experiments comparing our method against state-of-the-art
approaches; cross-dataset validation to assess generalization
capability; and ablation studies examining the contribution of
each proposed component.

A. Experimental settings

1) Datasets: A total of eight datasets are utilized in ex-
periments: LOL, LOL-v1, LOL-v2 real, NPE, DICM, MEF,
LIME, and VV datasets [35], [58], [59]. Among these, only
LOL, LOL-v1, and LOL v2-real datasets [35], [58] provide
paired normal-light reference images. For within-dataset eval-
uation on LOL and LOL-v1, we follow the standard splits
for training and testing. Cross-dataset evaluation on the real-
world datasets (DICM, MEF, NPE, LIME, VV, and LOL-v2
real) is conducted using the model trained on LOL. For the
ensemble scheme, the models are trained on the LOL dataset.
All ablation studies are conducted on the LOL dataset to
maintain consistency in analysis.

2) Evaluation metrics: For paired datasets (LOL, LOL-
v1, and LOL-v2 real), we employ standard metrics: peak
signal-to-noise ratio (PSNR), structural similarity (SSIM),
and learned perceptual image patch similarity (LPIPS). For
unpaired datasets (DICM, MEF, NPE, LIME, and VV), we use
a naturalness image quality evaluator (NIQE). Higher PSNR
and SSIM values indicate better results, while lower LPIPS
and NIQE values indicate better quality.

3) Implementation details: In all experiments, the training
patch size is set to 64× 64 and the batch size is set to 4. The
LOL dataset training requires 800,000 iterations. The LOL-
v1 dataset requires 600,000 iterations. We use Adam [60] the
optimizer with a fixed learning rate of 0.00003. The diffusion
time step T is set to 1000 for training, and the implicit
sampling step S is set to 20 for inference. Our multiscale
ensemble patch sizes 64×64, 96×96, 128×128, 160×160,
192×192, 225×225 and 256×256. We implement our method
using PyTorch and run experiments on a single NVIDIA GTX
3090 Ti GPU.
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(a) Input (b) LLFlow [42] (c) WeatherDiff [8] (d) CLEDiff [1]

(e) PyDiff [2] (f) DiffLL [3] (g) Ours (h) Ground truth

Fig. 5. Qualitative comparison results of several state-of-the-art LLIE methods and the proposed one.

TABLE II
QUANTITATIVE RESULTS ON THE LOL DATASET. THE BEST RESULTS ARE
HIGHLIGHTED IN BOLD AND THE SECOND ONES ARE UNDERLINED. ↑(↓)

MEANS HIGHER (LOWER) IS BETTER.

Method Source PSNR↑ SSIM↑ LPIPS↓

KinD [61] MM’19 19.19 0.815 0.170
Zero-DCE [36] CVPR’20 14.73 0.509 0.401

EnlightenGAN [32] TIP’21 17.48 0.650 0.320
KinD++ [62] IJCV’21 20.90 0.823 0.164

Bread [63] IJCV’22 22.96 0.838 0.160
Uformer [64] CVPR’22 18.96 0.778 0.505

Restormer [65] CVPR’22 22.17 0.819 0.149
IAT [14] BMVC’22 23.38 0.861 0.216

HWMNet [13] ICIP’22 24.24 0.922 0.113
LLFlow [42] AAAI’22 24.99 0.923 0.116

SMG-LLIE [66] CVPR’23 23.85 0.893 0.131
PairLIE [67] CVPR’23 19.51 0.736 0.248
NeRCo [68] ICCV’23 19.84 0.771 0.315

RetinexFormer [69] ICCV’23 25.16 0.845 0.129
RQ-LLIE [70] ICCV’23 25.24 0.855 0.250

STGNet [59] TCSVT’23 22.03 0.838 0.101
WeatherDiff [8] TPAMI’23 19.73 0.908 0.112

CLEDiff [1] MM’23 25.50 0.907 0.163
DiffLL [3] TOG’23 21.84 0.871 0.201
PyDiff [2] IJCAI’23 27.09 0.930 0.109

DePDiff (Ours) - 27.44 0.939 0.085

4) Comparing methods: We select various state-of-the-art
learning-based methods from the past five years for compar-
ison, divided into regression LLIE methods and generative
LLIE methods. Regression LLIE methods consists of CNN-
based and Transformer-based methods, including IAT [14],
HWMNet [13], Zero-DCE [36], DRBN [31], RUAS [37],
KinD [61], KinD++ [62], STGNet [59], Bread [63], SNR-
Net [71], Zero-DCE++ [72], Restormer [65], Uformer [64],

RetinexFormer [69], SMG-LLIE [66] and PairLIE [67]. As for
generative LLIE methods, resently proposed GAN-based, nor-
malizing flow-based, VAE-based methods and diffusion-based
methods are used for comparison, including WeatherDiff [8],
EnlightenGAN [32], PyDiff [2], CLEDiff [1], DiffLL [3],
LLFlow [42], NeRCo [68] and RQ-LLIE [70]. All these
methods would be used to conduct the first two parts of
experiments to verify the effectiveness of the proposed method
within and across datasets. For convincing comparison, all
results are directly from published works or tested based on
the source codes of published works.

B. Performance comparisons

1) Quantitative results: The quantitative results of the
within-dataset evaluation are summarized in Tables II and III.
In Tab. II, we retrained DiffLL on the LOL dataset for a fair
comparison, while STGNet results are cited from their original
publications. Our proposed method outperforms all compari-
son methods in both PSNR and LPIPS metrics. While PSNR
evaluates pixel-wise accuracy and LPIPS measures perceptual
similarity, achieving superior performance in both metrics
demonstrates our method’s effectiveness in both objective and
perceptual quality enhancement. Regarding SSIM, our method
achieves the best performance on the LOL dataset but ranks
second on the LOL-v1 dataset with a marginal difference.

This performance variation can be attributed to two key fac-
tors: First, the LOL dataset comprises exclusively real-world
low-light images, whereas LOL-v1 contains both synthetic
and real-world images. This mixed composition creates dis-
tribution inconsistencies that particularly challenge diffusion-
based methods, which rely on learning mappings between



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 9

(a) Input (b) LLFlow [42] (c) PyDiff [2] (d) DiffLL [3] (e) WeatherDiff [8] (f) Ours

Fig. 6. Qualitative comparison results of several state-of-the-art LLIE methods and the proposed one on real-world datasets without ground truth.

TABLE III
QUANTITATIVE RESULTS ON THE LOL-V1 DATASET. THE BEST RESULTS
ARE HIGHLIGHTED IN BOLD AND THE SECOND ONES ARE UNDERLINED.

↑(↓) MEANS HIGHER (LOWER) IS BETTER.

Method Source PSNR↑ SSIM↑ LPIPS↓

KinD [61] MM’19 22.15 0.853 0.257
Zero-DCE [36] CVPR’20 20.54 0.778 0.331

EnlightenGAN [32] TIP’21 17.60 0.653 0.372
Uformer [64] CVPR’22 19.00 0.741 0.354

Restormer [65] CVPR’22 20.61 0.797 0.288
RUAS [37] CVPR’22 16.40 0.503 0.364

SNRNet [71] CVPR’22 24.61 0.842 0.233
IAT [14] BMVC’22 21.25 0.844 0.255

HWMNet [13] ICIP’22 19.62 0.862 0.271
LLFlow [42] AAAI’22 26.02 0.926 0.100

SMG-LLIE [66] CVPR’23 24.03 0.878 0.144
PairLIE [67] CVPR’23 24.02 0.803 0.118
NeRCo [68] ICCV’23 25.17 0.833 0.160

RetinexFormer [69] ICCV’23 27.69 0.856 0.166
RQ-LLIE [70] ICCV’23 22.37 0.854 0.228

WeatherDiff [8] TPAMI’23 17.91 0.811 0.272
DiffLL [3] TOG’23 26.33 0.845 0.217

DePDiff (Ours) - 26.52 0.922 0.098

noise and image distributions. Second, our method’s patch-
based approach, while effective for local detail enhancement,
may influence the learning of global image structure. Since

SSIM emphasizes structural information and is less sensitive
to minor perceptual distortions, this patch-based strategy could
impact SSIM performance. This explains why both our method
and DiffLL achieve lower SSIM scores compared to LLFlow, a
non-diffusion-based approach. Nevertheless, the performance
across different metrics demonstrates that our method achieves
superior overall performance in preserving perceptual quality,
pixel-level accuracy, and structural details.

2) Qualitative results: The visual results are compared
in Figs. 1, 5 and 6. Compared to the quantitative results,
these qualitative visual results can intuitively demonstrate
the effectiveness and practicality of the proposed method.
Real-world low-light conditions present various challenges
including overexposure and underexposure, or saturated pixel
areas caused by nighttime light sources. Fig. 1 demonstrates
an input low-light image containing both overexposed and
underexposed regions. CNN-based HWMNet, Transformer-
based IAT, normalizing flow-based LLFlow, and diffusion-
based PyDiff struggle with these extreme regions. However,
the proposed method successfully enhances both regions si-
multaneously. Fig. 5 and Fig. 6 demonstrate our method’s
effectiveness across various image conditions, regardless of
whether there are pixel-saturated areas in the image or whether
it has different resolution sizes.
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TABLE IV
QUANTITATIVE RESULTS ON THE LOL-V2 REAL DATASET. THE BEST

RESULTS ARE HIGHLIGHTED IN BOLD AND THE SECOND ONES ARE
UNDERLINED. ↑(↓) MEANS HIGHER (LOWER) IS BETTER.

Method Source PSNR↑ SSIM↑ LPIPS↓

KinD [61] MM’19 24.05 0.917 0.1140
Zero-DCE [36] CVPR’20 18.05 0.580 0.352

EnlightenGAN [32] TIP’21 18.67 0.678 0.364
KinD++ [62] IJCV’21 22.21 0.885 0.174

Bread [63] IJCV’22 23.69 0.912 0.155
Uformer [64] CVPR’22 18.44 0.759 0.347

Restormer [65] CVPR’22 24.91 0.851 0.264
RUAS [37] CVPR’22 15.35 0.495 0.395

SNRNet [71] CVPR’22 21.48 0.849 0.237
IAT [14] BMVC’22 26.45 0.895 0.170

HWMNet [13] ICIP’22 30.29 0.937 0.080
LLFlow [42] AAAI’22 28.35 0.945 0.076

SMG-LLIE [66] CVPR’23 25.62 0.905 0.131
PairLIE [67] CVPR’23 19.88 0.841 0.234
NeRCo [68] ICCV’23 15.67 0.684 0.409

RetinexFormer [69] ICCV’23 28.99 0.939 0.106
RQ-LLIE [70] ICCV’23 25.94 0.941 0.219

WeatherDiff [8] TPAMI’23 15.86 0.801 0.272
DiffLL [3] TOG’23 28.85 0.876 0.207
PyDiff [2] IJCAI’23 33.40 0.949 0.065

DePDiff (Ours) - 33.87 0.947 0.067

C. Cross-dataset performance comparisons

The quantitative results of the cross-dataset evaluation are
summarized in Tables IV and V further demonstrate the
effectiveness of the proposed method. As shown in Table IV,
the proposed method can achieve the best overall performance
than other comparison methods. It clearly shows that the
proposed method can effectively enhance low-light images
across datasets and has good generalization performance on
cross-domain datasets. Table V demonstrates the practicality
of our method in effectively handling LLIE problems in
real-world scenarios without the guidance of normal-light
images. It noted that NeRCo, RQ-LLIE, CLEDiff, SNRNet,
and SMG-LLIE were pre-trained and tested exclusively on
paired training sets with fixed-size input images; therefore,
their performance on unpaired test sets with varying image
resolutions is not included in this comparison.

D. Ablation studies

1) The effectiveness of reverse diffusion-based reconstruc-
tion loss: This ablation study is conducted by comparing
the results with and without the reverse diffusion-based re-
construction loss using both ℓ1-norm and ℓ2-norm expres-
sion. Table VI reveals two key findings: First, the ℓ1-
norm-based reverse diffusion-based reconstruction loss Lrec
underperforms compared to the ℓ2-norm variant. Second, the
ℓ2-norm achieves optimal results when combined with our
CRANet backbone. These demonstrate the effectiveness and
compatibility of our reconstruction loss with the designed
architecture.

2) The effectiveness of CRANet architecture: From the
perspective of model architecture, our method’s main contri-
bution lies in the design of the noise estimation network. We
conduct ablation studies by replacing our backbone network
with basic (vanilla) U-Net, NAFNet, and CRANet without

(a) Input (b) w/o SSA, Lrec

(c) w/o Lrec (d) w/o SSA

(e) Ours (f) GT

Fig. 7. Visual comparison results of the proposed method with or without the
SSA module and the proposed reverse diffusion-based reconstruction loss.

SSA module or Lrec. We maintain consistent parameter counts
across all variants and exclude post-processing. Table VII
demonstrates that both the SSA module and Lrec improve the
model performance.

To further verify the effectiveness of the proposed model
architecture, visual comparisons are shown in Fig. 7 to
demonstrate the impact of removing SSA or Lrec. Without
Lrec, patch-based models would produce obvious artifacts or
inconsistencies in the image. The proposed reverse diffusion-
based reconstruction loss effectively compensates for patch-
based learning limitations. However, without SSA, the reverse
diffusion-based reconstruction loss alone cannot achieve op-
timal results. The SSA module enables fine-grained enhance-
ment at different spatial scales, combining direct pixel-level
supervision with channel-spatial attention-based learning for
smooth and consistent image effects.

Moreover, compared to U-Net in DDPMs (419MB parame-
ters), our CRANet-based model achieves superior results with
14% fewer parameters. Table IX demonstrates reduced com-
putational cost (FLOPs) compared to diffusion-based LLIE
methods WeatherDiff [8] and PyDiff [2] while maintaining
best perceptual performance (LPIPS). Our patch-based sam-
pling scheme offers significant memory efficiency, making
it accessible for users with limited computational resources.
Processing time averages 3.8s for a 600×400 resolution image
(averaged over 15 runs on a single RTX 3090 Ti GPU).

3) The effectiveness of multiscale ensemble scheme: As
shown in Fig. 8, inappropriate image patch size disrupts the
continuity of the image structure, which may lead to inconsis-
tent brightness or blurring (as shown in the first row of Fig. 9).
This observation motivates our multiscale ensemble approach,
which adaptively integrates information from multiple scales
to ensure robust performance across diverse image content and
lighting conditions. Table VIII shows the multiscale ensemble
scheme can significantly improve the enhancement effect of
low-light images, regardless of which of the three backbone
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TABLE V
QUANTITATIVE RESULTS OF NIQE ACROSS FIVE REAL-WORLD DATASETS

WITHOUT GROUND TRUTH. THE BEST RESULTS ARE HIGHLIGHTED IN
BOLD AND THE SECOND ONES ARE UNDERLINED. LOWER IS BETTER.

Method Source
Datasets

AVGDICM MEF NPE LIME VV

KinD [61] MM’19 5.28 5.61 5.06 6.14 4.25 5.26
Zero-DCE [36] CVPR’20 4.58 4.93 4.57 5.82 4.81 4.94

EnlightenGAN [32] TIP’21 4.82 5.01 5.26 5.11 3.85 4.81
KinD++ [62] IJCV’21 5.29 6.23 4.56 7.20 4.87 5.63

Bread [63] IJCV’22 4.78 4.93 4.91 5.07 3.86 4.71
Uformer [64] CVPR’22 11.29 35.56 37.68 14.73 11.79 22.21

Restormer [65] CVPR’22 12.12 13.22 11.93 14.01 10.29 12.31
RUAS [37] CVPR’22 7.31 5.44 7.20 5.32 4.99 6.05

IAT [14] BMVC’22 7.92 4.65 4.65 4.76 3.25 5.04
HWMNet [13] ICIP’22 5.48 4.98 4.48 OOM OOM 4.98

LLFlow [42] AAAI’22 4.46 4.80 4.78 5.83 3.60 4.69
STGNet [59] TCSVT’23 9.95 10.11 11.80 10.01 8.00 9.97
PairLIE [67] CVPR’23 5.15 5.03 5.47 4.98 4.30 4.98

RetinexFormer [69] ICCV’23 4.19 4.12 4.20 4.88 3.66 4.21
WeatherDiff [8] TPAMI’23 4.75 4.57 4.68 4.62 3.38 4.40

DiffLL [3] TOG’23 4.56 4.54 4.54 4.34 3.67 4.33
PyDiff [2] IJCAI’23 5.00 4.87 5.01 OOM OOM 4.96

DePDiff (Ours) - 4.47 4.20 4.51 4.41 3.17 4.15

p = 64 , NIQE: 4.113 p = 64, NIQE: 4.473 p = 64, NIQE: 3.998

p = 128, NIQE: 4.279 p = 128, NIQE: 4.395 p = 128, NIQE: 4.067

p = 192, NIQE: 4.535 p = 192, NIQE: 4.518 p = 192, NIQE: 4.101

p = {64, 192}, p = {64, 192}, p = {64, 192},
NIQE: 4.079 NIQE: 4.307 NIQE: 3.752

Fig. 8. Effect of patch size (p) on enhancement quality. Images sampled with
different patch sizes demonstrate varying optimal sizes across scenes. Best
NIQE scores (lower is better) are shown in bold, second-best underlined.

networks is used. Fig. 9 compares the visual results with the
fixed patch-sized and multiscale ensemble. All these results
demonstrate the wide applicability and superiority of the
proposed multiscale ensemble scheme as a post-processing
scheme, which effectively compensates for the limitations by
learning to fuse images generated using different patch sizes.

TABLE VI
ABLATION STUDIES ON THE REVERSE DIFFUSION-BASED

RECONSTRUCTION LOSS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.
↑(↓) MEANS HIGHER (LOWER) IS BETTER.

Backbone Loss PSNR↑ SSIM↑ LPIPS↓

U-Net [56]
Ldiff 19.74 0.908 0.113

Ldiff + Lrec(ℓ1) 21.02 0.916 0.136
Ldiff + Lrec(ℓ2) 21.63 0.918 0.129

CRANet (Ours)
Ldiff 24.69 0.930 0.101

Ldiff + Lrec(ℓ1) 24.04 0.930 0.107
Ldiff + Lrec(ℓ2) 26.33 0.936 0.089

TABLE VII
ABLATION STUDIES ON THE MODEL ARCHITECTURE. THE BEST RESULTS

ARE HIGHLIGHTED IN BOLD. ↑(↓) MEANS HIGHER (LOWER) IS BETTER.

Backbone Setting PSNR↑ SSIM↑ LPIPS↓

U-Net [56] - 19.74 0.908 0.113
NAFNet [57] - 23.76 0.926 0.121

w/o SSA, Lrec 24.75 0.931 0.101
w/o Lrec 24.69 0.930 0.101

CRANet (Ours) w/o SSA 24.81 0.931 0.100
w/ SSA, w/ Lrec 26.33 0.936 0.089

V. CONCLUSION

This paper addresses the challenges in diffusion-based low-
light image enhancement methods, which struggle with pre-
serving fine details due to their denoising-centric training
schemes and the varying brightness and noise characteristics
of low-light images. We propose DePDiff specifically tailored
for realistic and faithful enhancement of low-light images.
Our method capitalizes on a patch-based denoising process,
integrated with a reverse process reconstruction loss that
enhances fidelity to the original low-light images, facilitating
more precise detail recovery. The development of an effi-
cient noise estimation network, equipped with a content and
region-aware attention mechanism, contributes significantly to
retaining crucial details in the enhanced images. Furthermore,
a multiscale ensemble scheme helps ensure the preservation
of detail fidelity in both well-lit and shadowed areas. The
efficacy of our approach is demonstrated through extensive
experiments, which highlight the superiority of our proposed
diffusion-based LLIE method in achieving both realism and
detail preservation in image enhancement.

While our approach demonstrates significant improvements,
several limitations remain. The multiscale ensemble scheme
can introduce additional computational complexity, making the
method less efficient for real-time applications. Moreover, the
patch-based learning strategy may limit the ability to capture
global image structures, which could affect the performance
of structural similarity. Future work will explore more ef-
ficient implementations of the multiscale ensemble scheme
and enhance the model’s capability to capture global image
structures without compromising detail preservation. These
improvements aim to make the method more practical for a
wider range of applications.
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Fig. 9. Visual comparison results of the proposed method with or without multiscale ensemble. Top: The results of the proposed method using a fixed patch
size. Middle: Results of the proposed method using multiscale ensemble. Bottom: Ground truth.

TABLE VIII
ABLATION STUDY ON THE MULTISCALE ENSEMBLE SCHEME. THE BEST
RESULTS ARE HIGHLIGHTED IN BOLD. ↑(↓) MEANS HIGHER (LOWER) IS

BETTER.

Backbone Multiscale PSNR↑ SSIM↑ LPIPS↓

U-Net [56]
w/o 22.04 0.923 0.105
w/ 24.73 0.933 0.088

NAFNet [57]
w/o 19.60 0.897 0.170
w/ 24.41 0.931 0.092

CRANet (Ours)
w/o 26.33 0.936 0.089
w/ 27.44 0.937 0.083

TABLE IX
COMPUTATIONAL COMPLEXITY OF DIFFERENT METHODS.

Method LPIPS↓ FLOPs (G) Parms. (M) Runtime (s)

KinD [61] 0.170 34.99 8.02 1.50
Zero-DCE [36] 0.401 15.59 0.08 0.01

EnlightenGAN [32] 0.320 114.35 67.80 0.34
KinD++ [62] 0.164 40.93 21.11 4.50

Bread [63] 0.160 106.96 2.15 0.10
Uformer [64] 0.505 12.00 5.29 0.50

Restormer [65] 0.149 144.25 26.13 0.12
SNRNet [71] 0.237 26.35 4.01 0.31

IAT [14] 0.216 87.21 0.09 2.50
HWMNet [13] 0.113 943.39 66.56 0.30

LLFlow [42] 0.116 358.40 17.42 0.40
SMG-LLIE [66] 0.131 92.66 19.35 0.10

PairLIE [67] 0.248 20.81 0.35 0.15
NeRCo [68] 0.315 130.70 25.80 0.34

RetinexFormer [69] 0.129 15.85 1.53 0.21
WeatherDiff [8] 0.112 726.20 109.68 15.00

DiffLL [3] 0.201 702.60 22.15 0.19
PyDiff [2] 0.109 708.68 97.19 0.23

DePDiff (Ours) 0.085 640.40 94.01 3.80
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